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Abstract— To realize the Quantum Internet, quantum
communications require pre-shared entanglement among quan-
tum nodes. However, both the generation and the distribution
of the maximally-entangled quantum states are inherently conta-
minated by quantum decoherence. Conventionally, the quantum
decoherence is mitigated by performing the consecutive steps of
quantum entanglement distillation followed by quantum telepor-
tation. However, this conventional approach imposes a long delay.
To circumvent this impediment, we propose a novel quantum
communication scheme relying on realistic noisy pre-shared
entanglement, which eliminates the sequential steps imposing
delay in the standard approach. More precisely, our proposed
scheme can be viewed as a direct quantum communication
scheme capable of improving the quantum bit error ratio (QBER)
of the logical qubits despite relying on realistic noisy pre-shared
entanglement. Our performance analysis shows that the proposed
scheme offers competitive QBER, yield, and goodput compared
to the existing state-of-the-art quantum communication schemes,
despite requiring fewer quantum gates.

Index Terms— Quantum communication, quantum entan-
glement, quantum error-correction, quantum stabilizer codes,
Quantum Internet.

I. INTRODUCTION

ENABLING quantum communications among quantum
devices within the Quantum Internet [1]–[3] will ulti-

mately lead to various groundbreaking applications. These
radically new applications do not necessarily have classical
counterparts [4] and they are not limited to the already well-
known secure classical communications, blind computation,

Manuscript received November 25, 2020; revised April 26, 2021 and
September 21, 2021; accepted October 17, 2021. Date of publication
October 26, 2021; date of current version December 17, 2021. Angela Sara
Cacciapuoti, Marcello Caleffi, and Daryus Chandra would like to acknowledge
the financial support of the project “Towards the Quantum Internet: A
Multidisciplinary Effort,” University of Naples Federico II. Angela Sara
Cacciapuoti and Marcello Caleffi would like to acknowledge as well the
financial support of PON project “S4E - Sistemi di Sicurezza e Protezione
per l’Ambiente Mare.” Lajos Hanzo would like to acknowledge the financial
support of the Engineering and Physical Sciences Research Council projects
EP/P034284/1 and EP/P003990/1 (COALESCE) as well as of the European
Research Council’s Advanced Fellow Grant QuantCom (Grant No. 789028).
The associate editor coordinating the review of this article and approving it
for publication was J. Cheng. (Corresponding author: Lajos Hanzo.)

Daryus Chandra and Lajos Hanzo are with the School of Electronics
and Computer Science (ECS), University of Southampton, Southampton
SO17 1BJ, U.K. (e-mail: dc3c18@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Angela Sara Cacciapuoti and Marcello Caleffi are with the Depart-
ment of Electrical Engineering and Information Technology, University
of Naples Federico II, 80125 Naples, Italy, and also with the Labora-
torio Nazionale di Comunicazioni Multimediali, National Inter-University
Consortium for Telecommunications (CNIT), 80126 Naples, Italy (e-mail:
angelasara.cacciapuoti@unina.it; marcello.caleffi@unina.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2021.3122786.

Digital Object Identifier 10.1109/TCOMM.2021.3122786

distributed quantum computing, and quantum secret shar-
ing [2], [5]–[8]. Naturally, the reliable transfer of quantum
information is sought across the quantum network relying on
quantum channels [9], [10]. However, the quantum channels
inevitably impose deleterious quantum decoherence, which
inflicts quantum errors [11], [12]. In the classical domain,
the errors imposed by the communication channels can be
mitigated using error-control codes [13]. The key idea of error-
control codes is to attach appropriately designed redundancy to
the information bits by an encoding process, which is utilized
by the decoder to correct a certain number of errors. How-
ever, observing and/or copying quantum information is not
allowed in the quantum domain due to the no-cloning theorem
and the quantum measurement postulate. This motivates the
carefully constructed design of quantum error-correction codes
(QECCs) [14]–[17].

QECCs constitute potent error mitigation techniques
required for tackling the deleterious effect of quantum deco-
herence. Similar to the classical error-correction codes, QECCs
rely on attaching redundant qubits to the logical qubits to
provide additional information that can be exploited for quan-
tum error-correction during the decoding step [18]. Inter-
estingly, the whole encoding and decoding process can be
completed without actually observing the physical qubits and
thus, preserving the integrity of the quantum information
conveyed by the physical qubits. In the quantum domain,
the redundant qubits can be in form of auxiliary qubits
initialized to the |0� or |+� states, or in the form of pre-
shared maximally-entangled quantum states, which are nor-
mally assumed to be noise-free. For a two-qubit system,
the maximally-entangled quantum states are represented by
the Einstein-Podolsky-Rosen (EPR) pairs. The state-of-the-art
studies typically assume that the EPR pairs are pre-shared
among quantum devices within the quantum networks before
any quantum communication protocol is initiated. Hence, the
EPR pairs can be considered as the primary resource within
the Quantum Internet [10].

Having pre-shared entanglement offers several beneficial
features for QECCs. Firstly, it can be used for conveniently
transforming some powerful classical error-correction codes
that do not satisfy the symplectic criterion1 into their quantum
counterparts [19]–[21]. Secondly, they can also be used for
increasing the error-correction capability of quantum stabilizer
codes (QSCs) [22]. Indeed, there are several types of QECCs

1A pair of classical error-correction codes having parity-check matrices Hx

and Hz can be transformed to a quantum error-correction code if they satisfy
HxHT

z +HzHT
x = 0 mod 2.
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in the literature that exploit pre-shared entanglement, such as
entanglement-assisted QSCs [23], entanglement-aided canon-
ical codes [24], as well as teleportation-based QECCs [25].
However, in all the above-mentioned schemes, the pre-shared
entanglement is considered to be noise-free.

In a scenario having realistic noisy pre-shared entanglement,
QECCs are invoked for quantum entanglement distillation
(QED) [17], [26]–[29], which is followed by quantum tele-
portation [30] for transferring the quantum information. QED
can be viewed as a specific application of QECCs, where
several copies of noisy pre-shared EPR pairs are discarded
to obtain fewer but less noisy EPR pairs. In this approach,
QED and quantum teleportation have to be performed sub-
sequently, which typically imposes excessive practical delay.
Additionally, state-of-the-art QED schemes will always have
some residual quantum noise, unless infinitely many noisy pre-
shared EPR pairs are discarded during QED. Unfortunately,
this residual quantum noise is carried over to the logical
qubits during the quantum teleportation process and hence
it affects the integrity of the quantum information. In this
treatise, we refer to this specific quantum communication
scheme relying on the consecutive steps of QED and quantum
teleportation as QED+QT.

Another QECC-aided technique operating in the presence
of noisy pre-shared entanglement was introduced in [31],
which we will refer to as quantum stabilizer codes using
imperfect pre-shared entanglement (QSC-IE). Compared to
the QED-based schemes which apply the QECCs locally
on the pre-shared EPR pairs split between the transmitter
and the receiver, the scheme presented in [31] requires that
the pre-shared portion of the EPR pairs at the transmitter
side has to be sent to the receiver in order to apply stabilizer
measurements to both qubits of the EPR pairs. Consequently,
a relatively high number of the two-qubit quantum gates – as
exemplified by quantum controlled-NOT (CNOT) gate – are
required for performing these measurements. Furthermore,
by reasoning for a fixed number of pre-shared EPR pairs and
logical qubits, the QSC-IE scheme demands for a higher num-
ber of quantum channel uses, to apply stabilizer measurements
to both qubits of the EPR pairs.

