@IEEE Transactions on,
Quantum Internet uantumEngineering

Received August 3, 2020; revised October 19, 2020; accepted January 19, 2021; date of publication January 22, 2021;
date of current version March 18, 2021.

Digital Object Identifier 10.1109/TQE.2021.3053921

Compiler Design for Distributed
Quantum Computing

DAVIDE FERRARI'® (Graduate Student Member, IEEE),
ANGELA SARA CACCIAPUOTI?>3© (Senior Member, IEEE),
MICHELE AMORETTI'® (Senior Member, IEEE), AND
MARCELLO CALEFFI?>3© (Senior Member, IEEE)

lDepanmem of Engineering and Architecture, University of Parma, 43124 Parma, Italy

2Future Communications Laboratory, Department of Electrical Engineering and Information Technology, University of Naples
Federico 11, 80125 Naples, Italy

3Laboratorio Nazionale di Comunicazioni Multimediali, National Inter-University Consortium for Telecommunications, 80126
Naples, Italy

Corresponding author: Davide Ferrari (davide.ferraril @unipr.it)

The work of Angela Sara Cacciapuoti and Marcello Caleffi was supported in part by the project “Towards the Quantum Internet: A
Multidisciplinary Effort,” University of Naples Federico II, Italy, and by the Italian MoD PNRM research program “QuaSaR:
Quantum” Safe netwoRk™.

ABSTRACT In distributed quantum computing architectures, with the network and communications func-
tionalities provided by the Quantum Internet, remote quantum processing units can communicate and
cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot
handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum
compilers, for mapping any quantum algorithm to any distributed quantum computing architecture. With this
perspective, in this article, we first discuss the main challenges arising with compiler design for distributed
quantum computing. Then, we analytically derive an upper bound of the overhead induced by quantum
compilation for distributed quantum computing. The derived bound accounts for the overhead induced by
the underlying computing architecture as well as the additional overhead induced by the suboptimal quantum
compiler—expressly designed in this article to achieve three key features, namely, general-purpose, efficient,
and effective. Finally, we validate the analytical results, and we confirm the validity of the compiler design
through an extensive performance analysis.

INDEX TERMS Distributed quantum computing, distributed quantum systems, quantum compiling, quan-

tum Internet, quantum networks.

I. INTRODUCTION

Current quantum computers are commonly defined as
noisy intermediate-scale quantum (NISQ) devices, being
characterized by a few dozens of quantum bits (qubits)
with nonuniform quality and highly constrained physical
connectivity.

Hence, the growing demand for large-scale quantum com-
puters is motivating research on distributed quantum com-
puting architectures [1]-[3], and experimental efforts have
demonstrated some of the building blocks for such a de-
sign [4]. Indeed, with the network and communication func-
tionalities provided by the Quantum Internet [2], [3], [S]-
[12], remote quantum processing units (QPUs) can com-
municate and cooperate—through the distributed computing
paradigm as a virtual quantum processor with a number
of qubits that scales linearly with the number of remote

VOLUME 2, 2021

QPUs [13]—for executing computational tasks that each
NISQ device cannot handle by itself.

As overviewed in recent literature such as [4] and [13],
several challenges arise with the design of a distributed quan-
tum computing architecture. In the following, we focus on
the problem of designing a quantum algorithm compiler for
distributed quantum compilation.

Compiling a quantum algorithm means translating a
hardware-agnostic description of the algorithm—i.e., the
quantum circuit'—into a functionally equivalent one that
takes into account the physical constraints of the underlying
computing architecture—i.e., the compiled quantum circuit.
When it comes to distributed computing architectures, there
are two main issues arising with the compiler design.

ISee Section II for a proper introduction to quantum circuits, circuit
compilation, and circuit depth.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 4100720

https://orcid.org/0000-0002-4777-7234
https://orcid.org/0000-0002-0477-2927
https://orcid.org/0000-0002-6046-1904
https://orcid.org/0000-0001-5726-5489

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

First, a fundamental question arises with distributed com-
putation: at what price? Indeed, distributed computation re-
quires the different processors being able to communicate
with each other for coordinating and data exchanging, and
these tasks introduce an overhead that strongly depend on
the particulars of the distributed computing architecture. For
instance, the induced overhead becomes more severe as the
connectivity between the QPUs shrinks or as the number of
qubits stored at the QPUs decreases. Hence, from a compil-
ing perspective, it is crucial to estimate the overhead effects
onto the compiled quantum circuit, effects that are generally
measured in terms of depth of the compiled circuit with re-
spect to the depth of the original one.

