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Abstract— The unique and often-weird properties of quantum
mechanics allow an information carrier to propagate through
multiple trajectories of quantum channels simultaneously. This
ultimately leads us to quantum trajectories with an indefinite
causal order of quantum channels. It has been shown that
indefinite causal order enables the violation of bottleneck capacity,
which bounds the amount of the transferable classical and
quantum information through a classical trajectory with a
well-defined causal order of quantum channels. In this treatise,
we investigate this beneficial property in the realm of both
entanglement-assisted classical and quantum communications.
To this aim, we derive closed-form capacity expressions of
entanglement-assisted classical and quantum communication for
arbitrary quantum Pauli channels over classical and quantum
trajectories. We show that by exploiting the indefinite causal
order of quantum channels, we obtain capacity gains over
classical trajectory as well as the violation of bottleneck capacity
for various practical scenarios. Furthermore, we determine the
operating region where entanglement-assisted communication
over quantum trajectory obtains capacity gain against classical
trajectory and where the entanglement-assisted communication
over quantum trajectory violates the bottleneck capacity.

Index Terms— Quantum communications, quantum trajectory,
quantum superposition, quantum decoherence.

I. INTRODUCTION

CLASSICAL information theory has been revitalized into
the quantum realm, where it is formally known as

quantum Shannon theory or quantum information theory [1].
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Fig. 1. An illustration of an information carrier traverses two different
classical trajectories with a definite causal order. (a) The information carrier
traverses quantum channels D(·) → E(·). (b) The information carrier
traverses quantum channels E(·) → D(·).

In both classical and quantum information theory framework,
the trajectory traversed by the information carrier is causally
well-defined. Interestingly, due to the property of quantum
information, the information carrier can traverse quantum
channels in a superposition of multiple trajectories, charac-
terized by different causal orders. This implies that the path
traversed by the information carrier exhibits an indefinite
causal order of quantum channels [2]. Consequently, there is
a novel paradigm of quantum information theory involving
the existence of indefinite causal order of quantum channels,
which leads to a new frontier research field [3].

For instance, let us observe Fig. 1. Assume that in order
to transfer the information from the source to the destination,
we have to utilize two quantum channels denoted by D(·) and
E(·). In the conventional framework of quantum information
theory, the information carrier can traverse through the quan-
tum channel D(·) first and then followed by quantum channel
E(·) or through the quantum channel E(·) first and then
followed by quantum channel D(·). In both cases, the causal
order of the quantum channels are well-defined, it is either
D(·) → E(·) or E(·) → D(·). In other words, it is said that
they have a definite causal order. Furthermore, we may refer
to the path traversed by information carrier with a definite
causal order as classical trajectory.

Interestingly, the properties of quantum information allow
the information carrier to traverse the quantum channels in
the superposition of both causal orders as illustrated in Fig. 2.
Precisely, in order to transfer the information from the source
to the destination, the information carrier can traverse both
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Fig. 2. An illustration of a quantum trajectory traversed by information
carrier. The superposition of classical trajectories may be determined using
the control qubit ω. The result is a supermap Sω(E,D) denoted in pink, which
constitutes the superposition of two causal orders, D(·) → E(·) denoted by
red dotted lines and E(·) → D(·) denoted by blue dashed lines. Within
the figure, V and R denote a possible encoding-decoding pair. The whole
operation will be elaborated further in Section IV.

possible combinations of the classical trajectories of the
quantum channels simultaneously, i.e. E(·) → D(·) and
D(·) → E(·). Consequently, the superposition of both classical
trajectories traversed by the information carrier exhibits an
indefinite causal order. We may refer to the path traversed
by an information carrier with an indefinite causal order as
quantum trajectory.

Remark 1: The term trajectory is used in the relevant
literature to denote the path – generally assumed being con-
stituted by a sequence of quantum channels – traversed by the
information carrier. If the quantum channels are traversed in
a well-defined causal order, the information carrier is said to
propagate through a classical trajectory. Conversely, whenever
the order of the quantum channels cannot be expressed as
a well-defined causal order, the information carrier propa-
gates through a quantum trajectory. In other words, quantum
mechanics allows the information carrier to traverse quantum
channels placed in a quantum configuration.

As counter-intuitive as it seems, the ability of information
carrier traversing a superposition of classical trajectories has
been experimentally verified using a quantum device called
quantum switch [4]–[12]. Until recently, the alluring benefits
of the indefinite casual order of quantum process have been
reported for various aspects of quantum information process-
ing, including quantum computation [13], [14], noiseless
quantum teleportation [15], communication complexity [16],
quantum resource theory [17], [18], quantum metrology [19],
discrimination of quantum process [20], and ultimately for
boosting the channel capacities of quantum and classical
communications over quantum channels [21]–[24].

From a communication engineering point of view, the piv-
otal question is always how to quantify the advantage that
can be obtained from exploiting the indefinite causal order of
quantum channels for enhancing the quality of classical and
quantum communication. In this treatise, we aim for answering
the remaining open questions on how much advantage we can
glean from the indefinite causal order of quantum channels to
improve the capacities of both entanglement-assisted classical
and quantum communication. More specifically, within the
Quantum Internet framework, multiple quantum devices are
interconnected via pre-shared entanglement for facilitating
various applications that require the exchange of classical and

quantum information amongst the quantum devices, includ-
ing quantum communications [25], [26], quantum cryptog-
raphy [27], quantum sensing [28], [29], distributed quantum
computation [30], [31], blind quantum computation [32], [33],
quantum-secure direct-communication (QSDC) [34]–[37], and
quantum-secure secret-sharing [38]. Therefore, the pre-shared
entanglement can be viewed as the primary consumable
resources for enabling entanglement-assisted classical and
quantum communications within the Quantum Internet frame-
work [31], [39]–[42]. Ultimately, the advantage gleaned
from the indefinite causal order of quantum channels for
entanglement-assisted classical and quantum communication
can be immediately extended to the aforementioned applica-
tions. Thus, the analysis of entanglement-assisted communica-
tion over quantum trajectory will provide a critical milestone
for the development of Quantum Internet.

In this treatise, we consider quantum superdense coding
protocol [43] as our model for entanglement-assisted classical
communication since a single-letter capacity formulation can
be derived for quantum Pauli channel [44]. More specifically,
quantum Pauli channel constitutes a set of quantum chan-
nel models with various practical applications. Additionally,
an entanglement-assisted classical communication constituted
by quantum superdense coding is known to be the optimal
scheme of utilizing a single use of quantum channel and
a pair of pre-shared maximally-entangled quantum state in
exchange for two classical bits [43]. Furthermore, the quantum
superdense coding versus quantum teleportation trade-off sug-
gests that the capacity formulation of entanglement-assisted
quantum communication can be obtained directly from their
classical counterparts [45], [46].

Against this background, our contributions can be summa-
rized as follows:

• We derive the general formulation of entanglement-
assisted classical communication capacity over quantum
trajectory for various scenarios involving quantum Pauli
channels.

• We determine the operating region where entanglement-
assisted communication over quantum trajectory obtains
capacity gain against classical trajectory. Additionally,
we also portray the operating region where entanglement-
assisted communication over quantum trajectory violates
the bottleneck capacity, which represents stringent upper-
bound of communication capacity over definite causal
order.

• We present the achievable capacity of entanglement-
assisted quantum communication over quantum trajec-
tory, which is obtained via quantum superdense versus
quantum teleportation trade-off.

The rest of this treatise is organized as follows. We pro-
vide a comprehensive comparison between our work and
the state-of-the-art in Section II. We present the quantum
channel models considered as well as a brief description
of quantum superdense coding in Section III. Furthermore,
we also provide the tools required for evaluating the capacity
of entanglement-assisted classical communication based on the
description of quantum channel models and quantum super-
dense coding. It is followed by Section IV where we detail
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the formal description of the classical and quantum trajectory.
The main results of the entanglement-assisted classical and
quantum communication capacity are presented in Section V.
Finally, we conclude our work in Section VI by also providing
several potential directions for future research.