Having said that, in this treatise, we propose a novel solution
for achieving a reliable quantum communication, despite using
noisy pre-shared entanglement. Firstly, we eliminate the ide-
alized simplifying assumption of having noise-free pre-shared
EPR pairs. Secondly, we devise a scheme for avoiding the
undesired delay imposed by the consecutive steps of QED
and quantum teleportation in conventional twin-step QED+QT
schemes. By contrast, our proposed scheme can be viewed as
a single-step direct quantum communication scheme, which
exploits the quantum noise experienced by the pre-shared EPR
pairs for improving the reliability of quantum communications
by encoding the logical qubits directly with the aid of noisy
pre-shared EPR pairs. As it will become more evident later in
this treatise, our proposal may be deemed philosophically rem-
iniscent of training-based equalization techniques in classical
communications, which rely on pilot sequences for estimating
the channel and then eliminating its impairments. Thirdly,
we also eliminate the necessity of performing stabilizer mea-

Fig. 1. The quantum communication model considered for our proposed
scheme.

surements on both qubits of the pre-shared EPR pairs for the
sake of reducing: (i) the number of quantum gates required
to achieve reliable quantum communications and (ii) the uses
of the considered quantum channel. Indeed, by relying solely
on the local measurements of the pre-shared EPR pairs, our
proposal significantly reduces the number of the required two-
qubit quantum gates as well as the number of quantum channel
uses by reasoning with the same number of pre-shared EPR
pairs. Table I boldly and explicitly contrasts our proposed
scheme to the existing schemes of amalgamating pre-shared
entanglement and QECCs. Naturally, our proposal is also
suitable for the scenario of noise-free pre-shared entangle-
ment, similarly to the EA-QECC schemes. In Section VI,
we formally show that our proposed scheme outperforms the
state-of-the-art.

Our novel contributions can be summarized as follows:
1) We propose a new scheme for achieving reliable quan-

tum communications despite relying on noisy pre-shared
entanglement. More specifically,

2) We carry out the performance analysis of the proposed
scheme for both error-detection and error-correction
based schemes over quantum depolarizing channels. The
results show that the proposed scheme offers competitive
performance in terms of its qubit error ratio, yield, and
goodput despite requiring fewer quantum gates than the
existing state-of-the-art schemes.

3) In case of noise-free pre-shared entanglement, the
proposed scheme outperforms even the existing
entanglement-assisted quantum stabilizer codes.

The rest of the treatise is organized as follows. In Section II,
we commence by presenting the quantum communication
model. In Section III, we detail the explicit formulation of
our proposed scheme for direct noiseless quantum commu-
nication over noisy pre-shared entanglement. In Section IV,
we exemplify our scheme proposed for error-detection, while
in Section V, we conceive its counterpart for error-correction.
In Section VI, we show the suitability of our proposal for
quantum computing applications. Finally, we conclude in
Section VII by also discussing some future research directions.

II. SYSTEM MODEL

As discussed in [10], both entanglement generation
and distribution are the key for the Quantum Internet.
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TABLE I

COMPARISON OF OUR PROPOSED SCHEME WITH THE STATE-OF-THE-ART SCHEMES

The specific “location” of the device implementing these
functionalities – a.k.a. the entanglement generator and distrib-
utor – varies among the different schemes and solutions [10].
However, there is a general agreement in the literature that
the employment of the so-called “at both end-points” scheme
is vital for the Quantum Internet by enabling on-demand
communication capabilities at the quantum nodes. According
to the “at both end-points” scheme, the entanglement generator
and distributor is embedded within both the transmitter and
the receiver [10]. In this light, we consider the quantum
communication model depicted in Fig. 1. The model includes
a transmitter (A), a receiver (B), the entanglement generator
and distributor, a noisy quantum channel and a classical
channel. Without loss in generality, in the figure we only
highlight the entanglement generator and distributor used at
the receiver, since it is exploited by the proposed scheme.
The quantum communication session commences with the
generation of the EPR pairs, whose quantum state is

|Φ±�AB =
1√
2

(|00� ± |11�AB) ,

|Ψ±�AB =
1√
2

(|01� ± |10�AB) . (1)

In the rest of this treatise, we assume that the pre-shared
EPR pairs are initialized to the quantum state of |Φ+�AB ,
where the subscript AB indicates that the first qubit of each
EPR pair is held by A and the second qubit is held by B.
In Fig. 1, the entanglement generator is located at B. Hence,
the first qubit of the EPR pairs |Φ+�A has to be sent by B
through the quantum channel, while the second qubit of the
EPR pairs |Φ+�B is available immediately at B. After A
obtains the first qubit of the EPR pairs |Φ+�A, it can be
exploited for transmitting the quantum information embedded
within the logical quantum qubit |ψ�. In addition to the pre-
shared EPR pairs, A and B are also connected via a classical
communication channel, which is considered to be noise-free.2

The main goal of the quantum communication model of
Fig. 1 is to faithfully transfer the quantum state |ψ� from A
to B assisted by the pre-shared EPR pairs and also by classical
communications. To achieve this goal, A may exploit the noisy
pre-shared EPR pairs |Φ+�A for appropriately encoding the
logical qubits |ψ� into |ψ�, which is sent to B. In addition to
the received encoded quantum state |ψ̃�, B also obtains the
classical bits gleaned from the measurement of the EPR-pair
members |Φ+�A at A. Finally, B performs a decoding proce-
dure to reconstruct the original quantum state |ψ� of the logical

2This assumption is not restrictive since we focus our attention on the
quantum noise only. In case of a realistic noisy classical channel, the well-
known classical error-mitigation techniques can be implemented.

Fig. 2. The scheme proposed for performing noiseless quantum communi-
cation using noisy pre-shared EPR pairs.

qubits by utilizing the qubits of the EPR-pair members |Φ+�B
at B.

In this treatise, we consider one of the most general quantum
channel models, namely the quantum depolarizing channel
N (·), a type of quantum Pauli channel. For a single-qubit
system, the quantum depolarizing channel is described by [11]

N (ρ) = (1 − p)ρ+
p

3
(XρX + Y ρY + ZρZ) , (2)

where {I,X, Y, Z} are the Pauli matrices, ρ denotes the
density matrix of the input quantum state, and p denotes
the depolarizing probability of the quantum channel N (·).
The Kraus operators of N (·) are given by N1 =

√
1 − pI ,

N2 =
√

p
3X , N3 =

√
p
3Y , N4 =

√
p
3Z [11].

III. QUANTUM COMMUNICATION WITH NOISY

PRE-SHARED ENTANGLEMENT

In this section, we present the general concept of our pro-
posed scheme for performing both error-detection and error-
correction. The schematic of the proposed scheme is depicted
in Fig 2. Its operation commences by preparing the initialized
quantum state as follows:

|ψp� = |ψ�k ⊗ |Φ+�n−k

AB , (3)

where |ψ�k represents the quantum state of k logical qubits,

while |Φ+�n−k
AB represents (n − k) pairs of pre-shared EPR

pairs |Φ+� between A and B. The subscripts A and B indicate
that half of the EPR pairs are held by A and the other half
by B.