Furthermore, compiling a quantum circuit is a very chal-
lenging task even for a single-processor architecture, being
such a task an NP-complete problem [14]. Hence, optimal
circuit compiling for distributed quantum architectures can
be achieved only for very small circuit instances. Conversely,
the compilation of medium to large circuits of practical value
induces an additional overhead—whose severity depends on
the suboptimality of the quantum compiler—that further in-
creases the depth of the compiled circuit.

With this in mind, in this article, we analytically derive
an upper bound of the overhead induced by quantum circuit
compilation for distributed quantum computing:

1) by considering the overhead induced by the worst-case
scenario for a distributed quantum computing architec-
ture, namely, a scenario characterized by a) the lowest
possible number of qubits at each QPU and b) the
poorest connectivity among the QPUs;

2) by considering the additional overhead induced by a
suboptimal quantum compiler.

Clearly, with reference to the last point, the additional
overhead strongly depends on the particulars of the quantum
compiler. To this aim, in this article, we design a quantum
compiler with three key features:

1) general-purpose, namely, requiring no particular as-
sumptions on the quantum circuits to be compiled;

2) efficient, namely, exhibiting a polynomial-time compu-
tational complexity so that it can successfully compile
medium-to-large circuits of practical value;

3) effective, being the total circuit depth overhead induced
by the quantum circuit compilation always upper-
bounded by a factor that grows linearly with the num-
ber of logical qubits of the original quantum circuit.

The rest of this article is organized as follows. In
Section II, we review some preliminaries about quantum
circuits and quantum compilers. Then, in Section III, we
detail the problem of circuit compilation for distributed quan-
tum computing, discussing the challenges that arise with the
compiler design and the relevant literature. These basics are
crucial for understanding the compiler design as well as the

4100720

LAYER 1-QUBIT GATE 2-QUBIT GATE
@ —Jnf+—7}
& 4o {1

FIG. 1. Example of a 5-qubit quantum circuit from [18], with each
horizontal line representing the time evolution of the state of a single
logical qubit.

analytical derivation of the overhead bound given in Sec-
tion IV. Then, Section V presents the performance analysis
for the proposed compiler design. In particular, we present
the implementation of a compiler that is able to cope with the
worst-case scenario for a distributed quantum computing ar-
chitecture; we validate the compiling overhead upper bound;
we illustrate experimental results regarding the compilation
of several quantum circuits, with our compiler compared to
a state-of-the-art solution. Finally, Section VI concludes this
article.

Il. BACKGROUND

We refer the reader to [15] for an introduction to the concep-
tual and notation differences separating quantum computing
from conventional computing, and to [16] for an in-depth
treatise of the subject.

In this article, we consider QPUs that support the guantum
circuit model [17], which is the most popular and devel-
oped model for quantum computation. A quantum circuit is
a model of a quantum algorithm, where quantum operators
are described as quantum gates. A quantum circuit is still a
logical abstraction, not to be confused with its realization on
an actual quantum hardware device. Hence, in the following,
the abstract qubits subjected to quantum gates as specified
by the quantum circuit are called logical qubits to distinguish
them from the physical qubits embedded within a quantum
processor.

Fig. 1 shows a simple quantum circuit, where each hor-
izontal line represents the time evolution of the state of a
single logical qubit, with time flowing from left to right,
dictating the order of execution of the different gates. More
specifically, gates affecting the same qubit must be executed
sequentially, and this agrees with the intuition. Conversely,
gates acting on different qubits can be performed simulta-
neously as long as the “ordering” arising from gates affect-
ing multiple qubits is respected. This concept underlies the
notion of layer, i.e., the set of gates that can be performed
simultaneously on a disjoint set of qubits. The number of
layers in a quantum circuit is denoted as circuit depth. As
an example, the quantum circuit given in Fig. 1 is composed

VOLUME 2, 2021

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

E6E8E8 e

FIG. 2. Coupling map of the IBM Melbourne quantum processor [22].
The 15 physical qubits are represented by circles. The arrows denote the
possibility to realize a two-qubit cNOT gate between the connected
qubits, with the arrow pointing toward the target qubit. As an example, a
cNOT between qubits Q; (control) and Q, (target) can be directly
executed by the quantum processor, whereas a cNOT between qubits Q,
and Qo cannot.

of nine layers, and hence, its depth is equal to 9. The number
of gates within the circuit is denoted as circuit size.