II. RELATED WORKS

The first demonstration of the beneficial capacity gains
obtained from the indefinite causal order of quantum channels
was presented in [21], which marks the lower bound of
quantum communication capacity over quantum trajectory.
More specifically, this lower bound is represented by unas-
sisted quantum communication capacity obtained based on the
entropy measure of the quantum channels [47], [48]. By con-
trast, quantum communication capacity is upper-bounded
by two-way entanglement-assisted quantum communication
capacity, whose formulation is calculated via relative entropy
entanglement of the Choi matrix [49]. Relying on this
formulation, the upper-bound of quantum communication
capacity over quantum trajectory has been recently pre-
sented in [23]. Additionally, the lower-bound of quantum
communication capacity given in [23] is tighter than that
in [21]. Hence, the operating capacity of quantum communica-
tion over quantum trajectory has been established. However,
a noticeable gap can be observed between these lower- and
upper- bounds, which may cause an inconvenience for deter-
mining the exact capacity for specific applications, including
those of entanglement-assisted-based described in Section I.
Thus, to navigate the concept of quantum trajectory closer to
practical purposes, in this treatise, we consider the one-way
entanglement-assisted – both classical and quantum – commu-
nication in our investigation, whose capacity conceivably lies
between these lower- and upper- bounds.1

Since a quantum channel can be used for transferring both
classical and quantum information, the investigation related to
indefinite causal order of quantum channel is extended to the
world of classical communication. However, currently, there
is no closed-form formula for determining the exact classical
communication capacity over a quantum channel, except for
the widely known Holevo bound [50], [51], which marks
the upper-bound of accessible classical information of the
unassisted classical communication over a quantum channel.
Consequently, it is also generally hard to find a single-letter
formula for establishing the classical communication capacity
over an indefinite causal order of quantum channels for a
wide range channel parameters. However, for very specific
cases, such as fully-depolarizing quantum channel and quan-
tum entanglement-breaking channel, the unassisted classical

1The term unassisted refers to a scenario where the source and the
destination does not share a pre-shared EPR pair, while the term entanglement-
assisted assumes that the source and the destination have pre-shared
maximally-entangled quantum state such as EPR pairs. The term one-way
refers to a scenario where classical communications can be conducted in one
direction only, i.e. from the source to the destination (forward direction),
while the term two-way refers to a scenario where classical communications
can be performed in both directions, i.e. from the source to the destination
and vice versa (forward and backward directions). Entanglement-assisted
communication exhibits higher capacity compared to the unassisted one and
the two-way entanglement-assisted communication may attain higher capacity
than the one-way one.

communication capacities over quantum trajectory have been
determined [22], [52]. On the other hand, an entanglement-
assisted classical communication constituted by quantum
superdense coding is known to be the optimal scheme of
utilizing a single use of quantum channel and a pair of pre-
shared maximally-entangled quantum state in exchange for
two classical bits [43]. Therefore, a single-letter formula of
entanglement-assisted classical communication capacity can
be derived for a wide range quantum channel parameters [44].
Relying on these facts, ultimately, we derive closed-form
expressions for entanglement-assisted classical communication
capacity over quantum trajectories.

III. PRELIMINARIES

In the classical domain, the information is conveyed by
binary digit (bit), which can carry a value of “0” or “1” at
a given time. By contrast, the information in quantum domain
is carried by the quantum bit (qubit), where it can be used to
represent “0” or “1” or even the superposition of both values.
Thus, a qubit can also be used to carry classical information
if the qubit is wisely encoded. Similar to the classical domain,
the transfer of quantum information between the source and
the destination is affected by the noise characterized by the
quantum channel N (·). However, differently from the classical
domain, for a given quantum channel N (·), we may have
several different notions of communication capacity – the
maximal amount of information may be transferred reliably
under a certain encoding and decoding procedure – which
include quantum communication capacity Q as well as classi-
cal communication capacity C. More precisely, the quantum
communication capacity Q quantifies the maximum amount
of quantum information that can be communicated from the
source to the destination over many independent uses of a
quantum channel N (·). Similarly, the classical communica-
tion capacity C quantifies the amount of classical informa-
tion that can be reliably transferred over many independent
uses of a quantum channel N (·). However, in this case,
the information is encapsulated using a carefully selected
classical-to-quantum mapping. We refer the readers to [53]
and [54] for an in-depth overview about classical and quan-
tum communication capacities. In this treatise, we consider
the so-called entanglement-assisted communication capacities,
which differ from unassisted communication capacities, since
maximally-entangled quantum states are pre-shared between
the source and the destination before the communication
is commenced. In this section, we provide the fundamental
background required for establishing the main results of our
paper.

A. Quantum Channel
An arbitrary pure quantum state, denoted by |ψ�, can be

formally expressed as a superposition of the orthogonal basis
states {|i�} as follows:

|ψ� =
∑

i

αi |i� . (1)

The measurement of the quantum state |ψ� in the orthogonal
basis collapses the superposition of the quantum state into
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one of the basis states, say |i�, with probability |αi|2. Hence,
the coefficients {αi} are subjected to the normalization condi-
tion

∑
i |αi|2 = 1. A mixed state, i.e., the statistical mixture of

multiple pure quantum states {|ψi�}, can be described using
the so-called density matrix ρ, which is defined as

ρ
�
=

∑
i

pi |ψi� �ψi| , (2)

with |·� �·| denoting the outer product between two pure
quantum states.

Definition 1 (Quantum Channel [55]): A quantum channel
N (·) is a completely-positive trace-preserving (CPTP) map
acting on arbitrary quantum states, which can be written in
the operator-sum representation as follows:

N (ρ) =
∑

i

NiρN
†
i , (3)

where {Ni} denotes a set of operators – referred to as Kraus
operators – satisfying the following completeness criterion:∑

i

N †
i Ni = I. (4)

A special class of the quantum channel representation of (3)
is constituted by a quantum channel where the Kraus operators
can be expressed in terms of unitary operators {Ui} as follows:

N (ρ) =
∑

i

piUiρU
†
i , (5)

where Ui is a unitary operator satisfying U †
i Ui = I and {pi}i

is a probability distribution satisfying
∑

i pi = 1. Hence,
the relationship between the Kraus operators and the unitary
operators is given by Ni =

√
piUi.

Definition 2 (Quantum Pauli Channel [55]): A quantum
channel is referred to as quantum Pauli channel based on the
following map:

N (ρ) =
3∑

i=0

piσiρσ
†
i , (6)

where σ0 = I , σ1 = X , σ2 = Y , and σ3 = Z are the Pauli
matrices.2

Let us now consider a joint quantum state ρAB shared
between two parties A and B, where quantum channel NA(·)
affects only the quantum state at A. Since we consider that the
quantum state at B undergoes an “error-free” identity channel,
the extended mapping of NA(·) on the joint quantum state ρAB

is given by

(NA ⊗ IB)(ρAB) =
∑

i

(NA,i ⊗ IB)ρAB(NA,i ⊗ IB)†, (7)

where {NA,i} denotes the set of Kraus operators of the
quantum channel NA(·) and {NA,i ⊗ IB} denotes the set of
extended Kraus operators.

2In the rest of this treatise, we remove the † of (6) for quantum Pauli
channels since Pauli matrices are Hermitian.

Fig. 3. The schematic of quantum superdense coding over noisy quantum
channel N (·). A single use of quantum channel N and an EPR pair |Φ+�AB
can be used for transferring two classical bits b = b0b1.