As we elucidated in Section II, the generation and the
distribution of the EPR pairs to A are contaminated by the
quantum noise imposed by the quantum channels. Let us
denote the (n−k)-tuple Pauli operator inflicted by the quantum
channel as Pn−k. Then, we have

|Φ̃+�n−k

A = Pn−k |Φ+�n−k

A . (4)

The quantum state |ψ�k of the logical qubits is encoded by
a quantum encoder VA, where we exploit the noisy EPR-pair
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members at A |Φ̃+�n−k

A . The encoded state |ψ�k of the logical
qubits is then sent through the quantum channel N (·). Let
us denote the k-tuple Pauli operator inflicted by the quantum
channel as Pk . Then, we have

|ψ̃�k = Pk |ψ�k . (5)

At the receiver side, the quantum decoder V†
B of Fig. 2

decodes the corrupted quantum state |ψ̃�k with the aid of
the (n− k) EPR-pair members |Φ+�n−k

B at B. To design the
quantum encoder VA and the quantum decoder V†

B , we impose
the reversible property3 on the initialized quantum state in (3),
which is formulated as

V†
BVA(|ψ�k ⊗ |Φ+�n−k

AB ) = |ψ�k ⊗ |Φ+�n−k

AB . (6)

Remark 1: We note that in conventional QECCs, the
reversible property of a noise-free scenario can always be
guaranteed, since the quantum encoder V and decoder V† act
on the same physical qubits. By contrast, in our scheme, the
quantum encoder VA only processes the logical qubits |ψ�k
and the EPR-pair members at A, whilst the quantum decoder

V†
B only processes the logical qubits |ψ̃�k received via the

noisy quantum channel N (·) and the EPR-pair members at B.
By denoting the density matrix of |ψp� = |ψ� ⊗k |Φ+�n−k

AB

as ρ, it is possible to reformulate the proposed general scheme
of Fig. 2 as the following supermap S:

S(VA,V†
B,N , ρ) =

∑
i,j

(VBNjVANi)ρ(VBNjVANi)†. (7)

In (7), we take into account the effects of the quantum noise
inflicted by the quantum channels utilized for both the distrib-
ution of the EPR-pair members at A and for the transmission
of the encoded state of the logical qubits. Furthermore, in (7),
Ni, Nj represent the Kraus operators of the quantum chan-
nels,4 while VA and VB are the matrix representations of the
quantum encoder and decoder, respectively.

The scheme proposed in Fig. 2 is completed by local
measurements M on the EPR pairs whose outcomes control
the operator R depending the particular error-control strategy
implemented. Specifically, to perform the associated error-
control procedure, local measurements of the EPR pairs are
performed for obtaining the classical bits5 sA,n−k and sB,n−k.
Since no joint measurements are applied to the EPR pairs
for the sake of reducing the number of quantum channels
utilization, a syndrome-like quantity may be constructed from

3We note that in Fig. 2 there is a little notation-abuse, since we use the
symbols VA and V†

B to denote the encoding and decoding performed on the
qubits available at A and B, respectively. Instead, in (6), VA and V†

B denote

the encoder and decoder acting on the global quantum state |ψ〉k⊗|Φ+〉n−k
AB .

However, this notation abuse can be tolerated since VA and V†
B in (6) leave

the qubits unavailable at A and B, respectively, unchanged.
4To be more precise and with a little notation-abuse, Ni, Nj denote

the extended Kraus operators of the quantum channels, which account
for the specific qubits affected by the quantum channels and for the
increased dimension induced by the supermap of (7), acting on the global
state |ψ〉 ⊗k |Φ+〉n−k

AB .
5When n−k EPR pairs are considered, the local measurements of the EPR

pairs produce 2(n−k) outcomes. To denote the associated vectors, we utilize
the notation s.

the modulo-2 addition of the classical measurement results as
follows:

sn−k = sA,n−k ⊕ sB,n−k. (8)

It is important to note that both A and B have chosen the
appropriate pre-determined measurement basis M for each of
the EPR pairs.

In the case of the proposed error-detection schemes, the
operator R of Fig. 2 acts as a discard-and-retain unit based
on the syndrome of (8). More specifically, if the syndrome
values of (8) indicate the presence of errors, i.e. the syndrome
values are not zeros (sn−k �= 0), the operator R will decide
to discard the logical qubits |ψ�k, otherwise it will retain
the logical qubits. By contrast, in the case of the proposed
error-correction schemes, the operator R represents an error-
recovery procedure based on maximum-likelihood decoding
relying on the syndrome values of (8). Specifically, the error-
recovery procedure can be formally expressed as

L̂k(sn−k) = argmax
Lk

P (Lk|sn−k), (9)

where P (Lk|sn−k) denotes the probability of experiencing the
logical error Lk imposed on the logical qubits |ψ�k, given that
we obtain the syndrome values sn−k.

IV. ERROR-DETECTION SCHEME

In this section, we consider the error-detection of either a
single logical qubit or of two logical qubits and carry out
its performance analysis. We rely on Definition 1 and 2 for
characterizing the performance of the proposed error-detection
schemes.

Definition 1: The success probability ps of the proposed
error-detection schemes is defined as the conditional probabil-
ity of obtaining the legitimate quantum state ρ of the logical
qubits, given that we obtain the all-zero syndrome values
sn−k = 0:

ps = p(ρ|sn−k = 0) =
p(ρ ∩ sn−k = 0)
p(sn−k = 0)

. (10)

The relationship between the qubit error ratio (QBER)
and the success probability ps can simply be defined as
QBER = 1 − ps.

Definition 2: The yield Y of the proposed error-detection
schemes is defined as the ratio of k logical qubits retained
after the detection to the n uses of the quantum channel N (·):

Y =
(
k

n

)
p(sn = 0). (11)

Readers from the classical communication field may notice
the relationship between the yield and goodput metrics. While
yield has been widely used in the QED literature, goodput is
a common metric utilized for normalizing the performance of
classical coded communication systems with respect to the
associated coding rate. The notion of goodput in the quantum
domain is clarified in [32], where it is used for comparing the
performance of various QECCs exhibiting different quantum
coding rates and for determining their performance discrepan-
cies with respect to the quantum capacity also known as the
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Fig. 3. The quantum circuit conceived for performing a single-qubit error-
detection using a single noisy EPR pair.

quantum hashing bound. We underline that yield and goodput
are not the same metric, although they are intimately linked.
More specifically, the goodput G is defined as the product
of the success probability of a given QECC by its quantum
coding rate [32]. Therefore, the goodput of our proposed
scheme may be reformulated as in Definition 3.

Definition 3: The goodput G of the proposed error-
detection schemes is defined as the product of the success
probability ps by the ratio of k logical qubits to the n uses of
the quantum channel N (·):

G =
(
k

n

)
ps =

(
k

n

)
(1 − QBER). (12)

By comparing Definition 2 and Definition 3 we can observe
the intrinsic relationship between the yield and the goodput.

A. Error-Detection for a Single Logical Qubit

Let us consider the proposed single qubit error-detection
scheme depicted in Fig. 3, which utilizes only a single noisy
EPR pair. More specifically, the encoding and decoding circuit
of Fig. 2 is detailed in Fig. 3. We design the quantum encoder
and decoder for ensuring that the reversible condition of (6) is
satisfied. The quantum encoder VA and quantum decoder V†

B

of Fig. 3 can be represented using unitary matrices as follows:

VA = |0� �0| ⊗ I ⊗ I + |1� �1| ⊗X ⊗ I,

VB = |0� �0| ⊗ I ⊗ I + |1� �1| ⊗ I ⊗X. (13)

By scrutinizing (13), it is readily seen that the reversible
property is indeed satisfied, i.e. V†

BVA (|ψ� ⊗ |Φ+�AB) =
|ψ�⊗|Φ+�AB . Finally, the EPR pair is measured in the Z basis
(MZ = {|0� �0| , |1� �1|}). The performance of the scheme
proposed in Fig. 3 is characterized by Proposition 1.

Proposition 1: The success probability of the error-
detection scheme depicted in Fig. 3 over quantum depolarizing
channels relying on a single noisy EPR pair is given by:

ps = 1 − 2p
3

− 2p2

3
− 8p3

27
+

16p4

81
+ O(p5), (14)

while the yield is given by:

Y =
1
2

(
1 − 4p

3
+

8p2

9

)
. (15)

Proof: Please refer to Appendix A.
First, we compare our proposed scheme to the

state-of-the-art QED + QT schemes. Specifically, we compare
the scheme proposed in Fig. 3 to the single-round recurrence
QED of [27] and to the quantum stabilizer code (QSC)-based

Fig. 4. The QBER of our proposed error-detection schemes compared to the
existing schemes for mitigating the effect of quantum depolarizing channels.
The uncoded QBER curve is given by QBER = p. The inset is the QBER
relying on log-log scale.