A. QUANTUM COMPILATION

Given a quantum algorithm, there exist several equivalent
quantum circuits modeling the same computation with a dif-
ferent arrangement or different ordering of gates.

Circuits with fewer gates—i.e., with lower size—may be
preferred to reduce the circuit complexity. However, the exe-
cution time of the circuit—rather than its size—is generally
considered the key factor to be optimized [19], [20]. The
rationale is to keep the execution time of the quantum circuit
within the coherence time of the underlying quantum hard-
ware architecture [16], [21]. By oversimplifying, the execu-
tion time increases with the number of layers. Therefore, it is
crucial to build—for a given quantum algorithm—a quantum
circuit characterized by the lowest possible depth. However,
two issues arise as a consequence of the quantum processor
characteristics.

First, even if there exist an uncountable number of quan-
tum logic gates, the set of gates that can be executed on a
certain quantum processor can be limited, as a consequence
of the constraints imposed by the underlying qubit technol-
ogy [4]. In this case, any gate outside this reduced set must
be obtained with a proper combination of the allowed gates
through a process known as gate synthesis.

Furthermore, regardless of the underlying qubit technol-
ogy, any quantum processor exhibits physical constraints—
arising as a consequence of the noise and the physical space
limitations—on the possible interactions between the differ-
ent physical qubits. For example, CNOT gates cannot be ap-
plied to any physical qubit pair, but they are instead restricted
to certain pairs, as shown in Fig. 2, with the coupling map of
an IBM quantum processor.

From the above, it becomes clear that the execution of a
quantum algorithm on a certain quantum processor requires
that: 1) each logical qubit of the quantum circuit is mapped?
onto a physical qubit of the quantum processor; and 2) each
CNOT operation between nonadjacent (within the coupling
map) physical qubits is mapped into a sequence of CNOT

2Indeed, NISQ technology may require a logical qubit to be mapped onto
several physical qubits to implement proper fault-tolerant techniques [24]
Nevertheless, in the following, we assume a one-to-one mapping for the
sake of clarity, without any loss of generality.

VOLUME 2, 2021

operations between adjacent physical qubits, as shown® in
Fig. 3.

This process, known as quantum compilation, must be
optimized so that the depth of the compiled circuit—i.e.,
the equivalent quantum circuit satisfying all the constrains
imposed by the quantum processor—is minimized [25], [26],
[28], [29].

1ll. COMPILERS FOR DISTRIBUTED

QUANTUM COMPUTING

As highlighted in Section I, the demand for large-scale quan-
tum computers is motivating research on distributed quantum
computing architectures, where multiple small-scale quan-
tum processors interact and cooperate through the Quan-
tum Internet for solving challenging computational tasks.
As a consequence, a new generation of quantum compilers
is needed for mapping any quantum algorithm to any dis-
tributed quantum computing architecture.

Let us consider a toy model for distributed quantum com-
puting, in which a generic quantum algorithm must be exe-
cuted on two quantum processors interconnected by a quan-
tum link, as shown in Fig. 4.

A. CHALLENGES

Several challenges arise with the design of a quantum com-
piler for mapping an arbitrary quantum circuit into a dis-
tributed quantum computing architecture, as discussed in the
following.

1) DATA QUBITS VERSUS COMMUNICATION QUBITS
Similarly to classical distributed computing, a key require-
ment for distributed quantum computing is the possibility
to perform remote operations, namely, operations between
qubits stored at different processors. However, differently
from the classical domain, quantum mechanics does not al-
low an unknown qubit to be copied or even simply read or
measured in any way, without causing an irreversible loss of
the quantum information stored within the qubit [15], [16].

Thankfully, entanglement provides an invaluable tool for
implementing remote operations without violating quantum
mechanics [13]. Entanglement is a property of two (or more,
in case of multipartite entanglement) quantum particles that
exist in a special type of superposition state, such that any
action on a particle affects instantaneously the other particle
as well. This sort of quantum correlation, with no counterpart
in the classical world, holds even when the particles are far
away from each other. For an in-depth discussion about en-
tanglement from an information engineering point of view,
we refer the reader to [21].