B. Quantum Superdense Coding

The main objective of this study is to evaluate the
entanglement-assisted classical and quantum communication
capacity over quantum trajectories. To this aim, we can
determine the entanglement-assisted classical communication
capacity via quantum superdense coding [43], where a single
use of a quantum channel and a pair of pre-shared maximally-
entangled quantum state can be used for transmitting two
classical bits. The general schematic of quantum superdense
coding over quantum channel N (·) is shown in Fig. 3.

The quantum superdense coding protocol is commenced
by pre-sharing a maximally-entangled quantum state between
Alice (A) and Bob (B), which is constituted by the following
EPR pair:

|Φ+�AB =
1√
2

(|00� + |11�)AB , (8)

where the subscripts A and B indicate that the first qubit is
held by A, while the second is by B. Let us assume that the
pre-sharing step is error-free since multiple copies of EPR
pairs can be prepared and hence a quantum entanglement
distillation protocol can be invoked to eliminate the quantum
errors [56].

A two-bit vector b = b0b1 is used for applying a controlled-
Z and controlled-X operations defined by (Z)b0(X)b1 .
To elaborate a little further, if the classical bit b0 = 1, a Z gate
is applied to the qubit of the EPR pair on A side, otherwise,
an identity gate is applied. Similarly, if the classical bit b1 = 1,
an X gate is applied, otherwise, an identity gate is applied.
Consequently, the classical-to-quantum mapping of b = b0b1
to EPR pairs is given by

b0b1 = 00 → |Φ+�AB =
1√
2

(|00� + |11�)AB ,

b0b1 = 01 → XA |Φ+�AB =
1√
2

(|01�+|10�)AB = |Ψ+�AB ,

b0b1 = 10 → ZA |Φ+�AB =
1√
2

(|00�−|11�)AB = |Φ−�AB ,

b0b1 = 11→XAZA |Φ+�AB =
1√
2
(|01�−|10�)AB = |Ψ−�AB .

(9)

Next, the qubit of the EPR pair at A side is sent through
a quantum channel N (·) as shown in Fig. 3. Assume that
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Fig. 4. The transition probability of b = b0b1 over quantum Pauli
channels N (·), which will be utilized for deriving the entanglement-assisted
(a) symbol-based and (b) bit-based classical communication capacity. Com-
pared to (a), where the transition probability is derived jointly for b = b0b1,
each of the transition probabilities in (b) is derived for b0 and b1.

we have a quantum Pauli channel N (·), which means that
the quantum channel inflicts the bit-flip (X), phase-flip (Z),
as well as the simultaneous bit-flip and phase-flip (Y ) errors
with the probability of px, pz , and py , respectively. Therefore,
the transition probability of every possible combinations of
b = b0b1 due to X , Z , and Y errors is depicted in Fig. 4(a).
Finally, as both of the qubits of the EPR pair are now at B
side, a Bell-state measurement is conducted to recover the
two-bit vector b̂ = b̂0b̂1, which is the corrupted version of
b = b0b1. With this, the quantum superdense coding protocol
over quantum channel N (·) is completed.

C. The Capacity of Entanglement-Assisted Classical
Communication

Evaluating the capacity of quantum superdense coding pro-
tocol can be reformulated as evaluating the capacity of quater-
nary discrete classical communication. To obtain a single-letter
formula of its capacity, first, we provide the general definition
of classical communication capacity.

Definition 3 (Classical Communication Capacity [57]):
The classical communication capacity is defined by

C = max
P (x)

I(X ;Y ) = max
P (x)

{H(Y ) −H(Y |X)}, (10)

where I(X ;Y ) is the mutual information between random
variables X and Y , P (x) is the probability distribution of
the source emitting symbol x ∈ X , H(Y ) is the entropy
of random variable Y , H(Y |X) is the conditional entropy
of random variable Y conditioned by X .

Furthermore, the capacity of (10) is also equivalent to

C = log2M −
∑
i,j

P (xj)H(Y |X = xj)

= log2M −
∑

j

P (xj)
∑

i

P (yi|xj) log2

1
P (yi|xj)

. (11)

Since we assume that we have an equiprobable source
for the symbols x ∈ X and P (yi|xj) is time invariant,
the expression of (11) can be further simplified to

C = log2M +
∑

i

P (yi|x) log2 P (yi|x), (12)

where P (yi|x) is the transition probability of yi for any x ∈ X
characterized by the channel.3

In order to glean a clearer idea, let us proceed with an
example. Consider the quantum depolarizing channel N (·)
affecting a single-qubit having the density matrix ρ as follows:

N (ρ) = (1 − p)ρ+
p

3
(XρX + Y ρY + ZρZ) , (13)

where p is the depolarizing probability. Now, we have to make
the connection between the single-qubit depolarizing channel
of (13) and the transition probability of Fig. 4. Utilizing
the extended mapping of the quantum channel of (7) and
by considering ρAB = |Φ+�AB �Φ+|AB , the effect of a
single-qubit depolarizing channel on an EPR pair ρAB is given
by

(NA ⊗ IB)(ρAB) = (1−p) |Φ+� �Φ+| + p

3
|Ψ+� �Ψ+|

+
p

3
|Ψ−� �Ψ−| + p

3
|Φ−� �Φ−| . (14)

Based on (14), we obtain the transition probability p(yi|x)
as follows:

p(yi|x) =

{
1 − p, for i = 0

px = py = pz =
p

3
, for i = 1, 2, 3,

(15)

where i represents the decimal representation of binary vector
b = b0b1. Finally, substituting the value M = 4 and p(yi|x)
of (15) into (12), we obtain the entanglement-assisted classical
communication capacity in terms of p as follows [44]:

CE,s = 2 + (1 − p) log2(1 − p) + p log2

p

3
. (16)

For a single-qubit depolarizing channel, the capacity can
be derived for both symbol-based and bit-based classical
communication. The symbol-based capacity is already given
in (16) based on the transition probability of b0b1 in Fig. 4(a).
By contrast, the bit-based capacity can be determined by
summing the individual capacity of b0 and b1 based on the
transition probability of Fig. 4(b), where we obtain

CE,b = 2 +
(

2 − 4p
3

)
log2

(
1 − 2p

3

)
+

4p
3

log2

2p
3
. (17)

As a benchmark, we provide the unassisted classical com-
munication capacity of a single-qubit depolarizing channel.
Luckily, for a single-qubit depolarizing channel, the capacity
always correspond to the Von Neumann measurements [58],
where in terms of p is given by

C = 1 +
(

1 − 2p
3

)
log2

(
1 − 2p

3

)
+

2p
3

log2

2p
3
. (18)

Notice that the unassisted classical capacity is exactly half
of the bit-based entanglement-assisted classical capacity.4

Remark 2: The inherent inter-bit correlation within the
symbols makes the symbol-based capacity slightly higher
than the sum of individual bit-based capacity. Consequently,

3The transition probability of P (yi|x) for quantum Pauli channel is known
to be symmetric for any x ∈ X.

4With reference to the entanglement-assisted capacity, this statement is true
since the cost of distributing entanglement is not taken into account, as gen-
erally assumed in the theoretical quantum information theory framework.
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Fig. 5. The entanglement-assisted classical communication capacity over a
single use of quantum depolarizing channel. The plots are based on (16), (17),
and (18). EA stands for entanglement-assisted.

the entanglement-assisted classical communication capacity
is also slightly higher than the sum of individual unassisted
classical communication capacity.

We portray the symbol-based capacity of (16), the bit-based
capacity of (17), and the unassisted capacity of (18) in Fig. 5.
Observe that all the capacities are equal to 0 when p = 0.75.
This specific point is associated with the fully-depolarizing
quantum channel where we have N (ρ) = I/2 for any
arbitrary ρ. Consequently, there is no classical information can
be transmitted, either by employing entanglement-assisted or
unassisted, through a fully-depolarizing quantum channel.