QED of [28], [29], and [17] having the stabilizer operator
of S = ZZ . We assume that the quantum teleportation step
is noise-free and therefore the QBER of the benchmark
schemes is directly determined by the QBER of the
associated QED scheme. Note that both the benchmark
schemes require two noisy pre-shared EPR pairs, while
our proposed scheme only needs a single noisy pre-shared
EPR pair.

The QBER is portrayed in Fig. 4, where we label the perfor-
mance of the scheme presented in Fig. 3 as ‘Proposed 1,’ the
recurrence-based scheme as ‘QED+QT 1,’ and the QSC-based
scheme as ‘QED+QT 2.’ We observe that the QBER of the
scheme presented in Fig. 3 matches that of QED+QT schemes,
without requiring the additional quantum teleportation step,
which also relies on the idealized assumption of being noise-
free for both benchmarks. Furthermore, we observe that all
the schemes considered are only capable of detecting a single
X error. Additionally, we mark the probability threshold pth

using the vertical black dotted line in Fig. 4, highlighting
the particular depolarizing probability value, below which the
proposed error-detection scheme improves the QBER of the
logical qubit. Specifically, in Fig. 4, we obtain the probability
threshold of pth = 0.5.

In Fig. 5(a), we report the performance of our proposed
scheme in terms of its yield. We observe that our proposed
scheme provides an identical yield to the benchmark schemes.
However, two noisy pre-shared EPR pairs are used for obtain-
ing a single less noisy pre-shared EPR pair for both the
recurrence-based and the QSC-based QED+QT schemes. This
means that during the process one of the noisy pre-shared EPR
pairs is discarded. By contrast, our protocol only needs a single
noisy pre-shared EPR pair for achieving the same QBER
performance. Finally, the goodput of our proposed error-
detection scheme is presented in Fig. 5(b), which confirms
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Fig. 5. The (a) yield and the (b) goodput of the proposed error-detection schemes compared to the existing schemes for mitigating the effect of quantum
depolarizing channels. The insets are the yield and the goodput in the logarithmic x axis.

again the intrinsic relationship between the yield and the
goodput. Specifically, our proposal that provides an identical
yield, gives us also an identical goodput.

Apart from its benefit of utilizing fewer pre-shared EPR
pairs, our proposed scheme also offers a pair of additional
advantages:

• It does not suffer from long communication delay, since
it does not require the consecutive steps of performing
QED followed by quantum teleportation.

• It requires fewer controlled-NOT (CNOT) quantum gates.
Quantitatively, the proposed scheme of Fig. 3 requires
a total of only two CNOT gates. By contrast, the
recurrence-based QED+QT scheme requires a total of
three CNOT gates: two for a single-round recurrence
QED and one for quantum teleportation. As for the
QSC-based QED+QT scheme, we need a total of seven
CNOT gates: four for the measurement of stabilizer
operators, two for the quantum inverse encoder, and one
for quantum teleportation.

Let us elaborate a little further concerning the delay imposed
by each quantum communication scheme specified in the first
bullet point. The quantum entanglement distillation has to
be completed before the quantum teleportation can be con-
ducted within the QED+QT scheme. Specifically, within the
quantum entanglement distillation step itself, the transmission
delay is imposed by the associated classical communications.
Let us assume that each classical communication takes a
duration of tc. Therefore, for a recurrence QED scheme
having m rounds of distillation, the total transmission delay
is equal to mtc, since for each round of distillation requires
a backward- and a forward-oriented classical communication
phase – both of which can be carried out simultaneously
for example using wavelength division multiplexing. By con-
trast, the total transmission delay imposed by a QSC-based
QED is simply equal to tc, since it only needs a forward-
oriented classical communication. Once the QED step has

been completed, quantum teleportation has to be performed
for transferring the quantum information from the transmitter
to the receiver. Since quantum teleportation also requires
another forward-oriented classical information phase, an addi-
tional delay of tc is introduced by the QED+QT scheme.
Therefore, we have a total of 2tc transmission delay for the
QSC-based QED+QT scheme. In case of recurrence-based
QED+QT scheme, we have a transmission delay of (m+1)tc.
By contrast, the total transmission delay is only equal to tc
for both the QSC-IE and the proposed schemes. However, it is
important to note that we underestimate the QSC-IE quantum
information processing delay, since QSC-IE scheme utilizes
the stabilizer measurements differently from the proposed
scheme.

Arguably, the delay imposed by the transmission of classical
information required by the QED+QT scheme can be avoided
by performing QED in an asynchronous way, implying that the
QED is activated before the transmitter and the receiver have
agreed to initiate their quantum communication. Consequently,
an asynchronous QED+QT scheme requires a long-expiry
quantum memory to store the distilled EPR pairs. However,
the assumption of having a long-expiry quantum memory at
both the transmitter and the receiver is indeed a strong one
at the current state-of-the-art [33]. In the absence of long-
expiry quantum memory, an asynchronous QED+QT scheme
can be employed by performing continuous QED until both the
transmitter and the receiver finally decide to initiate their quan-
tum communication. However, it is clear that continuously
performing QED consumes a high number of noisy pre-shared
EPR pairs during the waiting period. Therefore, in this treatise,
we consider an on-demand quantum communication model,
as we have described in Section II. This model eliminates the
stringent requirement of long-expiry quantum memory as well
as the continuous operation of QED, which is achieved by only
initializing quantum communication once both the transmitter
and the receiver are ready to engage.
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Fig. 6. The quantum circuit for performing a single-qubit error-detection
using two noisy pre-shared EPR pairs.

Regarding the number of CNOT gates mentioned in the
second bullet point, it has been shown in [34] and [35], that
the number of CNOT gates provides a reasonable estimate of
the severity of quantum error proliferation effects, when the
realistic quantum encoder VA and decoder V†

B are potentially
error-infested. Specifically, in this case, the overall prolifera-
tion of quantum errors is heavily dependent on the number of
two-qubit quantum gates – exemplified by the CNOT gates.
However, to fully characterize the performance of quantum
communication schemes under the realistic scenario of having
both noisy pre-shared entanglement and imperfect quantum
gates, computer simulations are required. Thus, we will carry
out this full-scale analysis in our future work.

Remark 2: By invoking the simple scheme presented in
Fig 3, we can attain both an identical yield and a reduced delay,
despite relying on a reduced number of CNOT gates compared
to the benchmarks, which is achieved without degrading
the QBER.

In order to further generalize our analysis, let us compare
the aforementioned schemes by using the same number of
noisy pre-shared EPR-pairs. More specifically, we assume
having two noisy pre-shared EPR-pairs for all the QED+QT
schemes considered. Specifically, we modify the scheme
proposed in Fig. 3 as seen in Fig. 6, where the first EPR pair is
measured in the Z basis (MZ = {|0� �0| , |1� �1|}), while the
second pair in the X basis (MX = {|+� �+| , |−� �−|}). Let
us distinguish the components of the syndrome vector in (8)
according to the observation basis used for the measurement.
Specifically, let us denote the syndrome component obtained
when the first EPR pair is measured in the Z basis by
sZ = sA ⊕ sB and that obtained when the second EPR
pair is measured in the X basis by sX = sA ⊕ sB . The
operator R acts as follows: if sZ = 0, the measurement of
the second EPR pair is performed to obtain sX . Otherwise,
the logical qubit is discarded immediately, since there is no
need to measure the syndrome value sX , if the syndrome value
sZ already indicates that the logical qubit is corrupted. The
aforementioned decision strategy is summarized as a look-
up table (LUT) in Table II(a). The performance of the error-
detection scheme depicted in Fig. 6 is quantified in terms of
its QBER and yield presented in Proposition 2.

