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Abstract—In the Quantum Internet, multipartite entanglement
enables a rich and dynamic overlay topology, referred to as
artificial topology, upon the physical one, that can be exploited
for communication purposes. In fact, the ability to extract n-
qubits GHZ states and EPR pairs from the original multipartite
entangled state constitutes the resource primitives for end-to-
end and on-demand quantum communications. Thus, in this
paper, we theoretically determine upper and lower bounds for
the number of extractable n-qubits GHZ states and EPR pairs
involving nodes remote in the artificial topology, as well as the
achievable size n of remote GHZ states. The theoretical analysis
is then complemented by the proposal of a novel algorithm,
which provides in polynomial-time a heuristic solution to the
above problem. This is remarkable, since the theoretical problem
is NP-complete. The performance analysis demonstrates the
proposed algorithm is able to effectively manipulate the original
and arbitrary graph state for extracting entanglement resources
across remote nodes.

Index Terms—Multipartite Entanglement, Entanglement-
Enabled Connectivity, Network Connectivity, Quantum Net-
works, Quantum Communications, Quantum Internet

I. INTRODUCTION

ENTANGLEMENT shared between more than two par-
ties, known as multipartite entanglement, represents a

powerful resource for quantum networks [2]–[10]. It enables
a new form of connectivity, referred to as entanglement-
enabled connectivity [2], [5], which augments the physical
topology with virtual links, activated by the entanglement, and
referred to as artificial links, between pairs of nodes, remote
in the physical topology1, without any additional physical link
deployment. Thus, multipartite entanglement enables a richer,
dynamic overlay topology, referred to as artificial topology,
upon the physical one. And this artificial topology can be
properly manipulated to account for the dynamics of the node
communication needs [12]–[14].

Most of the literature on multipartite entanglement manip-
ulation usually aims at extracting from the initial multipartite
state a certain amount, say k, of shared EPR pairs. These
k EPR pairs can be subsequently exploited for the parallel
“transmission” of k informational qubits, by adopting the
quantum teleportation protocol [15]. It is worthwhile to note
that the identities of the nodes involved in the k disjoint
pairs are fixed, with no possibility of changing them to time-
varying communication needs. Differently, the manipulation
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1It is worth noting that, in agreement with current quantum technology
Technology Readiness Level (TRL), the physical network topology is gener-
ally sparse. Thus, it heavily limits the node communication capabilities [11].

of an artificial topology for extracting GHZ states [16]–[19]
overcomes the above constraint. Specifically, a GHZ state –
key for various quantum communication protocols [20]–[24]
– represents, from a communication perspective, an artificial
subnet, extracted among a certain number of nodes, starting
from the original multipartite state. And the rationale for
defining a GHZ as subnet rather than link is that it enables
the dynamic extraction of an EPR pair between any pair
of nodes sharing the original GHZ state. Remarkably, this
extraction can happen at run-time, depending on the actual
node communication needs. From the above it follows that
nodes belonging to an artificial subnet exhibit an entanglement
proximity, i.e. a distance in terms of entanglement hops, equal
to one.

In this context, it is key to observe that having a fully-
connected artificial topology among all the network nodes is
not reasonable, due the challenges related to (and the complex
equipment necessary for) the generation and the control of a
high-order multipartite state. Hence, it is more practical and
reasonable to assume the presence of nodes that are remote
even in the artificial topology. In the remaining part of this
work, we focus on this type of nodes, since remote nodes in the
artificial topology face reduced communication opportunities
compared to nodes already interconnected. As a consequence,
artificially interconnecting this type of nodes, not only assures
network fairness, but also constitutes a communication primi-
tive for end-to-end and on-demand communications [25]–[29].

Additionally, it is key to observe that the entanglement
extraction capabilities of a certain multipartite state heavily
depend on the features of this selected state [30]. The original
state also affects whether the extractions happen deterministic
or probabilistic [5]. Thus, the choice of the initial multipartite
state is a key network design choice. A notable class of multi-
partite entangled states is the two-colorable graph state class
[31], modeling important communication network topologies,
such as grid, star, bistar, linear, even loop, butterfly, cluster
networks [12], [13], [29], [32]–[37].

With the above in mind, in this paper we assess the extrac-
tion capability of a generic graph state, in terms of “volume”,
“mass” and “location”2 of GHZ states and EPR pairs, shared
among nodes remote in the original artificial topology. And
we refer to the aforementioned remote extraction capability for
GHZ and EPR states as remote Gability and remote Pairability,
respectively. In a nutshell, we:

• quantify the volume of ultimate links via lower bounds,
by assessing the extraction EPR capabilities starting from
an arbitrary two-colorable graph state;

2We collected and summarized the terms widely exploited in the remaining
part of the manuscript in Tab. I.
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TABLE I: Adopted terms in entanglement-enabled connectivity domain

Terms Interpretations

Artificial topology A virtual network topology, built upon the physical topology, and associated with a certain multipartite
entanglement state.

Artificial link A virtual link, pictorially visualized as an edge between two nodes connected in an artificial topology, corresponds
to a CZ interaction between the qubits and denotes the “possibility” of extracting an EPR pair between the two
considered nodes. Thus, artificial link and EPR are not synonymous.

Artificial subnet A virtual subnet, pictorially visualized as a fully connected subgraph in an artificial topology, corresponds to the
“possibility” of extracting a GHZ state among the involved nodes.

(Artificial) remote nodes Non-adjacent nodes in the artificial topology that are not directly connected by an artificial link (Def. 1).
(Artificial) remote subnet An artificial subnet formed by an independent set of nodes in an artificial topology.
Ultimate artificial links The actual EPR pairs extracted from the original multipartite state.
Ultimate artificial subnets The actual GHZ states extracted from the original multipartite state.
Location The location of an (ultimate) artificial link/subnet refers to the identities of the interconnected nodes.
Volume The volume of (ultimate) artificial link/subnet refers to the number of EPR pairs / GHZ states that can be

simultaneously extracted from a given multipartite state. This volume heavily depends on the type and structure
of the considered multipartite state, and some of the artificial links are depleted during the extraction process.

Mass The mass of an (ultimate) artificial subnet refers to the number of interconnected nodes.

• quantify both volume and mass of ultimate subnets via
lower bounds, by assessing the n-qubit GHZ extraction
capabilities for any size n;

• quantify the remote Pairability and n-Gability volumes
also via theoretical upper bounds.

The theoretical analysis is then complemented by the pro-
posal of a novel algorithm, which provides in polynomial-time
a heuristic solution to the above problem. This is remarkable,
since the theoretical problem is NP-complete, as better high-
lighted in the following subsection.

The rest of this manuscript is organized as follows. In Sec. II
we first provide the reader with a formal definition of the
research problem, along with an overview of the main results
derived in the manuscript. In Sec. III, we first present some
preliminaries, and then we derive constructive conditions for
both the remote Gability and remote Pairability. In Sec. IV, we
present the proposed polynomial-time algorithm along with its
complexity analysis. In Sec. V, we evaluate the tightness of
the constructive derived bounds with respect to general and
bipartite graph states.