Finally, following the reasoning we utilized for deriving the
entanglement-assisted classical communication capacity for
single-qubit depolarizing channel, we may also directly derive
the entanglement-assisted classical communication capacity
for the general quantum Pauli channel of (6), which is given
by

CE = 2 + p0 log2 p0 + p1 log2 p1 + p2 log2 p2 + p3 log2 p3.

(19)

For the rest of treatise, we are going to use the
entanglement-assisted capacity of (19) for evaluating the
bottleneck capacity of the quantum channels arranged in a
well-defined causal order, which we will elaborate in the next
section.

IV. THE CLASSICAL AND QUANTUM TRAJECTORY

As we have briefly alluded in Section I, the unique proper-
ties of quantum information allow the information carrier to
traverse multiple classical trajectories simultaneously. In this
section, we provide the formal mathematical description of
the classical and quantum trajectory of two quantum chan-
nels. More specifically, a classical trajectory of two quantum
channels is characterized by a well-defined causal order of
either D(·) → E(·) or E(·) → D(·). By contrast, a quantum

trajectory of two quantum channels is characterized by the
superposition of two classical trajectories D(·) → E(·) and
E(·) → D(·) implying that the trajectory exhibits an indefinite
causal order of the quantum channels D(·) and E(·).

A. Classical Trajectory

Consider two quantum channels D(·) and E(·) as follows:

D(ρ) =
∑

i

DiρD
†
i , E(ρ) =

∑
j

EjρE
†
j . (20)

The resultant channel S(·) of two quantum channels over a
classical trajectory with a definite causal order of D(·) → E(·)
is formulated as

S(D, E)(ρ) =
∑
i,j

Wi,jρW
†
i,j , (21)

where the Kraus operators are given by

Wi,j = EjDi. (22)

The amount of transferable information over a classi-
cal trajectory of two quantum channels D(·) and E(·) is
upper-bounded by the so-called bottleneck capacity, which
applies for both classical and quantum communications as well
as for both unassisted and entanglement-assisted communica-
tions.

Definition 4 (The Bottleneck Capacity [23], [59]): The
communication capacity over classical trajectory of two
quantum channels is upper-bounded by

CB = min{C(D), C(E)}, (23)

where C(D) and C(E) are the capacities of the individual
quantum channels D(·) and E(·), respectively. When C(D)
and C(E) represent the entanglement-assisted communication
capacities of D(·) and E(·), respectively, the notation CE,B is
used for portraying the associated bottleneck capacity.

In this treatise, we consider D(·) and E(·) to be general
quantum Pauli channels of (6). Therefore, we may evaluate
the individual C(D) and C(E) using the entanglement-assisted
classical communication capacity for quantum Pauli channels
of (19) to obtain the bottleneck capacity CE,B.

B. Quantum Trajectory

Given two quantum channels D(·) and E(·), the resultant
quantum channel S(·) over quantum trajectory is formulated
as [21]

Sω(D, E)(ρ) =
∑
i,j

Wi,j(ρ⊗ ω)W †
i,j , (24)

where ω is the control qubit and the Kraus operators are given
by

Wi,j = EjDi ⊗ |0� �0| +DiEj ⊗ |1� �1| . (25)

The formulation of the Kraus operators over quantum tra-
jectory implies that we may create a superposition of classical
trajectories using the control qubit ω. More specifically, when
ω = |0� �0|, the information carrier of the quantum state ρ
traverses the classical trajectory of D(·) → E(·). By contrast,
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when ω = |1� �1|, the information carrier of the quantum
state ρ traverses the classical trajectory of E(·) → D(·).
For instance, we may create an equal superposition of both
classical trajectories by initializing ω = |+� �+|, which means
that the quantum state ρ is traversed through both classical tra-
jectories simultaneously, which results in an indefinite causal
order of quantum channels. Thus, throughout this treatise,
we assume that the control qubit is always initialized in
the quantum state of ω = |+� �+| since it gives us the
capability of detecting the superposition of causal orders from
anti-commuting Kraus operators and ultimately provides us
with the highest possible capacity gain [21].

More specifically, let us assume that D1 and E1 are two
anti-commuting Kraus operators, i.e. D1 E1 = −E1 D1. Thus,
the Kraus operators of Eq (25) can be expressed as follows:

W1,1 = E1D1 ⊗ |0� �0| − E1D1 ⊗ |1� �1|
= E1D1 ⊗ (|0� �0| − |1� �1|) = E1D1 ⊗ Z. (26)

Therefore, the action of Kraus operators W1,1 of (26) on
the initial quantum state of ρ⊗ |+� �+| is given by

W1,1(ρ⊗ |+� �+|)W †
1,1 = (E1D1)ρ(E1D1)†⊗(Z |+� �+|Z)

= (E1D1)ρ(E1D1)†⊗|−� �−| . (27)

According to this result, when we measure the quantum
state |−� �−| on the control qubit, we can infer that a superpo-
sition of causal orders from two anti-commuting Kraus opera-
tors has taken place. Thus, we can utilize the measurement
result to our advantage for improving the performance of
classical and quantum communication.

Remark 3: If the control qubit is initialized in the quantum
state of ω = |+� �+|, the superposition of causal orders from
two anti-commuting Kraus operators transforms the control
qubit into |−� �−|.

Based on the formal description of the quantum trajectory
in (24), indeed we require an additional auxiliary qubit ω to
control the superposition of the causal orders of the quantum
channels D(·) and E(·). Intuitively, we have the inclination to
make a comparison between the advocated scheme presented
in this treatise to another auxiliary-qubits assisted scheme,
such as quantum error-correction codes [60], [61]. Neverthe-
less, viewing the control qubit ω of (24) in the same light
as the auxiliary qubits in quantum error-correction codes can
be very problematic. More specifically, the auxiliary qubits in
quantum error-correction codes are encoded together with the
logical qubits and sent through the quantum channels carrying
a certain amount of information. Consequently, the incorpo-
ration of auxiliary qubits in quantum error-correction codes
increases the total number of quantum channel uses. By con-
trast, the utilization of the auxiliary qubit ω of (24) does
not increase the number of quantum channel uses. In fact,
as shown in [18], the encoding operation of (24) must be
considered as a non-side-channel generating operation, since
the control qubit ω does not carry – or embed in any way –
the information from the source to the destination. The initial
state of the control qubit ω is fixed as part of the placement
and thus, it is deemed inaccessible to the sender for encoding

information. Having said that, we refer enthusiastic readers
to [18] for the full discourse on quantum resource theories.

V. THE ENTANGLEMENT-ASSISTED CAPACITY OVER

CLASSICAL AND QUANTUM TRAJECTORY

We employ the formulation of classical and quantum tra-
jectories of (22) and (25) and incorporate them into (7) for
devising the transition probability required for calculating
the classical communication capacity of (12). Consider the
following quantum Pauli channels D(·) and E(·):

D(ρ) = p0ρ+ p1 XρX + p2 Y ρY + p3 ZρZ, (28)

E(ρ) = q0ρ+ q1XρX + q2Y ρY + q3ZρZ. (29)

Our results of the entanglement-assisted classical commu-
nication capacity over classical and quantum trajectories are
summarized in the following propositions.

Proposition 1: The entanglement-assisted classical commu-
nication capacity CE,C of the two arbitrary quantum Pauli
channels in (28) and (29) over a classical trajectory is given
by

CE,C =2+A0 log2 A0+A1 log2 A1+A2 log2 A2+A3 log2A3,

(30)

where A0 = p0 q0 + p1 q1 + p2 q2 + p3 q3, A1 = p0 q1 +
p1 q0 + p2 q3 + p3 q2, A2 = p0 q2 + p2 q0 + p3 q1 + p1 q3,
and A3 = p0 q3 + p3 q0 + p1 q2 + p2 q1.