Proposition 2: The success probability of the proposed
error-detection scheme of Fig. 6 operating over quantum
depolarizing channels by utilizing two noisy EPR pairs is:

ps = 1 − p

3
− 8p2

9
− 32p3

27
− 64p4

81
+ O(p5), (16)

TABLE II

SYNDROME VALUES AND ASSOCIATED DECISION R FOR
THE ERROR-DETECTION SCHEMES

while the yield is expressed as

Y =
1
3

(
1 − 8p

3
+

28p2

9
− 32p3

27

)
. (17)

Proof: Please refer to Appendix B.
We also compare our proposed scheme to the state-of-the-

art QSC-IE scheme. Specifically, we compare the scheme
proposed in Fig. 6 to the QSC-IE scheme of [31] having the
stabilizer operators of S1 = IXX and S2 = ZZZ . The
QBER, the yield, as well as the goodput of the proposed
scheme in Fig. 6 are portrayed in Fig. 4, 5(a), and 5(b),
respectively, where it is labeled as ‘Proposed 2,’ while the
QSC-IE benchmark scheme is labeled as ‘QSC-IE.’ Observe
in Fig. 4 that the QBER of the error-detection scheme in
Fig. 6 outperforms all the QED+QT benchmark schemes,
while providing an identical QBER to the QSC-IE benchmark
scheme. We also obtain the probability threshold of pth = 0.5
for the proposed error-detection scheme in Fig. 6. However, the
QSC-IE scheme only requires one pre-shared EPR pair, while
our proposed scheme requires two pre-shared EPR pairs as
shown in Fig. 6. Nonetheless, our proposed scheme requires
fewer CNOT gates and the same number of quantum channel
uses by avoiding the need of stabilizer measurements. More
specifically, the scheme presented in Fig. 6 requires a total
of only four CNOT gates, while the QSC-IE scheme requires
a total of eight CNOT gates: one for quantum encoder, five
for the measurement of stabilizer operators, and two for the
quantum inverse encoder.

Remark 3: By maintaining the same maximal yield and
goodput as the state-of-the-art schemes, our proposed scheme
provides identical error-detection performance despite utilizing
fewer CNOT gates.

B. Error-Detection for Two Logical Qubits

Let us now shift our focus to the scheme presented in Fig. 7,
where we use two noisy EPR pairs for constructing an error-
detection scheme for two logical qubits. Again, the quantum
encoder VA and decoder V†

B are designed for satisfying the
reversible property. The resultants quantum encoder VA and
decoder V†

B are seen in Fig. 7. The first EPR pair is measured
in the X basis (MX = {|+� �+| , |−� �−|}), while the second
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Fig. 7. The quantum circuit designed for the proposed error-detection for
two logical qubits, which utilizes two noisy pre-shared EPR pairs.

pair in the Z basis (MZ = {|0� �0| , |1� �1|}). Additionally,
the decision block R of Fig. 7 is represented by the LUT
of Table II(b). We summarize the performance results in
Proposition 3.

Proposition 3: The success probability of the proposed
error-detection scheme of Fig. 7 operating over quantum
depolarizing channels is given by:

ps = 1 − 2p2 − 44p3

9
− 44p4

9
+ O(p5), (18)

while the yield is expressed as

Y =
1
2

(
1 − 4p+ 8p2 − 64p3

9
+

64p4

27

)
. (19)

Proof: Please refer to Appendix C.
To benchmark the performance of the proposed scheme,

we have chosen the following QED+QT schemes. Firstly,
for the recurrence-based QED+QT scheme (QED+QT 1),
we carry out two single-round distillations to obtain two less
noisy EPR pairs from four noisy EPR pairs. Secondly, for
the QSC-based QED+QT scheme (QED+QT 2), we choose
the stabilizer operators of S1 = XXXX and S2 = ZZZZ
to apply error-detection to a set of four noisy EPR pairs.
Finally, we also include the QSC-IE scheme having the
stabilizer operators of S1 = XXXX and S2 = ZZZZ as
our benchmark. The uncoded QBER is given by QBER =
1−(1−p)2 = 2p−p2, which means that any error experienced
by any logical qubit within the two qubits is considered as an
error. The resultant QBER is portrayed in Fig. 8(a), while the
yield is quantified in Fig. 8(b).

Let us evaluate the QBER and the yield of the recurrence-
based QED+QT scheme by considering a pair of identical
error-detection schemes based on Fig. 3. We can determine the
success probability of this arrangement by taking the square
of (14) of Proposition 1, since the legitimate quantum state
of the logical qubit is retained only when both error-detection
schemes make the correct decision. Consequently, the success
probability ps is given by

ps =

[
1 − 2p+ 10p2

9

1 − 4p
3 + 8p2

9

]2

= 1 − 4p
3

− 8p2

9
+

8p3

27
+

100p4

81
+ O(p5). (20)

Similarly, the yield Y can be obtained by taking the square
of p(sz = 0) of (15) in Proposition 1 and then by normalizing

it by k/n, where we obtain

Y =
1
2

(
1 − 4p

3
+

8p2

9

)2

=
1
2

(
1 − 8p

3
+

32p2

9
− 64p3

27
+

64p4

81

)
. (21)

The QBER and yield results in (20) and (21) are depicted
in Fig. 8(a) and 8(b), respectively, as ‘QED+QT 1.’

In Fig. 8(a), our proposed scheme outperforms the
recurrence-based QED+QT scheme (QED+QT 1) for
p < 0.5, while exhibiting an identical QBER to the QSC-based
QED+QT scheme (QED+QT 2) and QSC-IE. Furthermore,
we also observe the probability threshold of pth = 0.5, which
is portrayed using vertical black dotted line, for the proposed
error-detection scheme in Fig. 7. However, observe in Fig. 8(b)
that the recurrence-based QED+QT scheme attains a better
yield. The reason is that the recurrence-based QED+QT
scheme exhibits a weaker error-detection capability than the
other schemes. More specifically, each round of recurrence
QED is only capable of detecting a single X error. By contrast,
for the QSC-based QED+QT, QSC-IE, and also our proposed
schemes, they are all capable of detecting a single X error
and also a single Z error. Consequently, the recurrence-based
QED+QT scheme often makes the wrong decision of retaining
the erroneous logical qubits, instead of discarding them, which
is reflected in higher QBER result. However, these QBER and
yield results can be achieved by utilizing fewer CNOT gates.

Additionally, as shown in Fig. 7, the total number of
CNOT gates required by the entire proposed error-detection
scheme is eight. As a comparison, the QSC-based QED+QT
scheme requires a total of 28 CNOT gates, namely 16 for the
stabilizer measurements, 10 for the quantum inverse encoder,
and two for quantum teleportation. The quantum circuit of
the QSC-based QED+QT scheme is portrayed in Fig. 9.
Meanwhile, the QSC-IE scheme, whose quantum circuit is
portrayed in Fig. 10, requires a total of 16 CNOT gates,
namely four for the quantum encoder, eight for the stabilizer
measurements, and four for the quantum inverse encoder.
Therefore, our proposed scheme requires significantly fewer
CNOT gates while offering an identical QBER and yield.

We summarize all the resources required by the various
quantum communication schemes of Fig. 8 in Table III.
All the schemes considered in Table III – except for
the QED+QT 1 scheme – attain identical QBER and yield.
To achieve this, our proposed scheme requires fewer pre-
shared EPR pairs, fewer classical channel uses, and fewer
CNOT gates compared to the QSC-based QED+QT scheme.
By contrast, with the same number of quantum channel uses,
our proposed scheme requires more pre-shared EPR pairs and
more classical channel uses than the QSC-IE scheme, while
utilizing fewer CNOT gates.

Remark 4: While providing an identical QBER and yield
to the QSC-based QED+QT and QSC-IE schemes, our error-
detection scheme always requires fewer CNOT gates.

V. ERROR-CORRECTION SCHEME

Error-detection schemes provide dynamic yields, since they
rely on a discard-and-retain action of the operator R, while
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Fig. 8. The (a) QBER and the (b) yield of the proposed error-detection scheme in Fig. 7 compared to the existing schemes for mitigating the effect of
quantum depolarizing channels. The uncoded QBER curve is given by QBER = 1 − (1 − p)2 = 2p − p2. The insets are the QBER and the yield in the
logarithmic x axis.