A. Related Work And Contribution

In [38], it has been shown that the computational complexity
of extracting Bell pairs from graph states is NP-complete. And
in the same paper, the authors refer to this problem as Bell-VM
[38]. Research in this area [33]–[35], [38], [39] has potential
applications in point-to-point quantum communication proto-
cols, where the extracted k Bell pairs can be used for the
parallel transmission of k informational qubits via teleporting
protocol. In particular, in [35], it is showed that N -qubit CSS
state can extract k pairs of EPR between k disjoint parties, with
k proportional to logN . Extending this idea, [39] determines
two families of k-vertex-minor universal graphs based on two-
colorable graph states, starting from a N = O(k4)-qubit
resource state. Similarly, [33] proposes the Zipper-protocol,
enabling the extraction of multiple EPR pairs from a 2D
cluster state along the diagonal direction. In contrast, the X-
protocol in [34] extracts EPR pairs at predetermined locations

(a) Initial artificial topology

(b) Vanilla Pairability (c) Remote Pairability

(d) Vanilla Gability (e) Remote Gability
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Fig. 1: Remote vs Vanilla Pairability and Gability for a 5-qubit
linear graph state. (a) The initial artificial topology is a 5-qubit
linear graph state. (b) Vanilla Pairability allows extraction
of up to two EPR pairs from (a). (c) Remote Pairability
enables extraction of only one EPR pair between remote nodes
from (a). (d) Vanilla Gability permits extraction of a maximal
4-qubit GHZ state from (a). (e) Remote Gability supports
extraction of a maximal 3-qubit GHZ state among remote
nodes, corresponding to the maximum independent set in (a).

while somehow preserving part of the entanglement among
remaining qubits.

A related line of research focuses on determining whether
a GHZ state can be extracted from a given graph state,
by using only local Clifford (LC) operations, local Pauli
measurements (LPM), and classical communication (CC). This
problem has also been proven to be NP-complete [40]. For
ease of reference, we refer to the aforementioned problem
as GHZ-VM problem. Although the GHZ-VM problem [16]–
[19] concerns the extraction of a single GHZ state, it offers
a significant advantage over the Bell-VM formulation, since
it inherently supports adaptability to the traffic requests. In
fact, as mentioned above, a GHZ state allows the dynamic
extraction of an EPR pair between any pair of nodes sharing
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the original GHZ state. And, notably, this extraction can occur
at runtime, driven by the actual and potentially time-varying
communication needs of the nodes.

It should be emphasized that the existing Bell-VM and
GHZ-VM studies lie within the so-called vanilla extractions,
as represented in Fig. 1. Specifically, there exists a subtle but
key difference between remote and vanilla Gability/Pairability.
In fact, in the latter, the extraction is performed regardless of
the nodes proximity within the artificial topology. This in turn
simplifies the problem with respect to constrain the extraction
among nodes that are remote in the artificial topology.

Accordingly, in this paper, we extend the Bell-VM and
GHZ-VM approaches to a deeper problem, referred to as
Remote-VM problem, by determining the number of n-qubit
GHZ states and Bell pairs, as well as the mass of GHZ that can
be currently extracted among remote nodes of a given graph
state, by using only single-qubit Clifford operations, single-
qubit Pauli measurements, and classical communication.

The difference between Remote-VM, existing Bell-VM and
GHZ-VM is pictorially represented in Fig. 2. Specifically,
while both Bell-VM and GHZ-VM are existential decision
problems (determining whether a resource state can be ex-
tracted), the Remote-VM problem belong to the counting
problem class. Thus, it not only resolve the existence, but
also determine the exact extractable resources. It is important
to note that Bell-VM and GHZ-VM have been proved to be
NP-complete [38], [40]. Given that our problem introduces an
additional constraint on top of Bell-VM and GHZ-VM, the
Remote-VM problem is evidently at least in the NP-complete
complexity class.

More into details, the concurrent extraction of remote GHZ
states and Bell pairs is equivalent to identifying disjoint
independent sets in the original artificial topology. Leveraging
this equivalence, the Remote-VM problem is reminiscent of
the well-studied problem in the classical domain referred as
#IS problem [41], which is #P-complete even when restricted
to bipartite graphs [42], [43]. However, solving a counting
problem in the quantum domain is not only linked to the
structure of the graph, as in the classical #IS problem. Indeed
the Remote-VM problem is constrained also by the operational
limitations inherent to quantum systems. This additional con-
straint significantly increases the complexity of the problem,
although it is out of the scope of this paper to study its
complexity class.

With the above in mind, in the paper, in addition to
the theoretical contribution highlighted in the Introduction,
we also propose an heuristic solution for the NP-complete
Remote-VM problem. Specifically:

• We propose a polynomial-time algorithm for the Remote-
VM (see Sec. IV-A), by exploiting graph-theory tools and
only LC + LPM + CC.

• The algorithm facilitates the extraction of both n-qubit
GHZ states and EPR pairs among remote nodes, by
extending the extraction capabilities beyond a set of
apriori selected EPR pairs or a specific GHZ state.

• The algorithm is able to provide the three aforementioned
parameters, namely volume, locations, and maximum
mass, that rule the remote extraction.

Fig. 2: Venn diagram for the relationship between GHZ-VM,
BELL-VM and REMOTE-VM (our research problem).

• We evaluate the extractable volume for both remote
Gability and remote Pairability, as well as the maximum
mass for remote Gability, in general graph states. The
analysis is conducted on representative Internet inspired
artificial topologies and the results demonstrate their
effectiveness (see Sec. V).

To the best of our knowledge, this is the first paper
rigorously investigating the extraction of remote entangled
resources, while also providing an efficient polynomial-time
procedure for its realization.

II. RESEARCH PROBLEM

We consider the worst case scenario, where each qubit of
the graph state is distributed to each network node. And we
equivalently refer to node i or to vertex vi associated with
the qubit of the graph state |G⟩ stored at such a node. To
formally define our research problem, the following definitions
are preliminary.

Definition 1 (Remote Nodes). Given a N -qubit graph state
|G⟩ and its corresponding graph G = (V,E), two network
nodes i and j are defined as remote if the corresponding
vertices vi, vj are non-adjacent in G, i.e., if3:

(vi, vj) ̸∈ E. (1)

Throughout this paper, the notions of “remoteness” and its
counterpart, adjacency, do not refer to the physical prox-
imity of network nodes. Instead, they describe “entangled
proximity”, that is, proximity within the artificial topology
associated with the graph G [2], [12]. Indeed, the presence of
an edge within two vertices in G represents an Ising interaction
between the corresponding qubits of the graph state [44],
[45]. As a direct consequence of a graph state definition, it
is evident that the graph associated to the graph state is a
connected graph, meaning that a vertex is at least connected
with another vertex. Two nodes are considered remote if they
are not adjacent in this artificial topology. A subset of remote

3In the following, with a small notation abuse, we denote un-directed
edges as (vi, vj) – rather than with angle brackets as {vi, vj} – for notation
simplicity.
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nodes is referred to “Remote Subnet”, as formally defined in
Def. 2.