Proof: Please refer to Appendix A.
Proposition 2: The entanglement-assisted classical commu-

nication capacity CE,Q of the two arbitrary quantum Pauli
channels of (28) and (29) over a quantum trajectory is given
by

CE,Q = 2 +H(α) +A0 log2A0

+A+
1 log2A

+
1 +A+

2 log2A
+
2 +A+

3 log2A
+
3

+A−
1 log2A

−
1 +A−

2 log2A
−
2 +A−

3 log2A
−
3 , (31)

where α = p|+〉 = A0+A+
1 +A+

2 +A+
3 , A0 = p0 q0+p1 q1+

p2 q2 + p3 q3, A+
1 = p0 q1 + p1 q0, A+

2 = p0 q2 + p2 q0,
A+

3 = p0 q3+p3 q0, A−
1 = p2 q3+p3 q2, A−

2 = p3 q1+p1 q3,
A−

3 = p1 q2 + p2 q1, and H(α) is the binary entropy of α
defined by −α log2 α− (1 − α) log2(1 − α).

Proof: Please refer to Appendix B.
Observe from (30) and (31), the following inequality always

holds: CE,Q ≥ CE,C. The equality holds when A−
1 = A−

2 =
A−

3 = 0 implying A+
0 = A0, A+

1 = A1, A+
2 = A2, A+

3 = A3,
and H(α) = 0. It means that the advantage of quantum
trajectory can only be observed when the coefficient pair of
{pi, qj |i, j = 1, 2, 3} for non-commuting Pauli matrices is non
zero. More specifically, the two classical trajectories of two
non-commuting Pauli matrices, for example XZ = −ZX ,
transforms the control qubit ω = |+� �+| into ω = |−� �−|,
which consequently increases the entanglement-assisted clas-
sical communication capacity compared to that of classical
trajectories.

Remark 4: In order to glean the advantage of quantum
trajectory for increasing the entanglement-assisted classical
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communication capacity of two arbitrary quantum Pauli chan-
nels D(·) and E(·), the coefficient pair of {pi, qj |i, j = 1, 2, 3}
for non-commuting Pauli matrices has to be non-zero.

A. Classical Communication Capacity

In the following subsections, we provide several derivative
results of Proposition 1 and 2 for various types of quantum
Pauli channels, which are widely considered in the practical
applications of quantum communications. More specifically,
we consider the combination of bit-flip and phase flip quantum
channels, quantum entanglement-breaking channels, as well as
quantum depolarizing channels. Moreover, the experimental
implementation of the indefinite causal orders of the afore-
mentioned quantum channels can be found in [8], [10], [11].

1) Quantum Bit-Flip and Phase-Flip Channels: We con-
sider two quantum Pauli channels constituted by bit-flip and
phase-flip quantum channels. A quantum bit-flip channel is
defined as follows:

D(ρ) = (1 − p)ρ+ pXρX, (32)

where the Kraus operators are given by D1 =
√

1 − pI and
D2 =

√
pX . A quantum phase-flip channel is defined as

follows:

E(ρ) = (1 − q)ρ+ qZρZ, (33)

where the Kraus operators are given by E1 =
√

1 − qI and
E2 =

√
qZ . Based on the Kraus operators of the bit-flip and

phase-flip quantum channels of (32) and (33), respectively,
and based on the formulation of Kraus operators for classical
trajectory of (22), we obtain the following corollary.

Corollary 1: The entanglement-assisted classical commu-
nication capacity CE,C of bit-flip and phase-flip quantum
channels over classical trajectory is given by

CE,C = 2 + [(1 − p)(1 − q)] log2 [(1 − p)(1 − q)]
+ [p(1 − q)] log2 [p(1−q)]+[(1−p)q] log2 [(1 − p)q]
+ pq log2 pq. (34)

Proof: By substituting p0 = 1 − p, q0 = 1 − q, p1 = p,
q3 = q, and the rest of the coefficients equal to 0 into (30) of
Proposition 1, we obtain the result in (34).
Similarly, based on the formulation of Kraus operators for
quantum trajectory of (25), we also obtain the following
corollary.

Corollary 2: The entanglement-assisted classical commu-
nication capacity CE,Q of bit-flip and phase-flip quantum
channels over quantum trajectory is given by

CE,Q = 2 +H(α) + [(1 − p)(1 − q)] log2 [(1 − p)(1 − q)]
+ [p(1 − q)] log2 [p(1−q)]+[(1−p)q] log2 [(1 − p)q]
+ pq log2 pq, (35)

where α = p|+〉 = 1 − pq.
Proof: By substituting p0 = 1 − p, q0 = 1 − q, p1 = p,

q3 = q, and the rest of the coefficients equal to 0 into (31) of
Proposition 2, we obtain the result in (35).

To demonstrate the advantage of the quantum trajectory
compared to the classical trajectory, let us consider a scenario

Fig. 6. The entanglement-assisted classical communication capacity for the
combination of bit-flip and phase-flip quantum channels. These plots are based
on (34) and (35).

where we have p = q. We plot the entanglement-assisted
capacity of (34) and (35) in a scenario of p = q in Fig. 6.
In addition to these results, we include the bottleneck capacity
of the two quantum channels. Observe that the capacity of
the resultant channel over classical trajectory indeed cannot
violate the stringent bottleneck capacity. However, the capacity
over quantum trajectory violates the bottleneck capacity in the
region of 0.618 < p < 1. This violation of bottleneck capacity
is induced by the combination of two causal orders of two
non-commuting Pauli matrices from the Kraus operators of the
quantum channels, XZ = −ZX . This combination transforms
the control qubit ω, which is initialized in the quantum state
of |+� �+|, into quantum state of |−� �−|. Consequently, this
gives us a perfect entanglement-assisted classical communi-
cation with a probability of p2 since every time we measure
|−� �−| on the control qubit, we can apply XZ operation to
perfectly recover the quantum state of information qubit ρ.
This is very important to highlight that the measurement of
the control qubit ω does not give us any information about
which causal order the information carrier has traversed, or in
other words it means the measurement does not collapse the
superposition of the classical trajectories. Instead, what the
measurement tells us is if the quantum channels have inflicted
two non-commuting Pauli matrices in two different causal
orders, which can only occur when the information carrier has
actually traversed both classical trajectories simultaneously.

Remark 5: The result in Corollary 2 implies that the indef-
inite causal order of the quantum channels allows us to
violate the bottleneck capacity, which constrains the capacity
of classical and quantum communication traversed over a
classical trajectory with a definite causal order of quantum
channels.

For the sake of demonstration, the results presented in
in Fig. 6 is valid for a scenario of p = q. However, the results
presented in Corollary 1 and 2 are actually general for a
wider range of p and q. To enrich our discussion and to
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explore the advantages gleaned by the indefinite causal order
of quantum channels, we introduce two additional metrics,
namely the capacity gain and the bottleneck violation based
on the following definitions.

Definition 5: The capacity gain G is defined as the differ-
ence between the entanglement-assisted classical communi-
cation capacity over quantum trajectory and that of classical
trajectory, which depicts the amount of additional classical
information that can be sent by exploiting the indefinite causal
order of quantum channels. Formally, the capacity gain G can
be expressed as

G = CE,Q − CE,C, (36)

where CE,Q is the entanglement-assisted classical communi-
cation capacity over quantum trajectory presented in (31) of
Proposition 2, while CE,C is that of over classical trajectory
obtained from (30) of Proposition 1.

Definition 6: The bottleneck violation V is defined as the
non-negative gain obtained by entanglement-assisted classical
communication capacity over quantum trajectory against the
bottleneck capacity. The bottleneck violation V depicts the
amount of capacity gain which cannot be attained through any
definite causal order of quantum channels, which is formally
expressed as

V = max{0, CE,Q − CE,B}, (37)

where CE,Q is the entanglement-assisted classical commu-
nication capacity over quantum trajectory presented in (31)
of Proposition 2, while CE,B is the bottleneck capacity of
entanglement-assisted classical communication based on (23)
of Definition 4.