TABLE III

COMPARISON OF OUR PROPOSED ERROR-DETECTION SCHEME WITH THE EXISTING APPROACHES

Fig. 9. The quantum circuit designed for performing QSC-based QED+QT
scheme using the stabilizer operators of C[4, 2, 2] code followed by a two-
qubit quantum teleportation.

Fig. 10. The quantum circuit designed for performing QSC-IE scheme using
the stabilizer operators of C[4, 2, 2] code.

error-correction schemes provide a constant yield, since they
attempt to recover the legitimate quantum state of the logical
qubits from the received encoded state. Therefore, a modifi-
cation of Definition 1 and 2 is required in order to accurately
evaluate the performance of the proposed error-correction
scheme.

Definition 4: The success probability ps of the proposed
error-correction scheme is defined as the sum of the condi-
tional probabilities p(L̂k = Lk|sn−k), i.e. the sum of the
probabilities that the error-recovery operator R successfully
applies L̂k = Lk based on the syndrome value sn−k:

ps =
∑
Lk

p(L̂k = Lk|sn−k), (22)

where the relationship between ps and the QBER can be
expressed as QBER = 1 − ps.

Definition 5: The yield Y of the proposed error-correction
scheme is defined as the ratio of k logical qubits to the n uses
of the quantum channel N (·):

Y =
k

n
, (23)

while its goodput is similarly defined to Definition 3.
Let us now consider the quantum encoder VA and decoder

V†
B of Fig. 11. To investigate its error-correction performance,

we have to check first that the scheme of Fig. 11 is capable of
discriminating all the single-qubit error patterns based on the
measured syndrome values. In Fig. 11, we can observe that
the overall scheme requires six noisy pre-shared EPR pairs,
which means that we have a six-bit syndrome string denoted
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Fig. 11. The quantum encoder VA and the quantum decoder V†
B for performing the proposed error-correction scheme.

by s = s1s2s3s4s5s6, where the indices i ∈ {1, 2, 3, 4, 5, 6}
represent the EPR pair starting from the top. Therefore, for
each of the single-qubit error patterns, we can evaluate the
syndrome string and the associated error recovery operator,
as shown in Table IV. Observe that the first three elements
of the syndrome string sZ = s1s2s3 are exclusively used
for identifying X errors, which are obtained from Z basis
measurements (MZ = {|0� �0| , |1� �1|}). By contrast, the
last three elements sX = s4s5s6 are used for identifying
Z errors, which are obtained from X basis measurements
(MX = {|+� �+| , |−� �−|}). Finally, the Y errors can be
identified based on the combination of sZ and sX .

For the quantum depolarizing channel, we have a total of
47 = 16, 384 error patterns represented by the total number
of combinations in terms of bit-flip (X), phase-flip (Z),
as well as simultaneous bit-flip and phase-flip (Y ) errors,
where we observe a total of 4, 096 correctable error patterns.
After scrutinizing all 4, 096 error patterns, we obtain the
Pauli weight distribution of the error patterns in quantum
depolarizing channels as follows: one error pattern is the
all-identity operator (weight = 0); 21 error patterns having
weight = 1; 42 error patterns having weight = 2; 252 error
patterns having weight = 3; 609 error patterns having
weight = 4; 1281 having weight = 5; 1428 error patterns
having weight = 6; 462 error patterns having weight = 7.
This distribution is identical to that of a QSC-based QED+QT
scheme utilizing the stabilizer operators of the Steane code.
Given that we have px = pz = py = p

3 , the success
probability of the proposed error-correction scheme of Fig. 11
in quantum depolarizing channels is given by

ps =
n∑

i=0

Wi

(p
3

)i

(1 − p)(n−i)

= 1 − 49p2

3
+ 56p3 − 2380p4

27

+
6160p5

81
− 8512p6

243
+

4824p7

729
, (24)

where W = {W0,W1,W2,W3,W4,W5,W6,W7} = {1, 21,
42, 252, 609, 1281, 1428, 462} is the Pauli weight of the cor-
rectable error patterns. Notice that our proposed scheme is
capable of correcting not only the error patterns exhibiting a

Pauli weight = 1, but also several error patterns having higher
Pauli weights. This is due to the degeneracy property of quan-
tum information inherited by QECCs. Naturally, by exploiting
the degeneracy property, the QBER of quantum error-control
schemes, including our proposed schemes, can be improved.

Let us now compare the QBER of our proposed scheme
to those of the QSC-based QED+QT and QSC-IE scheme.
Indeed for a fair comparison, we do not consider the
recurrence-based QED+QT scheme, since it is an error-
detection scheme, not an error-correction one. For the
QSC-based QSC+QT scheme, we utilized the stabilizer oper-
ators of Steane code [17], [36] over seven noisy pre-shared
EPR pairs. By contrast, for the QSC-IE scheme, we also
utilized the stabilizer operators of Steane code, but only by
using three noisy pre-shared EPR pairs [31]. The resultant
QBER of the proposed scheme is depicted in Fig. 12(a),
which is identical to the QBER of the QSC-based QED+QT
and QSC-IE schemes employing the stabilizer operators of
the Steane code. Here, we obtain the probability threshold
of pth = 0.081 for the proposed error-correction scheme
in Fig. 11, which is indicated by the vertical black dotted
line in Fig. 12(a). The proposed, the QSC-based QED+QT,
and the QSC-IE schemes all provide a yield of Y = 1

7 ,
since they perform error-correction, instead of error-detection.
Consequently, as reported in Fig. 12(b), the proposed error-
correction scheme also provides an identical goodput to the
QSC-based QED+QT and QSC-IE schemes.

As for their quantum circuit implementations, our pro-
posed scheme requires a total of 22 CNOT gates as seen
in Fig 11. By contrast, the QSC-based QED+QT scheme
requires a total of 71 CNOT gates, namely 48 for stabilizer
measurements, 22 for the quantum inverse encoder, and one
for quantum teleportation. To elaborate a little further on
the quantum circuit implementation required for performing
QED+QT scheme using the stabilizer operators of Steane
code, please refer to Fig. 13. Meanwhile, the QSC-IE scheme
requires a total of 43 CNOT gates, namely eight for quan-
tum encoder, 24 for the stabilizer measurements, and 11 for
quantum inverse encoder. To provide a clear picture about
the quantum circuit implementation of the QSC-IE scheme
using the stabilizer operators of Steane code, please refer to
Fig. 14. We summarize all the physical resources required for
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TABLE IV

SYNDROME VALUES AND THE ASSOCIATED ERROR-RECOVERY OPERATOR R OF THE ERROR-CORRECTION SCHEME PRESENTED IN FIG. 11

Fig. 12. The (a) QBER and the (b) goodput of our error-correction scheme proposed in Fig. 11 compared to the existing QSC-based scheme for mitigating
the effect of quantum depolarizing channels. The insets are the QBER and the goodput in the logarithmic x axis.

performing the error correction schemes to achieve reliable
quantum communication in the presence of noisy pre-shared
EPR pairs in Table V.

Remark 5: While attaining an identical QBER and yield to
that of QSC-based QED+QT scheme, our proposed arrange-
ment requires fewer pre-shared EPR pairs, fewer classical
channel uses, and fewer CNOT gates. However, the proposed
arrangement requires more pre-shared EPR pairs and more
classical channel uses than the QSC-IE scheme in exchange for
fewer CNOT gates and the same number of quantum channel
uses.