Definition 2 (Remote Subnet). Given a N -qubit graph state
|G⟩ and its corresponding graph G = (V,E), a subset of
network nodes Ṽ ⊂ V is defined as remote subnet if the
following condition holds:

∀ vi, vj ∈ Ṽ : (vi, vj) ̸∈ E. (2)

Stemming from the previous two definitions, we can now
define the two main connectivity metrics. These two metrics
focus on the quantum communication resources, i.e., GHZs
and EPRs, that can be concurrently extracted among remote
nodes in the artificial topology.

Definition 3 (rg(n): remote n-Gability). The remote n-
Gability of an N -qubit graph state |G⟩ denotes the volume
of n-qubit GHZ states, with n ≤ N , that can be eventually
extracted among remote subnets via LC + LPM + CC opera-
tion. In the following, we denote the volume of n-qubit GHZ
states as rg(n).

From Def. 3, it results that when it comes to GHZ states,
there exist two dimensions that we must account for: the
volume, similarly to EPRs, and the mass of each extracted
GHZ, namely, the size of the GHZ in terms of qubit number.
These two dimensions map into the number of the artificial
subnets that can be simultaneously extracted from the initial
graph |G⟩, and into the number of interconnected nodes in
each subnet. The third dimension, namely location, is essential
for both remote Pairability and n-Gability. Specifically, it plays
a critical role in leveraging entangled resources by enabling the
unambiguous identification of the participating nodes within
the quantum states.

Remark. Since an EPR pair is a special case of a GHZ state
with two qubits, the case of rg(2) is essentially a special
instance of remote n-Gability. We refer to this as remote
Pairability, which is formally defined in Def. 4.

Definition 4 (re: remote Pairability). The remote Pairability
of an N -qubit graph state |G⟩ denotes the volume of EPR
pairs that can be eventually extracted between remote nodes
via LC + LPM + CC operation. In the following, we denote
the volume of EPRs as re, by omitting the dependence on |G⟩
for the sake of notation brevity.

It is worthwhile to mention that solving the Gability prob-
lem is more difficult than solving the Pairability problem, and
the following inequality holds for the volume whenever n > 2:

rg(n) ≤ rg(n− 1) ≤ rg(2)
△
= re (3)

Stemming from the concept of remote n-Gability and
Pairability in Defs. 3 and 4, we can now formally define our
research problem.

Research Problem (Remote-VM problem). Given a graph
state |G⟩ distributed across the network nodes, we determine
the volume, location and maximum mass of n-qubit GHZ
states and EPR pairs, extractable among remote nodes, by

Fig. 3: Pictorial representation of the research problem. (a)
The initial 25-qubit bipartite graph state |G⟩. The goal is to
constructively address the Remote-VM problem: determining
the bound for the volume of extractions can be performed si-
multaneously from |G⟩, and the bound for the maximum mass
of remote GHZ states that can be extracted, and identifying
(location) the remote nodes involved in these extractions. (b)
A solution to the Remote Pairability problem, identifying pairs
of remote nodes that can be entangled. (c–d) Examples for the
Remote n-Gability problem, with n = 3, 4. (e) Extraction of
a 15-qubit remote GHZ state, representing the lower bound
of maximum achievable mass of a remote GHZ state from
the initial graph. (f) Illustration of diverse extracted remote
resources obtained from |G⟩.

using only single-qubit Clifford operations, single-qubit Pauli
measurements and classical communications.

As aforementioned, this problem is NP-complete. Thus, we
theoretically derive bounds for remote pairing and n-ability for
an arbitrary graph state. Specifically, our goal is to determine
bounds for:

i) the volume rg(n) for any value of n, as well as the
locations of the remote nodes eventually sharing the GHZ
states;

ii) the mass of the remote n-Gability;
iii) and the volume re of the remote Pairability, as well as

the locations of the remote nodes eventually sharing the
EPR pairs.

We underline that the derived lower bounds are far from
being only theoretical, since they are derived by individuating
the locations of the nodes that share the extracted EPRs/GHZs.
Hence, these bounds are constructive in the sense that not
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only they determine whether a solution exists, but they also
construct the solution explicitly.

In Fig. 3, we provide a pictorial representation of the
formulated research problem to better grasp the implications
of the remote extractions from a network perspective.

III. REMOTE PAIRABILITY AND REMOTE n-GABILITY

Here, we first provide some preliminaries in Sec. III-A.
Then, in Sec. III-B we derive the remote extraction conditions
for both remote n-Gability and Pairabilty for two-colorable
graph state |G⟩, in Lemmas 1 and 2, respectively. And we
also provide the bound for maximum mass nmax for remote
G-ability in Lemma 3.

A. Preliminaries

We first introduce several fundamental definitions from
graph theory, including the concepts of maximum degree and
maximum independent set. These metrics play a crucial role in
characterizing entangled proximity in artificial topologies and
directly influence the achievable n-Gability and Pairability in
the Remote-VM problem.

Definition 5 (Maximum degree). The maximum degree of a
graph G = (V,E), denoted by ∆(G), is the largest degree of
any vertex in V :

∆(G) = max{deg(v) | v ∈ V } (4)

with deg(v) is the number of neighbors of vertex v in G.

Definition 6 (Maximum Independent set). A maximum
independent set is the independent set of largest size for a
given graph G. This size is called the independence number
of G, denoted by α(G).

Remark. Remote n-Gability relies on identifying independent
sets of size n in the artificial topology, as each of such sets
may enable the extraction of a remote n-qubit GHZ state.
The larger is the independent set permitted by the artificial
topology, the greater is the mass of the extracted remote GHZ
state. As a result, the size α(G) of the maximum independent
set determines the theoretical upper bound for the mass of a
remote GHZ states.

As aforementioned, we focus on two-colorable4 graph
states. This choice is not restrictive, since any graph state can
be converted in a two-colorable one under relaxed conditions
[30], [46]. Furthermore, two-colorable graphs model a wide
range of important communication network topologies, such
as butterfly, bistar, tree, linear, even loop, grid, star, cluster net-
works, highly exploited in entanglement-based communication
protocols [12], [13], [29], [32]–[37]. In addition, two-colorable
graph states are local-unitary (LU) equivalent to Calderbank-
Shor-Steane (CSS) states, which are important in quantum
error correction strategies [47]–[49]. Formally, we have the
following definition.

4In principle, coloring assigns colors to arbitrary elements of a graph
according to arbitrary partition constrains. In the following, we adopt the
most widely-used partition constraint based on vertex adjacency, since other
coloring problems can be easily transformed into a vertex coloring problem.

Definition 7 (Two-colorable Graph or Bipartite Graph).
A graph G = (V,E) is two-colorable if the set of vertices
V can be partitioned into two subsets {P1, P2} so that there
exist no edge in E between two vertices belonging to the same
subset. Two-colorable graph G = (V,E) can be also denoted
as G = (P1, P2, E).