By exploiting the availability of a Bell state—that is a state
of two maximally-enatngled qubits (EPR pairs, where EPR
stands for Einstein, Podolsky, and Rosen)—shared between
the two remote processors, it is possible to perform a remote

3With the state transfer strategy based on SWAPs usually preferred over
the ancilla strategy [25]-[27].

4100720

@IEEE Transactions on,
uantum Engmeerlng Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

REVERSE CNOT

@—— rl-e{u} SWAPQoaxpQu - SWAPPACK
= @ B SEANS S S
o —& = SR S SEDSRY: S e S
Q@ —&— & &0
@ o)

FIG. 3. Example of equivalent quantum circuits generated during the quantum compilation for mapping an arbitrary cNOT into a sequence of cNOTSs that
can be directly executed by a given quantum processor. (a) Reversing CNOT [23]. A cNOT between Qo (control) and Q; (target) can be executed with the
coupling map given in Fig. 2 by performing a cNOT between Q; (control) and Q (target) sandwiched between two H gates. We note that the IBM
Melbourne processor (shown in Fig. 2) natively supports cNOTs in both directions between neighbor qubits. (b) cNoT between qubits Qo (control) and
Q; (target) can be executed through either: i) quantum state transfer, by first swapping qubits Q, and Q; so that Q, and Q, become adjacent qubits in
the coupling maps, then by performing a cnOT between Q, and Q,, and finally by swapping again qubits Q, and Q; so that they recover their initial
position, or ii) ancilla qubit, by performing four cNOT operations between neighbor qubits with the help of the intermediate qubit Q;.

.............. QUANTUM PROCESSOR #1

DATA QUBIT (CONTROL)

'
'
'
'
: Q3 D EI:: COMMUNICATION QUBIT
TR [|)
: v
COMMUNICATION 1 14 ittty ==qF---
QuUBIT ' 1
......................... X E 0 H —H E COMMUNICATION QUBIT
. QUANTUM NETWORK ' ' '
! ! !
_____________ s 1 Q) D [x] ! DATA QUBIT (TARGET)
QUANTUM PROCESSOR #1 QUANTUM PROCESSOR #2 Semmmmm - -Q-U-A-I\I-T-U-M- 131-1(-)(-3}55-5-0-12-;#2- -------- 4
(a) (b)

FIG. 4. Toy-model for distributed quantum computing, with two quantum processors interconnected through a quantum network. (a) shows the
network topology along with the processors coupling maps, whereas (b) provides the quantum circuit detailing the classical (2 bits) and the quantum
(the Bell state) resources needed to execute a remote operation. (a) Two IBM Yorktown quantum processors are interconnected with a quantum link
and a classical link. The classical link is used to transmit classical information, whereas the quantum link is needed to distribute Bell states—that is,
maximally entangled two-qubit states—between remote processors to execute remote operations. Indeed, at least one physical qubit at each processor
must be reserved for storing the Bell state, as discussed in (b). This kind of qubits—dark-blue-colored in the figure—are called communication qubits [3],
[30] to distinguish them from the remaining physical qubits—white-colored in the figure—devoted to computing and referred to as data qubits. (b)
Remote CNOT. To perform a cNOT between remote physical qubits stored at different processors—say data qubits Q; and Q, in (a)—a Bell state such as
&* must be distributed through the quantum link so that each pair member is stored within a communication qubit at each processor. Once the Bell
state is available, the remote CNOT is obtained with a local cNOT between the data and the communication qubit at each processor, followed by a
conditional gate on the data qubit depending on the measurement of the remote communication qubit. The double line denotes the transmission of 1
bit of classical information—i.e., the measurement output—between the remote processors.