VI. DISCUSSION: A QUANTUM COMPUTING PERSPECTIVE

In the previous sections, we have shown the advantages of
our proposal in quantum communication applications. In this
section, we demonstrate that the proposed scheme can also
be adopted for quantum computing applications. In quantum
computing applications, the quantum information is usually
protected with the aid of noise-free auxiliary qubits, which
may also take form of pre-shared entanglement [19]–[21],
[23]–[25]. A prime example is constituted by the family of

entanglement-assisted quantum stabilizer codes (EA-QSCs).
Compared to the conventional QSCs, which are unassisted
by noise-free pre-shared entanglement, EA-QSCs offer an
error-correction capability improvement. This is reminiscent of
having an additional error-free side channel between the trans-
mitter and the receiver in the classical domain. The argument
that we can always have noise-free pre-shared entanglement
relies on the assumption that EPR pairs can be created abun-
dantly and quantum entanglement distillation can be applied
to them. The concept of EA-QSCs is favourable in the realms
of quantum computation, since the EA-QSCs can be readily
amalgamated both with transversal implementation of quantum
gates [37], [38] as well as with magic state distillation [39]
for creating a universal set of fault-tolerant quantum gates.
In the following, we propose an error-correction scheme that
outperforms the state-of-the-art EA-QSC.

Any EA-QSC can be defined as C[n, k, d, e], where n is the
number of physical qubits, k is the number of logical qubits,
d is the minimum distance of the code, and e is the number of
noise-free pre-shared maximally-entangled qubits. The error-
detection and error-correction capability of any EA-QSC can

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on December 12,2022 at 18:24:07 UTC from IEEE Xplore.  Restrictions apply. 



480 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

Fig. 13. The quantum circuit designed for performing QSC-based QED+QT scheme using the stabilizer operators of Steane code followed by a single qubit
quantum teleportation.

Fig. 14. The quantum circuit designed for performing QSC-IE scheme using the stabilizer operators of Steane code.

TABLE V

COMPARISON OF OUR PROPOSED ERROR-CORRECTION SCHEME WITH THE EXISTING APPROACHES

be determined by its minimum distance d. An EA-QSC
exhibiting a minimum distance d is capable of detecting (d−1)
quantum errors or correcting t = 
(d− 1)/2� quantum errors.
Based on the quantum Singleton bound of EA-QSCs [23],
there exists a EA-QSC capable of correcting a single-qubit
error (d = 3), which encodes one logical qubit (k = 1) into
three physical qubits (n = 3) with the aid of two noise-free
pre-shared maximally-entangled qubits (e = 2). This specific
code is denoted by C[n, k, d, e] = C = [3, 1, 3, 2]. In the
following, we will show that by utilizing two noise-free pre-
shared EPR pairs, instead of error-correction, we can achieve
error elimination, implying that in this specific context, we can
always obtain a noise-free logical qubit.

Let us now discuss our proposed scheme portrayed
in Fig. 15(a), which is rearranged into Fig. 15(b) for
facilitating our analysis. The quantum channel N (·) in

Fig. 15(a) and 15(b) represents a quantum channel contami-
nating the logical qubit. According to Fig. 15(b), the quantum
encoder VA is represented by the following unitary matrix:

VA = (|0� �0| ⊗ I ⊗ I ⊗ I ⊗ I + |1� �1| ⊗X ⊗ I ⊗ I ⊗ I)
× (I ⊗ I ⊗ I ⊗ |0� �0|⊗I +X ⊗ I ⊗ I ⊗ |1� �1|⊗I) ,

(25)

while the quantum decoder V†
B is described by the following

unitary matrix:

VB = (I ⊗ I ⊗ I ⊗ I ⊗ |0� �0| +X ⊗ I ⊗ I ⊗ I ⊗ |1� �1|)
× (I ⊗ I ⊗ I⊗|0� �0| ⊗ I+X ⊗ I ⊗ I ⊗ |1� �1|⊗I) .

(26)

It can be readily verified that the reversible property is sat-
isfied, i.e. we have V†

BVA

(
|ψ� ⊗ |Φ+�2AB

)
= |ψ� ⊗ |Φ+�2AB .
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Fig. 15. (a) The quantum circuit of the proposed scheme utilizing two noise-free pre-shared EPR pairs. (b) The rearranged quantum circuit of (a) for analysis.

TABLE VI

SYNDROME VALUES AND ASSOCIATED ERROR RECOVERY R
FOR THE SCHEME IN FIG. 15(a)

Upon denoting the density matrix of the initial global
quantum state of |ψ� ⊗ |Φ+�2AB by ρ, the proposed scheme
can be formulated with the aid of the following supermap:

S(VA,N ,V†
B, ρ) =

∑
i

(VBNiVA)ρ(VBNiVA)†, (27)

where Ni is the Kraus operator describing the quantum
channel, while VA and VB represent the unitary matrices
of (25) and (26). Therefore, (27) can be rewritten as:

S(ρ) = (1 − p)ρ⊗ |Φ+� �Φ+| ⊗ |Φ+� �Φ+|
+
p

3
(XρX)⊗ |Ψ+� �Ψ+| ⊗ |Φ+� �Φ+|

+
p

3
(Y ρY ) ⊗ |Ψ+� �Ψ+| ⊗ |Φ−� �Φ−|

+
p

3
(ZρZ) ⊗ |Φ+� �Φ+| ⊗ |Φ−� �Φ−| . (28)

After the decoding operation, we perform the measurement
of the EPR pairs. Observe that we can apply Z basis mea-
surement to the first EPR pair and X basis measurement
to the second EPR pair for determining the type of Pauli
error experienced by the logical qubit |ψ�. To elaborate a
little further, we design a scheme so that requiring a joint
measurement of the EPR pairs can be avoided to reduce the
complexity of the quantum encoder and decoder. We combine
the classical bits of A and B of Fig. 15(b) to determine the
error recovery operator R.

To expound a little further, let us denote the syndrome string
as s = sZsX , where sZ is obtained from the measurement
of the first EPR pair in Z basis and sX is gleaned from
the measurement of the second EPR pair in X basis. The
error recovery operator associated with the syndrome value
s = sZsX is portrayed in Table VI. Finally, it may be
inferred from (28), that after the error recovery operator R
of Fig. 15(a), we always obtain the legitimate quantum state

ρ of the logical qubit. Hence, we have demonstrated that with
the aid of two noise-free EPR pairs, instead of correcting a
single-qubit achievable by an EA-QSC, we can always recover
a noise-free logical qubit. Observe that when we replace the
quantum channel N (·) by realistic noisy quantum Pauli gates,
we can modify the LUT of Table VI to benefit from the noise-
free operation of the quantum Pauli gates.

VII. CONCLUSION AND FUTURE RESEARCH

In this treatise, we have conceived a novel direct quantum
communication scheme using noisy pre-shared EPR pairs.
Conventionally, achieving a reliable quantum communication
tends to rely on the consecutive steps of QED followed by
quantum teleportation (QED+QT). One of the salient benefits
that we can offer is the elimination of the long communica-
tion delay imposed by the aforementioned consecutive steps,
despite relying on noisy pre-shared EPR pairs. Additionally,
our proposed schemes offer better QBER than the recurrence-
based QED+QT schemes and provide identical QBER and
yield to the QSC-based QED+QT schemes. Moreover, com-
pared to the QSC-based QED+QT schemes, our proposal
requires fewer pre-shared entanglement, fewer classical chan-
nel uses, and fewer CNOT gates. We have also included the
quantum stabilizer code using imperfect pre-shared entan-
glement (QSC-IE) scheme as our benchmark. Our results
show that despite attaining the same level of error-detection
and error-correction capability, our proposed scheme requires
more pre-shared EPR pairs and more classical channel uses,
however, in exchange for fewer CNOT gates requirement and
the same number of quantum channel uses. Finally, we have
also compared our proposed scheme to EA-QSC, which
requires noise-free pre-shared EPR pairs. Again, EA-QSCs
require joint eigenvalue measurements relying on all the qubits
gleaned from the EPR pairs for performing error-correction.
Despite relying only on the local measurements of the EPR
pairs and classical communications, we can always obtain a
noise-free logical qubit using our proposed scheme.