Definition 8 (Star vertex). Given a two-colorable graph G =
(P1, P2, E), the vertex vi belonging to partition Pi is defined
as star vertex if its neighborhood N(vi) coincides with the
opposite partition Pj

△
= V \ Pi, i.e.,:

N(vi)
△
=

{
vj ∈ V : (vi, vj) ∈ E

}
≡ V \ Pi

△
= Pj . (5)

Remark. We underline that our definition of star vertex is
not the common one used in graph theory, where a star vertex
denotes a vertex connected to all the other vertices in V .
In fact, our definition is related to the vertex partitioning,
and thus, our star vertex undergoes the coloring constraint.
Consequently, the star vertex is not connected to the vertices
belonging to its own partition.

In the following, for the sake of notation simplicity, we
denoted with S1 ⊆ P1 and S2 ⊆ P2 the set of star vertices in
the two partitions, i.e.:

S1 =
{
vi ∈ P1 : N(vi) = P2

}
, (6)

S2 =
{
vj ∈ P2 : N(vj) = P1

}
, (7)

and, accordingly, by denoting the remaining vertices, i.e.
non-star vertices, in each partition as V1 and V2, we can
adopt the following labeling for the two-colorable graph
G = (P1, P2, E):

P1 = S1 ∪ V1 (8)

with S1 = {s11, · · · , s
k1
1 } ∧ V1 = {v11 , · · · , v

n1
1 },

P2 = S2 ∪ V2 (9)

with S2 = {s12, · · · , s
k2
2 } ∧ V2 = {v12 , · · · , v

n2
2 },

with |P1| = n1 + k1 and |P2| = n2 + k2.

Definition 9 (Opposite Remote-Set). Given a two-colorable
graph G = (P1, P2, E), the opposite remote set of the arbitrary
vertex vi ∈ Pi, with i ∈ {1, 2}, is the set N(vi) of remote
vertices of vi belonging to the other partition:

N(vi)
△
=

{
vj ∈ Pj ̸= Pi : (vi, vj) ̸∈ E

}
. (10)

The term “opposite” in Def. 9 is used to highlight that
the remote nodes belong to different partitions. This will
be exploited in the next sections for carrying the theoretical
analysis. Clearly, vertices belonging to the same partition are
remote per se, as a consequence of the two-colorable graph
state definition. The concept of the opposite remote set can be
extended from individual vertices to subsets of vertices within
the same partition. For any subset A ⊆ Pi, the union and
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· · ·

· · ·

s11

vi1

vj1

s12

N(vi1)

N(vj1)

(a)

· · ·

· · ·

· · ·

s11

vi1

vj1

s12

N(vi1) \N∩(Bg)

N(vj1) \N∩(Bg)

N∩(Bg)

(b)

Fig. 4: Pictorial representation for the conditions of Lemmas 1
and 2. Dashed lines denote opposite remote sets (Def.9), where
a dashed line from a vertex to a set of vertices in squared
parentheses indicates remote subnets. (a) In G, vertices vi1
and vj1 in V1 satisfy (15), so Ag = {vi1, v

j
1} by Lem.1. (b) In

G, vi1 and vj1 in V1 satisfy (20), so Bg = {vi1, v
j
1} by Lem. 2.

intersection opposite remote sets are defined respectively as:

N∪(A)
△
=

⋃
vi∈A

N(vi) (11)

N∩(A)
△
=

⋂
vi∈A

N(vi) (12)

B. Remote Extraction Conditions

We provide two sufficient conditions in Lem. 1 and Lem. 2
for remote n-Gability in two-colorable graph states |G⟩, where
remote Pairability is treated as the special case of n-Gability
for n = 2. And, a pictorial representation of the aforemen-
tioned conditions is given in Fig. 4.

Lemma 1 (Remote n-Gability: Condition I). Let |G⟩ be
a two-colorable graph state, with corresponding graph G =
(P1, P2, E). A sufficient condition for concurrently extracting
ṙg(n) GHZ states, each involving n qubits, is that ṙg(n)
vertices in one partition have pairwise disjoint opposite remote
sets of cardinality at least n− 1, and that there exists at least
one star vertex in each partition. Formally:

∃S1, S2 ̸= ∅,∃Ag ⊆ Vi,with |Ag| = ṙg(n) : (13)

|N(vi)| ≥ n− 1,∀vi ∈ Ag ∧
N(vi) ∩N(vj) ≡ ∅,∀vi, vj ∈ Ag, vi ̸= vj .

Proof: Please refer to App. A.

Since an EPR pair can be regarded as a degenerate case
of a GHZ state involving two qubits, the sufficient condition
in Lemma 1 with n = 2 applies directly to the concurrent
extraction of ṙg(2) EPR pairs. This result is formally stated
in Corollary 1.

Corollary 1 (Remote Pairability: Condition I). Let |G⟩ be
a two-colorable graph state, with corresponding graph G =
(P1, P2, E), and let Ag denote the set defined in (13), for
n = 2. A sufficient condition for concurrently extracting ṙg(2)
EPR pairs among remote nodes is that ṙg(2) vertices in Ag

have disjoint opposite sets of cardinality at least 1, and that
there exists at least one star vertex in each partition.

Proof: The proof follows by reasoning as in App. A for
n = 2.

Lemma 2 (Remote n-Gability: Condition II). Let |G⟩ be
a two-colorable graph state, with corresponding graph G =
(P1, P2, E). A sufficient condition for concurrently extracting
r̈g(n) n-GHZ states is that r̈g(n) vertices in one partition have
opposite remote sets that share only one unique intersection,
with each opposite remote set retaining at least (n−1) vertices
after excluding the common intersection, and that there exists
at least one star vertex in each partition. Formally:

∃S1, S2 ̸= ∅,∃!N∩(Bg), withBg ⊆ Vi and |Bg| = r̈g(n) :
(14)

|N(vi) \N∩(Bg)| ≥ n− 1,∀vi ∈ Bg ∧(
N(vi) \N∩(Bg)

)
∩
(
N(vj) \N∩(Bg)

)
≡ ∅,∀vi, vj ∈ Bg, vi ̸= vj .

with N∩(Bg) ⊂ Pj ̸= Pi defined in (12).
Proof: By removing N∩(Bg), the vertices in Bg will

satisfy Lem. 1, becoming as Ag . Please refer to App. A.

Similarly, the sufficient condition in Lemma 2 with n =
2 applies directly to the concurrent extraction of r̈g(2) EPR
pairs. This result is formally stated in Corollary 2.

Corollary 2 (Remote Pairability: Condition II). Let |G⟩ be
a two-colorable graph state, with corresponding graph G =
(P1, P2, E) and let Bg denote the set defined in (14) for n = 2.
A sufficient condition for concurrently extracting r̈g(2) EPR
pairs, is that there exist r̈g(2) vertices in Bg and that there
exists at least one star vertex in each partition.

For an arbitrary graph state, it may happen that only
one partition or no partition in |G⟩ contains star vertices.
Thus, neither Lemmas 1 nor 2 can be exploited to assess n-
Gability and pairability. Here, we work toward such an issue
by introducing additional graph manipulations, as formally
defined in Cor. 3.