We portray the capacity gain for the bit-flip and phase-flip
quantum channels over quantum trajectory in Fig. 7(a), while
the bottleneck violation in Fig. 7(b). Observe that based on the
color map in Fig. 7(a), we obtain the benefit of capacity gain
at all range values of 0 < p, q < 1. However, the significant
capacity gain is more prominent in the region of 0.2 ≤ p, q ≤
1 portrayed by the dark red color area. The maximum gain
observed is G = 1, which is attained for the values of (p, q)
satisfying pq = 0.5 for p, q ≤ 1. We are also interested in the
region where we can observe the violation of the bottleneck
capacity as well as the associated magnitude. In Fig. 7(b),
we observe that the violation of bottleneck capacity occurs in
the region of p+ q ≥ 1 for p, q ≤ 1. The maximum violation
observed is V = 1, which is attained for the values of (p, q) =
(0.5, 1) and (p, q) = (1, 0.5). This can be verified directly
because the bottleneck capacities for (p, q) = (0.5, 1) and
(p, q) = (1, 0.5) are CE,B = 1. By contrast, for these given
values p and q, we have CE,Q = 2, which means a perfect
entanglement-assisted classical communication over quantum
trajectory.

2) Quantum Entanglement-Breaking Channels: Any quan-
tum channel N (·) is said to be entanglement breaking if
it transforms a maximally-entangled quantum state ρAB ,
for example |Φ+�AB �Φ+|AB , into a mixture of two sep-
arable quantum states ρA and ρB . Formally, a quantum

entanglement-breaking channel is defined as follows [62]:

(NA ⊗ IB)(ρAB) =
∑

i

pi (ρA,i ⊗ ρB,i) . (38)

An example of quantum entanglement-breaking channels
that can be written as a linear combination of Pauli matrices
is given by

N (ρ) =
1
2

(XρX + Y ρY ) . (39)

Now, let us consider two partially entanglement-breaking
channels, where the first quantum channel is formulated as

D(ρ) = (1 − p)XρX + pY ρY, (40)

where the Kraus operators are given by D1 =
√

1 − pX
and D2 =

√
pY , where p = 1/2 gives us the quantum

entanglement-breaking channel of (39). Similarly, the second
quantum channel is formulated as

E(ρ) = (1 − q)XρX + qY ρY, (41)

where the Kraus operators are given by E1 =
√

1 − qX and
E2 =

√
qY . Based on the Kraus operators of the partially

entanglement-breaking channels of (40) and (41) and based
on the formulation of Kraus operators for classical trajectory
of (22), we have the following corollary.

Corollary 3: The entanglement-assisted classical communi-
cation capacity CE,C of two partially entanglement-breaking
channels over classical trajectory is given by

CE,C = 2 + (1−p−q + 2pq) log2 (1−p−q + 2pq)
+ (p+ q − 2pq) log2 (p+ q − 2pq) . (42)

Proof: By substituting p1 = 1 − p, q1 = 1 − q, p2 = p,
q2 = q, and the rest of the coefficients equal to 0 into (30) of
Proposition 1, we obtain the result in (42).
Similarly, based on the formulation of Kraus operators for
quantum trajectory of (25), we also have the following
corollary.

Corollary 4: The entanglement-assisted classical communi-
cation capacity CE,Q of two partially entanglement-breaking
channels over quantum trajectory is given by

CE,Q = 2, (43)

for every value of p ∈ [0, 1] and q ∈ [0, 1].
Proof: By substituting p1 = 1 − p, q1 = 1 − q, p2 = p,

q2 = q and the rest of the coefficients equal to 0 into (31) of
Proposition 2, we obtain the result in (43).

To provide a clearer picture, we portray the
entanglement-assisted capacity of (42) and (43) in a
scenario where we have p = q in Fig. 8. Once again,
we also include the bottleneck capacity of the two partially
entanglement-breaking channels. Here, we observe an
interesting phenomenon where we can always achieve a
perfect entanglement-assisted classical communication over
quantum trajectory, which demonstrates a full violation
of bottleneck capacity for every value of p ∈ (0, 1).
Compared to the result presented in Subsection V-A.1,
the Kraus operators of the partially entanglement-breaking
channels contain two non-commuting Pauli matrices given
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Fig. 7. (a) The entanglement-assisted classical capacity gain of the bit-flip and phase-flip quantum channels over quantum trajectory against classical trajectory.
(b) The violation of bottleneck capacity due to the indefinite causal order of quantum channels.

Fig. 8. The entanglement-assisted classical capacity for two identical partially
entanglement-breaking channels. The plots are based on (42) and (43).

by XY = −Y X . Therefore, the two different causal orders
of two non-commuting Pauli matrices can always be detected
by the control qubit ω, since it transforms the initialized
ω = |+� �+| into ω = |−� �−|. By contrast, the remaining
combinations of the Pauli matrices given by XX = Y Y = I ,
leave the control qubit ω unchanged.

We portray the capacity gain for two partially
entanglement-breaking channels over quantum trajectory
in Fig. 9(a), while the bottleneck violation in Fig. 9(b).
Since we always attain a perfect entanglement-assisted
classical communication over quantum trajectory for two
partially entanglement-breaking channels, the magnitude of
capacity gain, which may be observed from the dominantly
dark red color area portrayed in Fig. 9(a), is significantly
higher than that of bit-flip and phase-flip quantum channels.

Consequently, the benefit from capacity gain from Fig. 9(a) is
directly translated to the capacity violation displayed by the
color map in Fig. 9(b). In this case, we have shown that the
quantum trajectory of two entanglement-breaking channels is
capable of achieving the full violation of bottleneck capacity
for every value p ∈ (0, 1) and q ∈ (0, 1), as described in (43)
of Corollary 4.

Remark 6: The result in Corollary 4 implies that the indefi-
nite causal order of the quantum channels allows us to always
enable a perfect entanglement-assisted classical communica-
tion over two partially entanglement-breaking channels.

3) Quantum Depolarizing Channels: Let us now consider
two quantum depolarizing channels. For the first quantum
channel, we have the following description:

D(ρ) = (1 − p)ρ+
p

3
(XρX + Y ρY + ZρZ) , (44)

where the Kraus operators are given by D1 =
√

1 − pI ,
D2 =

√
p
3X , D3 =

√
p
3Y , and D4 =

√
p
3Z . Similarly, for

the second quantum channel, we have

E(ρ) = (1 − q)ρ+
q

3
(XρX + Y ρY + ZρZ) , (45)

where the Kraus operators are given by E1 =
√

1 − qI ,
E2 =

√
q
3X , E3 =

√
q
3Y , and E4 =

√
q
3Z . Based on the

Kraus operators of the quantum depolarizing channels of (44)
and (45) and based on the formulation of Kraus operators for
classical trajectory of (22), we arrive at the following corollary.

Corollary 5: The entanglement-assisted classical communi-
cation capacity CE,C of two quantum depolarizing channels
over classical trajectory is given by

CE,C = 2 +
(

1 − p− q +
4pq
3

)
log2

(
1 − p− q +

4pq
3

)
+

(
p+ q − 4pq

3

)
log2

(
3p+ 3q − 4pq

9

)
. (46)
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Fig. 9. (a) The entanglement-assisted classical capacity gain of partially entanglement-breaking channels over quantum trajectory against classical trajectory.
(b) The violation of bottleneck capacity due to the indefinite causal order of quantum channels.