CNOT through a sequence of local CNOTs and single-qubit the dedicated hardware—such as a matter-flying qubit in-

operations/measurements, as shown in Fig. 4(b). terface [21]—required for entanglement distribution. Con-

To distribute Bell states between different quantum pro- versely, it is reasonable to envision that the distributed
cessors, at least one qubit at each processor—referred to as quantum compiler could easily reserve—when multiple
communication qubit [30] to distinguish it from the remain- communication qubits are available at the same processor—
ing data qubits devoted to processing—must be reserved a subset of the communication qubits for computing. This
for remote interprocessor operations. Hence, a crucial trade- optimization task represents an interesting yet unaddressed
off between communication and data qubits arises. Specifi- open problem.

cally, for each remote CNOT, a Bell state is consumed [see
Fig. 4(b)] and a new Bell state must be distributed between 2) DYNAMIC CONNECTIVITY

the remote processors through the quantum link before an- As mentioned in Section II-A, with single-processor quan-

other remote CNOT can be executed. Hence, the more com- tum computing, all the constraints on the possible interac-

munication qubits are available within a processor, the more tions between different qubits—arising from the underlying

remote CNOTS can be executed in parallel, reducing the over- physical computing architecture—can be effectively repre-

head induced by the distributed computation. But the more sented with a coupling map. Formally, a coupling map is a

communication qubits are available for interprocessor com- visual representation of the directed graph G

munication, the less valuable resources—i.e., data qubits—

are available for computing. G=W.86 M
It is unlikely that a data qubit could be dynamically turned where V = {v;} denotes the set of vertices representing the

into a communication qubit during the compilation, given qubits and & = {e; j}y, v;ev denotes the set of directed edges

4100720 VOLUME 2, 2021

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

LOCAL CNOT

TIME-CONSTRAINED REMOTE CNOT
c L \
< 7

VIRTUAL QUANTUM PROCESSOR

FIG. 5. Dynamic coupling map for the network topology shown in

Fig. 4(a). The two 5-qubit quantum processors constitute an 8-qubit
virtual quantum processor with qubits interconnected through both local
and remote cNOTs. While the local cNOTs can be concurrently
executed—i.e., they are unconstrained—the parallel execution of multiple
remote CNOTSs is constrained to the availability of multiple Bell states,
with one Bell state for each concurrent remote cNOT. Given that only one
communication qubit is available at each processor in Fig. 4(a), out of
four remote CNOTS, only one can be executed at any time.

representing the possibility to perform* a CNOT, with v; and
v; acting as control and target qubit, respectively.

But when it comes to distributed quantum computing, a
new kind of constraints arises as a consequence of the under-
lying physical network topology.

More in detail, similarly to single-processor quantum
compiling, the remote operations are restricted to certain
fixed pairs. Specifically, they are restricted to pairs composed
of data qubits directly connected to a communication qubit
within the processor coupling map. For instance, with ref-
erence to the network topology shown in Fig. 4(a), a remote
CNOT between data qubits Q> and Q] can be directly mapped
onto the circuit given in Fig. 4(b). Conversely, a remote CNOT
between data qubits O, and Q) cannot be directly executed
between the pair, but it requires to distribute the operation
through the neighbor qubits, as shown in Fig. 3(b).

However, differently from single-processor compiling, the
remote operations are subjects to two types of temporal
constraints.

1) Simultaneity Limitations: As previously discussed,
each remote CNOT relies on the availability of a Bell
state stored within a communication qubit. Hence,
even if remote CNOTs can—in principle—be executed
between different remote pairs, the number of remote
CNOTSs that can be executed simultaneously between
two processors is limited by the number of communi-
cation qubits jointly available at each processor. With
reference to Fig. 5, out of four possible remote CNOTs
(denoted with blue arrows), only one can be executed
at any time.

2) Consecutiveness Limitations: Each remote CNOT con-
sumes a Bell state as a consequence of the measure-
ment operations on the communication qubits [21].

“4In the following, for the sake of presentation, we consider the simplest
binary case, i.e., either the operation can or cannot be executed. But the
discussions, as well as the results derived in the following, continue to hold
when a weight—usually representing the gate fidelity—is mapped on the
edge.

VOLUME 2, 2021

Accordingly, a new Bell state must be generated and
distributed through the quantum link to the communi-
cation qubits, before a subsequent remote CNOT could
be executed. And even if the Bell state distribution can
start right after the measurements, it is reasonable to
assume—given the several order of magnitudes sepa-
rating intraprocessor qubit distance from interproces-
sor one—that the time needed to entangle the commu-
nication qubits significantly exceeds the time required
for local CNOTs.> Accordingly, we have two major
issues. First, the “clock” of the remote operations will
be significantly lower than the “clock™ of the local
operations, and hence, it becomes fundamental to min-
imize the number of remote—rather than the number
of local—operations to preserve the quantum infor-
mation integrity from decoherence (see Section II-A).
Furthermore, there may be periods of time—following
the execution of a remote operation up to the success-
ful distribution of a new Bell state—during which the
quantum processors are disconnected and only local
operations are possible.