Corollary 3. Let |G⟩ be a two-colorable graph state, with
corresponding graph G = (P1, P2, E), where Pj = Vj ,
namely Pj contains no star vertices. G can be reduced to
a graph G′ – vertex minor of G – characterized by a star
vertex in partition Pj , as follows:

G′ = G \N(vij) (15)

with vij ∈ Pj denoting the new star vertex.
Proof: By removing the opposite remote-set of vij , the

neighborhood N(vij) in the resulting graph G′ coincides with
Vj̄ . Hence vij becomes a star vertex in Pj according to Def. 8.

By exploiting Cor. 3, each partition of a general graph state
can be forced to contain at least one star vertex. This structural
property serves as a necessary condition for both Lemma 1
and Lemma 2. With this in mind, let us denote with Ag the
collections of sets satisfying (13), while Ãg ⊆ Ag comprises
the maximal-cardinality subsets of size ˜̇rg(n), i.e.:

Ãg = {Ãg ∈ Ag : |Ãg| = ˜̇rg(n)},with ˜̇rg(n)
△
= max

Ag∈Ag

{|Ag|}.
(16)
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Similarly Bg denotes the collections of sets satisfying (14),
while B̃g ⊆ Bg comprises the maximal-cardinality subsets of
size ˜̈rg(n), i.e.:

B̃g = {B̃g ∈ Bg : |B̃g| = ˜̈rg(n)},with ˜̈rg(n)
△
= max

Bg∈Bg

{|Bg|}.
(17)

By accounting for (16) and (17), it results that the volume
of remote n-Gability and remote Pairability for a general
two-colorable graph state are theoretically lower- and upper-
bounded as follows, respectively:

rℓTg (n)
△
= max{˜̇rg(n), ˜̈rg(n)} ≤ rg(n) ≤ ⌊

N

n
⌋, (18)

rℓTe
△
= max{˜̇rg(2), ˜̈rg(2)} ≤ rg(2) ≤ ⌊

N

2
⌋. (19)

Lemma 3 (Mass nmax). Given a N -qubit two-colorable graph
state |G⟩, with corresponding graph G = (P1, P2, E), the
highest mass nmax of an extractable GHZ state among remote
nodes satisfies the following inequality:

nℓ
max

△
= ∆(G) ≤ nmax ≤ α(G) < N. (20)

with ∆(G), α(G) given in Def. 5 and Def. 6, respectively.
Proof: Let us denote with vi ∈ G, a vertex characterized

by deg(vi) = ∆(G). Performing Pauli-y measurement on vi
yields to the extraction of a GHZ state among all the neighbors
of vi. Hence nmax is at least ∆(G). We define the constructive
lower bound of nmax to be ∆(G). The theoretical upper bound,
α(G) directly follows from the remark after Def. 6.

IV. ALGORITHM

In the previous section, we established theoretical bounds
for the volume of remote n-Gability and remote pairabilty,
arising directly from the sufficient conditions established in
Lemmas 1 and 2. However, given the computational complex-
ity of determining ˜̇rg(n), ˜̈rg(n), here we provide constructive
lower bounds for both remote n-Gability and remote Pairabil-
ity, by designing an efficient algorithm for the extraction of
remote entanglement resources. Then, in Sec. IV-B, we prove
that such an algorithm exhibits a polynomial-time complexity.

A. Algorithm Design

The proposed algorithm for remote entanglement extraction
is described in Algorithm 1, organized into three steps:

- Step 1: Approximating the maximum mass nmax of a
remote GHZ with its lower bound in (20).
Let G be the corresponding graph of |G⟩. If G does
not have at least one star vertex in a certain partition
P , then one vertex is updated as new star vertex in
partition P (Line 1-6). Then, by searching for the vertex
with maximum degree in the star set (S1 ∪ S2), we
approximate the maximum mass nmax with its lower
bound nℓ

max
△
= ∆(G), as proved in Lemma 3.

- Step 2: Computing the volume rℓg(n) of extractable re-
mote GHZ states, each of mass n.
This step is decomposed in two sequential sub-steps: Step
2.1 deriving an initial estimation r̃g(n) of the volume;

Algorithm 1 Remote Extraction(G,n)

Input: two-colorable graph G = (P1, P2, E)
Output: nℓ

max, r
ℓ
g(n),L

△ Step 1: Approximating the maximum mass nmax with
the lower bound in (20)

1: for P in (P1, P2) do:
2: if ∄vi ∈ P with N(vi) = P̄ then ▷ Partition P lacks

star vertex
3: vi ← argmaxv∈P deg(v)
4: S,G← S ∪ {vi}, G \N(vi)
5: end if ▷ Updated vi into star set S in partition P
6: end for ▷ S1(2), P1(2), V1(2) given in (6)-(9)
7: nℓ

max ← max{deg(v)
∣∣ v ∈ (S1 ∪ S2)}

△ Step 2: Computing the volume rℓg(n)

△ Step 2.1: Drive initial r̃g(n) = |Ãg| = max{|Ag|, |Bg|}
by random choosing Ag, Bg in one partition

8: Ag ← random.choice (Ag ⊆ V1 : Ag satisfy (13) in G)
9: Bg ← random.choice (Bg ⊆ V1 : Bg satisfy (14) in G)

10: if |Bg| > |Ag| then
11: G, Ãg ← G \N∩(Bg), Bg

12: else
13: G, Ãg ← G,Ag

14: end if

△ Step 2.2: Obtain rℓg(n) = |Âg| after updating Ãg to Âg

15: A, Ā2A← EXPANDA(G,n, Ãg)
16: while A ̸= ∅ do
17: if ∃vi ∈ A with |A(vi)| = 0 then
18: Ãg ← Ãg ∪ {vi} ▷ Add vi to Ãg

19: else
20: Select any vi ∈ A
21: if |Ā2A(vi)| = 0 then
22: G← G \

(
N(vi) ∩N∪(A(vi))

)
23: Ãg ← Ãg ∪ {vi} ▷ Add vi to Ãg

24: else if |Ā2A(vi)| = 1 then
25: vj ← argvi |Ā2A(vi)| = 1
26: G← G \

(
N(vi) ∩N∪(A(vi))

)
\ {vj}

27: Ãg ← (Ãg ∪ {vi}) \ {vj} ▷ Replace vj with
vi in Ãg

28: end if
29: end if
30: A, Ā2A← EXPANDA(G,n, Ãg)
31: end while
32: Âg, r

ℓ
g(n)← Ãg, |Ãg|

△ Step 3: Identifying the location L
33: L ←

{
vi 7→ N(vi)

∣∣ vi ∈ Âg

}
34: return nℓ

max, r
ℓ
g(n),L

Step 2.2 iteratively refining r̃g(n) to obtain a more precise
volume estimation rℓg(n), as detailed in the following.

– Step 2.1: Two sets Ag and Bg are randomly chosen
in G, by satisfying equations (13) and (14), respec-
tively. By comparing the cardinality of these two set,
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Function 1 ExpandA(G,n, Ãg)

1: Ā ← {vi ∈ Vi \ Ãg :
(
|N(vi)| ≥ (n− 1)

)
∧(

N(vi) ̸⊆ N∪(Ãg)
)
}

2: A,B2A, Ā2A← ∅, ∅, ∅
3: for vi ∈ Ā do
4: B2A(vi)← {vj ∈ Ãg : N(vj) ∩N(vi) ̸= ∅}
5: Ā2A(vi)← {vj ∈ Ãg : N(vj) ⊆ N(vi)}
6: end for

△ Find A(vi) from B2A(vi), which can be combined with vi
to form Bg , satisfying Lem. 2.