Proof: By substituting p0 = q0 = 1− p, p1 = p2 = p3 =
q1 = q2 = q3 = p/3, into (30) of Proposition 1, we obtain the
result in (46).
Similarly, based on the formulation of Kraus operators for
quantum trajectory of (25), we also arrive at the following
corollary.

Corollary 6: The entanglement-assisted classical communi-
cation capacity CE,Q of two quantum depolarizing channels
over quantum trajectory is given by

CE,Q = 2 +H(α)

+
(

1−p−q +
4pq
3

)
log2

(
1−p−q +

4pq
3

)
+ (p+ q − 2pq) log2

(
p+q−2pq

3

)
+

2pq
3

log2

2pq
9
,

(47)

where α = p|+〉 = 1 − 2pq/3.
Proof: By substituting p0 = 1−p, q0 = 1− q, p1 = p2 =

p3 = p/3, q1 = q2 = q3 = q/3, into (31) of Proposition 2,
we obtain the result in (47).

As a special case, we portray the entanglement-assisted
capacity of (46) and (47) in a scenario where we have p = q
in Fig. 10. In Subsection V-A.1 and V-A.2, the bottleneck
capacities are always strictly positive. Instead, here we have
a condition where we have a zero-capacity at p = 0.75.
At this point, we have the so-called fully-depolarizing quantum
channel, which we have mentioned briefly in Section III-C.
It means that no classical information can be sent by the means
of entanglement-assisted classical communication through the
individual quantum channel. Clearly, this is also the case for
the classical trajectory since it cannot violate the bottleneck
capacity. Interestingly, observe in Fig. 10 that we have a
non-zero capacity for entanglement-assisted communication
utilizing two fully-depolarizing quantum channels over quan-
tum trajectory. More specifically, we have CE,Q = 0.204 for

Fig. 10. The entanglement-assisted classical communication capacity for
two identical quantum depolarizing channels. The plots are based on (46)
and (47).

p = 0.75. The ability to enable a non-zero capacity com-
munication using two zero-capacity quantum channels over
quantum trajectory is referred to as the causal activation [18],
[21], [22], [24].

Remark 7: The entanglement-assisted classical communi-
cation capacity over quantum trajectory is always strictly
positive, which means that we can always send classical
information through quantum channels even when we cannot
send any classical information through the individual quantum
channel.

We portray the capacity gain for two quantum depolarizing
channels over quantum trajectory in Fig. 11(a), while the
bottleneck violation in Fig. 11(b). Observe that based on the
color map in Fig. 11(a), the capacity gain gleaned at range
values of 0 < p, q < 1 are relatively modest compared to that
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Fig. 11. (a) The entanglement-assisted classical capacity gain of two quantum depolarizing channels over quantum trajectory against classical trajectory.
(b) The violation of bottleneck capacity due to the indefinite causal order of quantum channels.

of bit-flip and phase-flip quantum channels. The capacity gain
are more prominent in the region of 0.5 ≤ p, q ≤ 1 denoted
by the light blue to dark red color area. The maximum gain
observed is G = 0.918, which is attained for the value of
(p, q) = (1, 1). In Fig. 11(b), we also observe modest violation
of bottleneck capacity. Nonetheless, the bottleneck violation
can be observed for a wide range of p and q values. The
maximum violation observed is V = 0.528, which is also
attained for the value of (p, q) = (1, 1).

Remark 8: The quantum trajectory, which leads to indefi-
nite causal order of quantum channels, enables the violation of
bottleneck capacity, implying that the phenomenon inducing
this violation cannot be obtained by any process exhibiting a
well-defined causal order.

B. Quantum Communication Capacity

In the previous subsections, we have provided a thorough
analysis on the entanglement-assisted classical communication
capacity via classical and quantum trajectories. In this section,
we extend the analysis to the entanglement-assisted quantum
communication. In [44] and [45], the relationship between
the entanglement-assisted capacity of classical communication
(CE) and that of quantum capacity (QE) is readily given by

QE =
CE

2
, (48)

based on quantum superdense coding versus quantum tele-
portation trade-off, which dictates that a pair of pre-shared
maximally-entangled quantum state and a single use of quan-
tum channel N (·) can be exchanged for a single qubit or two
classical bits. Consequently, by exploiting (48), the results
in Proposition 1 and 2 for entanglement-assisted classical
communication over classical and quantum trajectories can
be extended directly to the entanglement-assisted quantum
communications as shown in the following corollaries.

Fig. 12. The capacity of quantum communication for the combination of
bit-flip and phase-flip quantum channels.

Corollary 7: The entanglement-assisted quantum commu-
nication capacity QE,Q of the two arbitrary quantum Pauli
channels of (28) and (29) over classical trajectory is given
by

QE,C =
CE,C

2
= 1 +

1
2

[A0 log2A0 +A1 log2A1

+ A2 log2A2 +A3 log2A3] . (49)

Proof: The proof follows directly by accounting for
Proposition 1 and (48).

Corollary 8: The entanglement-assisted quantum commu-
nication capacity QE,Q of the two arbitrary quantum
Pauli channels of (28) and (29) over quantum trajectory
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Fig. 13. (a) The entanglement-assisted quantum capacity gain of the bit-flip and phase-flip quantum channels over quantum trajectory against classical
trajectory. (b) The violation of bottleneck capacity due to the indefinite causal order of quantum channels.

is given by

QE,Q =
CE,Q

2
= 1 +

1
2

[
H(α) +A0 log2A0 +A+

1 log2A
+
1

+ A+
2 log2A

+
2 +A+

3 log2A
+
3 +A−

1 log2A
−
1

+ A−
2 log2A

−
2 +A−

3 log2A
−
3

]
. (50)

Proof: The proof follows directly by accounting for
Proposition 2 and (48).

It may be interesting to see the relationship between the
capacity bounds of quantum communication via quantum
trajectory presented in [23] to the results presented here. Let
us take the example of bit-flip and phase flip quantum channels
of (32) and (33). Based on (50) in Corollary 8, we obtain the
entanglement-assisted quantum communication capacity QE,Q

of the bit-flip and phase-flip quantum channels over quantum
trajectory as follows:

QE,Q = 1 +
1
2

[
H(α) + (1 − p)2 log2(1 − p)2

+ (2p− 2p2) log2(p− p2) + p2 log2 p
2
]
, (51)

for p = q, where α = 1− p2. Meanwhile, the lower bound of
the quantum communication capacity over quantum trajectory
is given by [23]

QLB = p2 + max{0, 1− p2 − 2H(p) +H(p2)}. (52)

This lower bound is obtained from the entropy measure of
the quantum Pauli channels, which represents the capacity of
unassisted quantum communication [47], [48]. By contrast,
quantum communication capacity over quantum trajectory is
upper-bounded by the capacity of two-way entanglement-
assisted quantum communication [49]. In case of bit-flip and
phase-flip quantum channels, this upper bound is given by [23]

QUB = 1 − [(1 − p)H(p)] , (53)

which is obtained from the relative entropy of entanglement
of the Choi matrix [49].

We plot the entanglement-assisted capacity of (51) and
the corresponding quantum communication capacity bounds
of (52) and (53) in Fig. 12. Again, we include the bottleneck
entanglement-assisted quantum communication capacity of the
bit-flip and phase-flip quantum channels, which is given by

QE,B = 1 − H(p)
2

, (54)

for p = q. The result presented in Fig. 12 suggests the confir-
mation of the following relationship between various capac-
ities of quantum communication over quantum trajectory:
QLB ≤ QE,Q ≤ QUB . Additionally, the violation of bottleneck
capacity for entanglement-assisted quantum communication
can be observed within the range of 0.618 < p < 1.