These additional constraints must be properly modeled
within the coupling map, so that the distributed quantum
compiler can optimize the quantum circuit by accounting for
the temporal dynamics arising with the distributed architec-
ture. And this represents an open problem.

3) AUGMENTED CONNECTIVITY

As shown in Fig. 3(b), single-processor quantum computing
must resort to either state transfer (swapping) or ancilla
strategy to implement a CNOT between nonadjacent (within
the coupling map) physical qubits. The rationale for this
lays in the impossibility to have direct interactions between
distant qubits. And the further the qubits are within the cou-
pling map, the longer the sequence of additional CNOTs is
required, regardless of the adopted strategy.

Conversely, distributed quantum computing can exploit
a strategy—called entanglement swapping [4] and summa-
rized in Fig. 6—to implement a remote CNOT between qubits
stored at remote processors, even if the processors are not
directly connected through a quantum link.

In a nutshell, to distribute a Bell state between remote
processors—say quantum processor #1 and #3 in Fig. 6(a)—
two Bell states must be first distributed through the quantum
links so that one Bell state is shared between the first proces-
sor and an intermediate node and another Bell state is shared
by the same intermediate node and the second processor.
Then, by performing a Bell state measurement (consisting
of an H and a CNOT gate, followed by a joint measurement)
on the communication qubits at the intermediate node—i.e.,
qubits QE) and @ in Fig. 6(b)—a Bell state is obtained at
the remote communication qubits—i.e., qubits Q(’)/ and Q3 in

3In the order of hundreds of nanoseconds for the IBM Yorktown quantum
processor [31].

4100720

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

QUANTUM LINK

QUANTUM PROCESSOR #1

QUANTUM PROCESSOR #1

QUANTUM LINK

QUANTUM PROCESSOR #3

LOCAL CNOT

TIME-CONSTRAINED REMOTE CNOT

QUANTUM PROCESSOR #3

TIME-CONSTRAINED REMC

VIA ENTANGLEMENT SWAPPING

VIRTUAL QUANTUM PROCESSOR

(b)

()

FIG. 6. Augmented connectivity. Entanglement swapping increases the connectivity between physical qubits, with a number of possible remote cNOTS
that scales at least linearly with the number of processors. (a) By swapping the entanglement at the intermediate nodes—namely, quantum processor
#2—it is possible to distribute a Bell state between remote processors—namely, processors #1 and #3—even if they are not adjacent, i.e., they are not
directly connected through a quantum link. Hence, entanglement swapping enhances the network connectivity through virtual quantum links.

(b) Entanglement swapping. A Bell state can be distributed between remote processors by swapping the entanglement at an intermediate node through
local processing and classical communication. (c) Dynamic coupling map for the network topology shown in Fig. 6(a). The solid blue lines denote remote
cNOTs between adjacent processors, whereas the dotted blue lines denote remote cNOTs between distant processors achievable via entanglement

swapping.

Fig. 6(a)—by applying some local processing at the remote
nodes depending on the (classical) output of the Bell state
measurement.

From the above, it becomes clear that entanglement swap-
ping significantly increases the connectivity within the vir-
tual quantum processor. As an instance, qubit Qq4 in Fig. 6(a)
can interact with just two qubits within the same processor
vialocal CNOTs and two qubits within the neighbor processor
via remote CNOTS. However, it can interact with two more
qubits—i.e., Qf and Q) —via entanglement swapping. And
the higher is the number of available quantum processors,
the higher is the number of possible interactions. Indeed, the
number of additional interactions via entanglement swapping
scales linearly with the number of available processors when
only two communication qubits are available at each inter-
mediate processor. If this constraint is relaxed, the number
of additional interactions via entanglement swapping scales
more than linearly.

However, it must be acknowledged that the augmented
connectivity provided by entanglement swapping does not
come for free. Indeed, entanglement swapping consumes the
Bell states stored within the communication qubits at the
intermediate processors. And the higher the number of in-
termediate processors, the higher the number of consumed
Bell states.