7: for vi ∈ B2A do
8: if |Ā2A(vi)| ≤ 1 and ∀vk ∈ B2A(vi) \
Ā2A(vi), {vi, vk} satisfies (14) in G then

9: A(vi)← B2A(vi) \ Ā2A(vi)
10: end if
11: end for
12: return A, Ā2A

an initial estimation r̃g(n) of the volume is provided:

r̃g(n) = |Ãg|
△
= max{|Ag|, |Bg|}. (21)

– Step 2.2: It consists of an iterative refinement of Ãg ,
through a stepwise expansion in lines 15 - 31, to
obtain a more granular value rℓg(n) of the extractable
volume, as illustrated pictorially in Fig. 5. This is
achieved by calling the function “ExpandA”, which
iteratively (within the WHILE loop, lines 16 - 31)
scans all the vertices not in Ãg (constituting the A
set in the function “ExpandA”) to build an expanded
set Ãg (lines 18 and 23) of higher cardinality. In
particular, Ãg is updated either by directly adding
vi ∈ A to Ãg (as depicted in Fig. 5a and 5b), or
by replacing “weaker” (in terms of opposite remote-
set) vertices in the original Ãg with vertices in A (as
depicted in Fig. 5c). At line 32, the expanded Ãg

is stored in Âg . The cardinality, rℓg(n), of the output
Âg is the final volume for the remote n-Gability, i.e.,
by accounting for (21), it results:

rℓg(n) = |Âg| ≥ |Ãg| = r̃g(n) in (21). (22)

Notably, rℓg(n) in (22) serves as constructive lower bound
for the volume of remote n-Gability.

- Step 3: Identifying the identities of the nodes involved in
the entangled resource.
The location L of the extracted entangled resources
among remote nodes is determined by mapping each node
vi in the set Âg to its opposite remote-set N(vi). In
other words, each extracted GHZ state is identified by
{vi, N(vi)}, with vi ∈ Âg .

Clearly, Alg. 1 also provides a constructive strategy for the
remote Pairability, when n = 2.

B. Algorithm Complexity Analysis

Here, we analyze the complexity of Algorithm 1. Let us
assume, without any loss in generality, that the two-colorable

(a) |A(vi)| = 0

(b) |A(vi)| ≠ 0 with |Ā2A(vi)| = 0

(c) |A(vi)| ≠ 0 with |Ā2A(vi)| = 1

Fig. 5: Pictorial representation of Step 2.2 in Algorithm 1.
Dashed lines denote opposite remote sets (Def. 9). (a) In the
WHILE loop, a vertex vi with |A(vi)| = 0 (blue brick) is
identified and added to Ãg (red bricks). (b) When no vi with
|A(vi)| = 0 exists, a vertex vi with |Ā2A(vi)| = 0 is found.
After removing N(vi)∩N∪(A(vi)) (gradient green brick with
"drop" icon), vi is added to Ãg . (c) Otherwise, a vertex vi with
|Ā2A(vi)| = 1 is found. After similar removal, vi is replaced
by Ā2A(vi), i.e., vj and added to Ãg .

graph G = (P1, P2, E) is characterized by having |P1| ≤ |P2|,
with P1 and P2 defined in (8) and (9).

Theorem 1. For any two-colorable graph state |G⟩, with cor-
responding graph G = (P1, P2, E), Algorithm 1 determines:

• a lower bound rℓg(n) of the remote n-Gability volume and
the location of the extracted n-qubit GHZ states,

• a lower bound rℓe of the remote Pairability volume and
the location of the extracted EPR pairs,

within a time complexity of O(|P1|3 ∗ |P2|).
Proof: Please refer to App. B.

Corollary 4. For any two-colorable graph state |G⟩, with cor-
responding graph G = (P1, P2, E), Algorithm 1 determines
the maximum mass nmax of an extractable GHZ state among
remote nodes with time complexity O(|P1| ∗ |P2|).

Proof: Please refer to App. B.

Remark. Our algorithm leverages graph theory tools and uses
only single-qubit Clifford operations, single-qubit Pauli mea-
surement and classical communications. Theo. 1 shows that
Alg. 1 can determine the volume and location of the vertices
involved in the extracted entangled resources in polynomial-
time. Furthermore, the maximum mass can also be obtained
in polynomial time.
It is worthwhile to emphasize that Alg. 1 computes a lower
bound on the volume of the extractable entangled resources.
By summarizing, the volume of the remote n-Gability and
remote Pairability of a general two-colorable graph state are
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Fig. 6: Remote n-Gability Performance Analysis: Average volume rℓg(n) for different graph state partitions.

Fig. 7: Remote n-Gability Performance Analysis: The average
constructive lower bound rℓg(n) of the volume against the
theoretical upper bound rug (n).

constructively bounded as follows:

rℓg(n) given in (22) ≤ rg(n) ≤ ⌊
N

n
⌋, (23)

rℓe = rℓg(2) given in (22) ≤ re ≤ ⌊
N

2
⌋. (24)

This result is remarkable, since, as stated in Sec. I, no
known algorithm – even with exponential-time complexity –
guarantees an exact solution for all graph state structures. The
underlying theoretical problem is indeed NP-complete.

V. PERFORMANCE EVALUATION

Here, we conduct a performance analysis, by considering
general two-colorable graph states and representative Internet-
inspired artificial topologies.

In light of the above remark, which highlights the absence
of procedures to determine the exact solutions for the Remote
VM-problem, our analysis is conducted in the worst-case
scenario, by comparing our results against theoretical upper
bounds. These upper bounds are inherently very conservative,
being static and independent of the specific graph state in-
stance. In contrast, the lower bounds computed by Algorithm 1
are not only constructive but are able to adapt to varying graph
structures. To rigorously account for structural heterogeneity
across graph instances, the results are averages over 1,000
independently generated graph instances.

A. General Two-colorable Graph State Performance

We first conducted a comprehensive evaluation of general
two-colorable graph states under various graph structures.
An explicit setup process is provided, along with a detailed
analysis of remote pairability and remote n-Gability.

1) Setup: We evaluate the extractable values against dif-
ferent bipartite graph structures by randomly varying the
number of edges m, while keeping the total number of nodes
constant and equal to 50. This allows for a fair comparison
across various graph instances. Furthermore, for the sake of
generality, we distribute the nodes in different ways: one
approach allocates nodes unequally across partitions, while
the other ensures an equal number of nodes in each partition.
More into details, we consider graphs with partitions (P1, P2)
having sizes (10, 40), (20, 30), (25, 25), respectively. We then
randomly distribute the m edges between the two partitions,
thereby varying the graph structure. For being adherent to the
definition of bipartite graph state, the number of edges in the
corresponding graph has to satisfy following inequality:

(|P1|+ |P2| − 1) ≤ m ≤ |P1| ∗ |P2|, (25)

and we generated 1000 random graphs per edge number
scenario for statistical reliability.