In our future research, we are interested in finding a sys-
tematic way of constructing the quantum encoder and decoder
pair. In fact, we found that an arbitrary quantum encoder
and decoder pair cannot always satisfy the reversible property
of (6). Therefore, the sufficient and necessary conditions of
generating the quantum encoder and decoder pair should be
found. Since our proposed scheme performs identically to
the QSC-based QED+QT schemes, it remains to be shown
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whether a wider range of QSCs can be directly embedded into
our scheme. Furthermore, since our proposed scheme requires
fewer CNOT gates compared to all state-of-the-art schemes,
we are also interested in investigating the performance of
the quantum communication schemes under additional realistic
assumption of having imperfect quantum gates as well as
imperfect measurements and looking at the possibility of
creating a fault-tolerant quantum communication protocol.

APPENDIX A
PROOF OF PROPOSITION 1

By exploiting the quantum depolarizing channel model of
Section II and by utilizing the expressions of (13), (7) can be
reformulated as shown in (29), where ρ is the density matrix of
the logical qubit and we assume that the quantum depolarizing
channels experienced by |ψ� and |Φ+�A exhibit an identical
depolarizing probability p.

After the decoding, a measurement in the Z basis of the
EPR pair shared between A and B is performed. Every time
we find a disagreement in the classical measurement results
from the EPR pair (s = sA ⊕ sB = 1), the associated logical
qubit is discarded, otherwise, it is retained. We note that the
syndrome value of s = 0 is obtained if the EPR pair is in the
quantum state |Φ+� or |Φ−�, while the EPR pair in the state
|Ψ+� or |Ψ−� gives us a syndrome value of s = 1. Hence,
the probability of retaining the logical qubit is equal to the
probability of obtaining the syndrome value s = 0. Based on
these considerations and by accounting for (29), as shown at
the top of the next page, we can determine the probability of
obtaining the syndrome value s = 0:

p(s = 0) = 1 − 4p
3

+
8p2

9
, (30)

which is obtained from the following error operators P ∈
{II, IZ,XX,XY, YX, Y Y, ZI, ZZ }. Then, based on this
set of error operators, we can determine the probability of
obtaining the syndrome value of s = 0 and obtain the
legitimate quantum state of the logical qubit ρ:

p(ρ ∩ (s = 0)) = 1 − 2p+
10p2

9
, (31)

which is obtained from the following error operators P ∈
{II, ZZ }. More specifically, the error operator ZZ imposed
by the quantum channels is transformed into an error operator
IZ at the output of the quantum decoder V†

B of Fig. 3. Con-
sequently, we have the final quantum state of ρ⊗ |Φ−� �Φ−|.
Since the measurement of the EPR pair is performed in Z
basis, we obtain the syndrome value of s = 0, while retaining
the legitimate quantum state of the logical qubit ρ. Finally, the
success probability of the scheme presented in Fig. 3 can be
determined according to Definition 1 as follows:

ps = p(ρ|(s = 0)) =
1 − 2p+ 10p2

9

1 − 4p
3 + 8p2

9

= 1 − 2p
3

− 2p2

3
− 8p3

27
+

16p4

81
+ O(p5), (32)

which gives us an approximately linear performance improve-
ment over the uncoded QBER as a function of p.

By accounting for Definition 2, the yield is Y = p(s = 0)
and the proof follows.

APPENDIX B
PROOF OF PROPOSITION 2

After applying the first CNOT of the decoder V†
B of Fig. 6,

we can determine the probability of obtaining the syndrome
value sZ = 0 from the first EPR pair as follows:

p(sZ = 0) = 1 − 4p
3

+
8p2

9
. (33)

If sZ = 1, we discard the logical qubit. If sZ = 0, the first-
two quantum depolarizing channels are reduced into a single
depolarizing channel having the following Kraus operators:

N1 =

√√√√1 − 2p+ 10p2

9

1 − 4p
3 + 8p2

9

I, N2 =

√√√√ 2p2

9

1 − 4p
3 + 8p2

9

X,

N3 =

√√√√ 2p2

9

1 − 4p
3 + 8p2

9

Y, N4 =

√√√√ 2p
3 − 2p2

3

1 − 4p
3 + 8p2

9

Z. (34)

Now, by applying the second CNOT of the decoder V†
B

of Fig. 6, we can determine the probability of obtaining the
syndrome value sX = 0 from the second EPR pair as follows:

p(sX = 0) =
1 − 8p

3 + 28p2

9 − 32p3

27

1 − 4p
3 + 8p2

9

. (35)

If sZ = 1, we discard the logical qubit, while If sZ = 0,
we retain the logical qubit. Therefore, the probability of
arriving at the legitimate quantum state ρ and measuring the
syndrome value sX = 0 is given by

p(ρ ∩ (sX = 0)) =
1 − 3p+ 28p2

9 − 28p3

27

1 − 4p
3 + 8p2

9

. (36)

Finally, by using Definition 1 and 2, the proof follows.

APPENDIX C
PROOF OF PROPOSITION 3

Similar to the proof of Proposition 1, By exploiting the error
model of Section II and relying on the quantum encoder and
decoder of Fig. 7, the supermap of (7) can be readily obtained.
After the decoding operation, the first EPR pair is measured
in the X basis while the second one in the Z basis. Let
us distinguish the components of the syndrome string in (8)
according to the basis used for the measurement. Specifically,
let us denote the syndrome component obtained when the
second EPR pair is measured in the Z basis by sZ = sA⊕sB ,
while the syndrome component obtained when the first EPR
pair is measured in the X basis by sX = sA ⊕ sB . The
overall syndrome string is s = sXsZ . Since no error operators
exhibiting even numbers of X errors and even numbers of Z
errors can be detected, which gives us the syndrome vector
of s = 00, the probability we retain the logical qubits is
equal to the sum of the probabilities of all these possible
error patterns resulting in the syndrome vector of s = 00.
After observing 44 = 256 error patterns, we found 64 error
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S(ρ) =
[
(1 − p)2ρ+

p2

9
XρX +

p2

9
Y ρY +

p(1 − p)
3

ZρZ
]
⊗ |Φ+� �Φ+|

+
[p2

9
ρ+

p2

9
XρX +

p2

9
Y ρY +

p(1 − p)
3

ZρZ
]
⊗ |Φ−� �Φ−|

+
[p2

9
ρ+

p2

9
XρX +

p2

9
Y ρY +

p(1 − p)
3

ZρZ
]
⊗ |Ψ−� �Ψ−|

+
[p(1 − p)

3
ρ+

p(1 − p)
3

XρX +
p(1 − p)

3
Y ρY +

p2

9
ZρZ

]
⊗ |Ψ+� �Ψ+| (29)

patterns that generate the syndrome vector of s = 00: one all-
identity error pattern (weight = 0); 18 error patterns having
Pauli weight = 2; 24 error patterns having Pauli weight = 3;
and 21 error patterns having Pauli weight = 4. Therefore,
by accounting for (7), we have

p(s = 00) =
n∑

i=0

Wi

(p
3

)i

(1 − p)(n−i)

= 1 − 4p+ 8p2 − 64p3

9
+

64p4

27
, (37)

where W = {W0,W1,W2,W3,W4} = {1, 0, 18, 24, 21}.
However, from all of those error patterns, only four are actually
associated with the legitimate quantum state ρ of the logical
qubits, which are P ∈ {IIII,XXXX,Y Y Y Y,ZZZZ}.
Hence, the probability of obtaining the legitimate quantum
state ρ while measuring s = 00 is given by

p(ρ ∩ (s = 00)) = (1 − p)4 + 3
(p

3

)4

= 1 − 4p+ 6p2 − 4p3 +
28p4

27
. (38)

Finally, by using Definition 1 and 2, the proof follows.
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