Following the same line of investigation presented for
entanglement-assisted classical communication, here we also
provide the results of capacity gain and bottleneck violation of
entanglement-assisted quantum communication over quantum
trajectory. More specifically, let us observe Fig. 13. We plot the
capacity gain for the bit-flip and phase-flip quantum channels
over quantum trajectory in Fig. 13(a) and the bottleneck
violation in Fig. 13(b). We can observe in Fig. 13(a) that we
obtain the capacity gain at all range values of 0 < p, q < 1.
Similar to the results for entanglement-assisted classical com-
munication, the capacity gain is more profound in the region
of 0.2 ≤ p, q ≤ 1 portrayed by the dark red color area. The
maximum gain observed is G = 0.5, which is attained for the
values of (p, q) satisfying pq = 0.5 for p, q ≤ 1. Notice that
the maximum gain attained in entanglement-assisted quantum
communication is half of its classical counterpart due to the
trade-off of (48). In Fig. 13(b), we observe that the violation
of bottleneck capacity occurs in the region of p + q ≥ 1 for
p, q ≤ 1 with the maximum violation observed is V = 0.5,
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which is attained for the values of (p, q) = (0.5, 1) and
(p, q) = (1, 0.5). This can be verified directly since the
bottleneck capacities for (p, q) = (0.5, 1) and (p, q) =
(1, 0.5) are given by QE,B = 0.5. Meanwhile, for the values
(p, q) = (0.5, 1) and (p, q) = (1, 0.5), we have QE,Q = 1,
which means we can achieve a perfect entanglement-assisted
quantum communication over quantum trajectory.

To conclude this section, we would like to highlight some
potential practical advantages that may be gained based on the
resultant G and V gleaned from the indefinite causal order of
the quantum channels. As an instance, in the area of quantum
error-correction codes, the capacity gain may be utilized for
improving the quantum coding rate or the quantum bit error
ratio of the designed codes for mitigating the quantum errors
imposed by the quantum Pauli channels. Another prospective
application may be constituted by quantum-secure direct-
communication, where the indefinite causal order of the quan-
tum channels can be utilized for increasing the transmission
rate. Finally, the resultant capacity gain may also be used for
increasing the fidelity of a remote two-qubit quantum gate in
a distributed quantum computing framework. However, it is
important to note that the application aspect of the quantum
configuration resulting in indefinite causal order within the
quantum communication framework is still in its infancy and
thus, further investigation is mandatory. It is also crucial to
underline that the motivation for studying the advantage of the
indefinite causal order is not directly a practical one, since such
motivation is related to explore how the theory of quantum
communication – as we know it – would be affected by the
possibility of combining quantum channels in a superposition
of causal orders, as clarified in [18].

VI. CONCLUSION AND FUTURE WORKS

In this contribution, we have presented the general formula-
tion of both entanglement-assisted classical and quantum com-
munication capacities over quantum trajectory. Our analysis
included several examples from the family of quantum Pauli
channels. Furthermore, we have explicitly portrayed the region
in which the indefinite causal structure of quantum channels
violate the bottleneck capacity constraining the capacity of
quantum channels with a definite causal structure. Addition-
ally, for two fully-depolarizing quantum channels, we have
witnessed the causal activation of the zero capacity quantum
channels induced by quantum trajectory.

For our next works, we may consider extending our analysis
for more than two quantum channels [63]–[66]. In this treatise,
the control qubit ω exhibits only one degree of freedom and
therefore only one superposition of two classical trajectories
can be included. When the number of quantum channels
increases (N > 2), we can no longer use a qubit as our control
qubit ω, but a qudit with d quantum level. The critical point
arising from this scenario is the ultimate or asymptotic limit of
capacity gain can be attained by exploiting indefinite causal
order of infinitely many quantum channels. Finally, we are
also interested in investigating the effect of the indefinite
causal order of quantum channels in a more realistic scenario
of quantum superdense coding, where the quantum channels

affect both the forward and backward communication between
A and B [67].

APPENDIX A
PROOF OF PROPOSITION 1

Let us consider two quantum Pauli channels D(·) and E(·).
By substituting the Kraus operators description of quantum
Pauli channels, into the Kraus operators formulation for clas-
sical trajectory given in (22), we obtain the resultant quantum
channel S(·) as follows:

S(D, E)(ρ) = (p0q0 + p1q1 + p2q2 + p3q3)ρ

+ (p0q1 + p1q0 + p2q3 + p3q2)XρX

+ (p0q2 + p2q0 + p3q1 + p1q3)Y ρY

+ (p0q3 + p3q0 + p1q2 + p2q1)ZρZ. (55)

Based on the resultant quantum channel S(·) of (55),
we obtain the following transition probability:

p(yi|x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p0q0 + p1q1 + p2q2 + p3q3, for i = 0

p0q1 + p1q0 + p2q3 + p3q2, for i = 1

p0q2 + p2q0 + p3q1 + p1q3, for i = 2

p0q3 + p3q0 + p1q2 + p2q1, for i = 3.

(56)

Substituting the transition probability of (56) into (12),
we obtain the entanglement-assisted classical capacity over
classical trajectory of (30) presented in Proposition 1. Hence,
we complete our proof.

APPENDIX B
PROOF OF PROPOSITION 2

By substituting the Kraus operators description of quantum
Pauli channels, into the Kraus operators formulation for quan-
tum trajectory given in (25), we obtain the resultant channel
Sω(·) as follows:

S(D, E)ω(ρ) =
[
(p0q0 + p1q1 + p2q2 + p3q3)ρ

+ (p0q1 + p1q0)XρX + (p0q2 + p2q0)Y ρY

+ (p0q3 + p3q0)ZρZ
] ⊗ |+� �+|

+
[
(p2q3 + p3q2)XρX + (p3q1 + p1q3)Y ρY

+ (p1q2 + p2q1)ZρZ
] ⊗ |−� �−| . (57)

Observe that we may measure the control qubit ω in the
Hadamard basis {|+� �+| , |−� �−|}. The measurement of the
control qubit ω collapses the resultant channel Sω(·) into either
S|+〉(·) or S|−〉(·) depending on the result. Let us denote p|+〉
as the probability of measuring the control qubit in |+� �+|
state and p|−〉 as the probability of measuring the control qubit
in |−� �−| state. Therefore, the entanglement-assisted classical
communication capacity CE,Q over quantum trajectory can be
generalized as

CE,Q = p|+〉CE(S|+〉) + p|−〉CE(S|−〉), (58)

where CE(S|+〉) and CE(S|−〉) are the capacity of quantum
channel S|+〉(·) and quantum channel S|−〉(·), respectively.
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Explicitly, based on (57), we measure ω = |+� �+| with a
probability of p|+〉 = p0 q0 + p1 q1 + p2 q2 + p3 q3 + p0 q1 +
p1 q0 + p0 q2 + p2 q0 + p0 q3 + p3 q0, which consequently
collapses the resultant channel Sω(·) to

S|+〉(D, E)(ρ) =
1
p|+〉

[
(p0q0 + p1q1 + p2q2 + p3q3)ρ

+ (p0q1 + p1q0)XρX + (p0q2 + p2q0)Y ρY
+ (p0q3 + p3q0)ZρZ

]
. (59)

By contrast, we measure ω = |−� �−| with a probability of
p|−〉 = p2 q3 + p3 q2 + p3 q1 + p1 q3 + p1 q2 + p2 q1, which
consequently collapses the resultant channel Sω(·) to

S|−〉(D, E)(ρ) =
1
p|−〉

[
(p2q3 + p3q2)XρX

+ (p3q1 + p1q3)Y ρY +(p1q2+p2q1)ZρZ
]
.

(60)

Based on (59) and (60), we can devise the transition prob-
ability p(yi|x) and determine the capacity of CE(S|+〉) and
CE(S|−〉) accordingly. Substituting them into (58), we obtain
the entanglement-assisted classical communication capacity of
quantum two quantum Pauli channels over quantum trajectory
of (31) presented in Proposition 2. Hence, we complete our
proof.
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