2) Remote n-Gability Performance Analysis: To evaluate
the volume for remote Gability, we compute via Algorithm 1
the average rℓg(n) in (22), which serves as constructive lower
bound. Fig. 6 validates the n-Gability volume, for each config-
uration of bipartite graph state and against not only the number
m of edges but also against the mass n of the extracted GHZ
states. As shown in Fig. 6 the proposed approach generally
allows for the extraction of at least one GHZ state with a mass
ranging from 3 to 17 among remote nodes. This implies that
for a given graph state, one can typically extract a GHZ state
of significant size among distant parties. Notably, when we
consider |GHZ⟩3, we observe that the rℓg(3) surpasses 6 for
each considered partition-configuration of the graph state. This
suggests that our approach facilitates the formation of small-
scale GHZ states, i.e., of small subnets that can be exploited
by entanglement-based protocols. Additionally, in Fig. 7, we
present the theoretical upper bound and the maximum average
extractable volume rℓg(n) for n ∈ [3, 25] in graph states with
partitions (10, 40), (20, 30), and (25, 25). As n increases,



10

Fig. 8: Maximum Mass nmax of Remote n-Gability: Average
lower- ∆(G) and upper α(G) bounds, for different graph
partitions (10, 40), (20, 30), (25, 25), respectively.

the gap between the two bounds diminishes, although the
theoretical upper bound is inherently very conservative, being
static and independent of the specific graph state instance.
This confirms undirectly the tightness and efficacy of our
constructive lower bounds.

Furthermore, we stress that existing studies focus on maxi-
mizing the mass of a single GHZ state, by limiting the volume
to be equal to one. For a graph state |G⟩ with bounded rank-
width, in [50] a poly-time algorithm determines whether a
GHZ state can be extracted using local Clifford operations and
Z-measurements, providing the required operation sequence.
Similarly, [19] demonstrates the extraction of GHZ states with
masses from 4 to 11 starting from linear cluster states of
up to 19 qubits on the IBMQ Montreal quantum device. By
accounting for the above, our results not only demonstrate
the extraction of GHZ states with significantly larger masses
ranging from 3 to 17, but also ensure the extraction of a
considerable volume of 3-qubit |GHZ⟩ states. This showcases
the versatility of our method, enabling both large and small-
scale GHZ states, and providing a scalable and efficient
approach for quantum networks.

Maximum Mass nmax Performance Analysis: To eval-
uate the extractable maximum mass for remote Gability, we
compute the average lower bound ∆(G) and corresponding
theoretical upper bound α(G), given in (20). Fig. 8 validates
the mass analysis, for each configuration of bipartite graph
state and against the edge number m. Specifically, both ∆(G)
and α(G) are affected by the partition ratio (|P1| : |P2|). And
as the partition ratio approaches 1, α(G) decreases. Notably,

Fig. 9: Remote Pairability Performance Analysis I: 95% con-
fidence interval of the volume lower-bound rℓe, with partitions
(10, 40), (20, 30), (25, 25), respectively. The figure also shows
the theoretical upper bound rue , for the remote Pairability
volume.

α(G) remains largely unaffected by the number of edges m,
whereas for each bipartite graph configuration, ∆(G) increases
with m and eventually converges to α(G). Intuitively, a more
balanced partition (|P1| : |P2| closer to 1) results in a smaller
gap between ∆(G) and α(G). To illustrate this, we also plot
the trend of the ratio in Fig. 8.

3) Remote Pairability Performance Analysis: To evaluate
the remote Pairability for general two-colorable graph states,
we compute the 95% confidence interval of the constructive
lower-bound rℓg(2), given in (22). Specifically, in Fig. 9, we
present both theoretical upper bound and our constructive
lower bound. We observe an intriguing contrast in the per-
formance of rℓe across the three different partitions size of
graph states. Specifically, the (25, 25) configuration exhibits
the highest rℓe values (11-12), indicating more pronounced
extractable capabilities in balanced graph structures.

To demonstrate the effectiveness of our algorithm, in Fig. 10
we also compare the preliminary estimation r̃e = r̃g(2) in (21)
of the remote Pairability volume, provided in the Step 2.1 of
Alg. 1, with the final constructive lower bound rℓe. The figure
shows that rℓe is significantly higher that the initial estimation
r̃e, for all the three partition configurations. The aformentioned
trend is observed by excluding, as expected, the sparse graph
regime and the high density regime.

Related to the last observation, we further stress that the
comparison between our bounds and existing literature is
not fair, since our work is the first one, to the best of our
knowledge, focusing on remote Pairability rather then on plain
Pairability. More into details, regarding the Pariability, existing
works, such as [35], [51], propose algorithms to determine
whether subsets of Bell pairs can be extracted from graph
states with specific structures, such as rings, lines, and trees.
Indeed, [51] provides conditions for extracting two EPR pairs
from these structures, but they do not ensure remote extraction.
Similarly, [35] presents a 2-pairable 10-qubit graph state based
on a “wheel graph” through exhaustive numerical evaluations
of all the permutations of Pauli measurements on the qubits,
without ensuring again remote extractions. Differently, with
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(a) Graphs with partitions (10, 40). (b) Graphs with partitions (20, 30). (c) Graphs with partitions (25, 25).

Fig. 10: Remote Pairability Performance Analysis II: 95% confidence interval for rℓe against the preliminary estimation r̃e in
(21), with volumes from Step 2.1 of Alg.1. The figure also shows min-max range of r̃e for each configuration of graph state.

(a) Original PPI topology (b) Bipartite subgraph

(c) Remote extracted entanglement resource

Fig. 11: Pictorial illustration for Remote extraction from gen-
eral graph state. (a) The sample Protein-Protein Interactions
(PPI) topology is generated by NetworkX library. (b) The ex-
tract bipartite subgraphs from PPI topology with fixed number
of nodes. (c) The remote extracted entanglement resource, i.e.,
a 4-qubit GHZ and a 3-qubit GHZ, obtained by Alg. 1.

the same structure, our results assure one remote EPR extrac-
tion, through a significantly more constructive approach.

B. General Graph State Performance

In the following, we evaluate the extractable volume
rℓe, r

ℓ
g(n) in general graph state against different graph struc-

tures. To better reflect the tested graph structures expected
in future quantum networks, we selected four representative
Internet topologies, World Wide Web (with BA model), AS
Internet, Protein-Protein Interactions, and Bipartite network
topology, to serve as artificial topologies for tested graph
states. For each of these topologies, we conduct evaluations
on remote n-Gability and remote Pairability.

To ensure a fair and consistent evaluation across different
topologies, we fix the total number of nodes at 50 and use

Fig. 12: Remote Pairability and Remote Gability Performance
Analysis: Average extractable volume rℓe, rℓg(3) in general 50-
qubit graph state with BA-model, AS Internet, Protein-Protein
Interactions, and Bipartite network topology, respectively.

the NetworkX library to generate graph instances by varying
the number of edges m. However, as the original Internet
topologies are not necessarily bipartite, Algorithm 1 cannot
be directly applied to compute their extractable volumes. To
address this, we extract bipartite subgraphs from each 50-node
topology by selecting 30 nodes that form a bipartite graph as
shown in Fig. 11. To ensure statistical reliability, we performed
100 experiments to generate random graphs for each edge
number scenario. This allows for a fair comparison across
topologies under consistent structural conditions.

To evaluate the remote Pairability for general graph states,
we compute the average lower-bound rℓe, in Fig. 12. We
observe that the volume can be successfully determined for
each type of Internet topology. As the number of edges
increases – i.e., as the network topology becomes denser –
the extractable volume exhibits an approximately linear growth
trend.

For remote n-Gability, we evaluate the extractable volume
for 3-qubit GHZ states, i.e., rℓg(3), as a representative case. The
results are shown in Fig. 12. Similar to the remote pairability
case, we are able to determine the extractable volume for all
tested Internet topologies. In general, the extractable volume
increases roughly linearly with edge density. However, we
also observe a performance drop in extremely dense bipartite
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network structures, where the extractable volume does not
continue to increase and may slightly decline.

APPENDIX A
PROOF OF LEMMA 1

We assume that equation (13) holds, and we must prove that
ṙg(n) GHZ states with each GHZ involving at least n qubits
can be extracted from the graph state |G⟩. Let us assume,
without loss of generality, Ag ⊆ V1 ⊆ P1 and let us follow the
labeling given in (8) and (9). Additionally, in the following,
we denote with N i △

= N(vi1) and N
i △
= N(vi1) the set of

neighbors and the set of opposite remote nodes for node vi1 in
the original graph G, respectively. Conversely, we use N(vi1)
and N(vi1) for denoting the “current” identities of the nodes
belonging to the respective sets during the manipulation of
the graph. The proof constructively follows by performing the
following four tasks. In a nutshell, the first two tasks remove
irrelevant vertices which will not be linked by a GHZ state.
The third task interconnects each vertex in Ag with its opposite
remote set, with the exception of an arbitrary vertex. Finally,
the last task interconnects also such a vertex with its opposite
remote set and removes extra links among the nodes in Ag ,
as detailed in the following.

i) Pauli-z measurements on the qubits corresponding to the
vertices in V1 \Ag plus all the start vertices in S1 except
one vertex, say s11.

ii) Pauli-z measurements on the qubits corresponding to the
vertices in V2 \N∪(Ag) plus all the start vertices in S2

except one vertex, say s12.
These two tasks are equivalent to remove irrelevant
vertices, which will not be linked by a GHZ state, with
the exception of the two additional vertices, namely, s11
and s12. Thus, the former two tasks yield to the graph:

G′ = G−
(
P1 \

(
Ag ∪ {s11}

))
−

(
P2 \

(
N∪(Ag)

)
\ {s12}

)
.

(26)
iii) Pauli-X measurement on the selected star vertex s12 with

the arbitrary neighbor k0 ∈ Ag , denoted as v11 for the
sake of simplicity. Thus, the third task yields the graph:

G′′ = τv1
1

(
τs12

(
τv1

1
(G′)

)
− s12

)
. (27)

iv) Pauli-X measurement on the star vertex s11 by choosing
again v11 as the arbitrary neighbor k0 (which belongs
now to N(s11) as a consequence of the first Pauli-X
measurement). Thus, the forth task yields the graph:

G′′′ = τv1
1

(
τs11

(
τv1

1
(G′′)

)
− s11

)
. (28)

From (28), we have that, in the final graph, each node
vi1 ∈ Ag is connected with and only with all the nodes in the
original opposite remote set N

i
. Hence, by considering the

subgraph induced by the vertices {vi1} ∪N
i
, such a subgraph

is a star subgraph with vi1 acting as star vertex, and each of
these ṙg(n) = |Ag| subgraphs is disconnected – i.e., disjoint
– from the others subgraphs. Thus, the thesis follows.

APPENDIX B
PROOF OF THEOREM 1

(1) Complexity for determining nℓ
max

The procedure (Lines 1-6) requires O(|P1|∗|P2|) time com-
plexity to ensure each partition contains at least one star vertex.
Then, the algorithm computes the lower bound of maximum
mass nmass, by evaluating the vertex degrees within the star
sets S1 and S2, i.e., nℓ

mass = max{deg(v)
∣∣ v ∈ (S1∪S2)}. In

fact, by definition, this is equal to ∆(G), namely the maximum
degree of the graph. Accordingly, the procedure maintains an
overall time complexity of O(|P1| ∗ |P2|).

(2) Complexity for determining rℓg(n) and the location of
the involved vertices.

Lines 8-14: we firstly generate a random permutation of
V1, which exhibits a time-complexity of O(|P1|). Then the
procedure constructs Ag, Bg , via sequential checks, which
require a time complexity of O(|P1|2 ∗|P2|) in the worst case.
Then, if the cardinality of Bg is larger than Ag , we remove
the intersection of the opposite remote sets of Bg , namely
N∩(Bg), from the vertex set. This exhibits a time complexity
of O(|P1|∗ |P2|), again in the worst case, i.e., for |Bg| = |P1|.

Lines 15-34: The ExpandA subroutine, at line 15, firstly
computes Ā, which requires to calculate the opposite remote
set for (in the worst case) each nodes in P1. This in turn
exhibits a time complexity of O(|P1| ∗ |P2|). Then, ExpandA
constructs Ā2A and B2A by per-element checks for each vi ∈
Ā. In total, this requires O(|Ā| ∗ |Ãg| ∗ |P2|) time, in the worst
case, to compute Ā2A. Similarly for B2A. The check condition,
at Line 8 within the subroutine ExpandA, takes O(|B2A(vi)|∗
|P2|). Overall, the construction of Ā2A and B2A takes O(|Ā| ∗
|P1| ∗ |P2|) ⊆ O(|P1|2 ∗ |P2|).

After that, the procedures enters the While loop (Line 16-
31 in Alg. 1), which exhibits two cases per iteration, namely,
Case 1: A(vi) = ∅ and Case 2: A(vi) ̸= ∅.

• Case 1 requires O(A) time for the vertex search.
• Case 2 computes the opposite remote set of a randomly

selected vertex vi in O(|P2|) time, and computes the
union of opposite remote set of A(vi), i.e., in O(|Ãg| ∗
|P2|) (in the worst case). If |Ā2A(vi)| = 1, we need to
spend O(|P2|) time to calculate the opposite remote set
of vj .

Then, both the cases recompute A, Ā2A via ExpandA in
O(|P1|2 ∗ |P2|) time. The While loop terminates when A
is empty, which in the worst-case, requires O(|P1|) iterations.
Accordingly to the above, we can state that the total While
loop complexity is O(|P1|3 ∗ |P2|).

The procedure then takes O(|Âg| ∗ |P2|) time to map each
vertex in Âg to its opposite remote-set in P2. As a result,
the location of each extracted resource can be identified as
{vi, N(vi)}, where vi ∈ Âg .

Based on above analysis, the dominant term is O(|P1|3 ∗
|P2|). Thus, the time-complexity for determining the ex-
tractable volume rℓg(n) and the corresponding locations of the
involved vertices in Alg. 1 is polynomial.
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