4100720

Hence, a tradeoff between “augmented connectivity” and
“EPR cost” arises with entanglement swapping, and a dis-
tributed quantum compiler must carefully account for these
pros and cons.

B. RELATED WORK

Most quantum computer proposals are based on variations
of the nearest-neighbor, two-qubit, and concurrent execution
(NTC) architecture [32]. Depending on the layout of qubits,
there are three NTC architectures: 1-D, 2-D, and 3-D. The
1-D model, called linear nearest neighbor (LNN) [33], con-
sists of qubits located in a single line. In this model, only two
neighboring qubits can interact. This is the most challenging
scenario. The effects of the LNN model on performance have
been investigated for many relevant use cases, such as the
quantum Fourier transform [34], [35], Shor’s algorithm [36],
[37], and adders [38].

Beals et al. [39] provided algorithms for efficiently mov-
ing and addressing quantum memory in parallel. These imply
that the standard circuit model can be simulated with low
overhead by a more realistic model of a distributed quan-
tum computer. The authors show that for an LNN N-qubit
architecture, O(N) time steps are necessary for performing
N/2 two-qubit gates in parallel. However, it is worthwhile
to note that the developed analysis does not consider any

VOLUME 2, 2021

@IEEE Transactions on

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING uantum Engineering

1 1 1
1 1 1
SR — Q¢ k—EE——r -
bur\m UM LINK dU/\I\I'L‘M LINK
1 1 1

QUANTUM PROCESSOR #2

QUANTUM PROCESSOR #3

QUANTUM PROCESSOR #N

QUANTUM PROCESSOR #1

FIG. 7. Worst-case scenario in terms of overhead induced by the distributed computation: the quantum processors are interconnected through a 1-D
nearest-neighbor topology, and only one data qubit is available at each quantum processor. Intraprocessor coupling between communication qubits is

omitted for the sake of simplicity.

additional overhead induced by the compilation task, and the
derived Big-O bound relies on linear constant that is in the
“many, many thousands” [40]. Conversely, in the following,
we develop an analysis that explicitly considers the addi-
tional overhead induced by the compilation task, as discussed
in Section L.

Zomorodi-Moghadam et al. [10] proposed a general ap-
proach, based on the Kernighan—Lin algorithm for graph
partitioning, to optimize the number of teleportations for
a distributed quantum computing architecture consisting of
two spatially separated and long-distance quantum subsys-
tems. The same authors also proposed an approach based on
dynamic programming [41].

Andrés-Martinez and Heunen [42] proposed an approach
that may distribute circuits across any number of quantum
devices. The main idea is to turn the quantum circuit into
a hypergraph and then find a partitioning that minimizes the
number of cuts, as each cut corresponds to a Bell state shared
across two QPUs by means of communication qubits. The
partitioning problem is addressed by means of the KaHyPar
solver [43]. The proposed solution has some drawbacks, in
particular that there is no way to define the number of com-
munication qubits of each QPU. In the software implementa-
tion of the algorithm, the number of available communication
qubits is unlimited and cannot be constrained.

IV. COMPILER DESIGN AND OVERHEAD BOUNDS

As discussed in Section III, several additional constraints
arise with the shift from single processor to distributed quan-
tum compiling. Given that single-processor quantum com-
piling has already been proved to be NP-complete [14], it is
reasonable to expect that optimal distributed quantum com-
piling is an even harder challenging task.

For this reason, in the following, we take a completely dif-
ferent approach. Specifically, we aim at designing a general-
purpose, efficient, and effective compiler for distributed
quantum computing.

General-purpose because our compiler does not require
any particular assumption on the quantum circuit to be
compiled.

Efficient because—as proved in Section V-A—our com-
piler is computationally efficient, exhibiting a polynomial
time complexity that grows polynomially with the number
of logical qubits and linearly with the depth of the quantum
circuit to be compiled.

Effective because—as proved in Section IV-B—our com-
piler assures a polynomial worst-case overhead, in terms of
both depth of the compiled quantum circuit and number of

VOLUME 2, 2021

calls to the costliest and most challenging task, i.e., the link
entanglement generation.

A. SYSTEM MODEL

We consider the worst-case scenario shown in Fig. 7. More in
detail, we assume that only one data qubit is available at each
quantum processor.® The rationale for this choice is as fol-
lows. Whenever multiple data qubits are available at a single
quantum processor, a local CNOT can be executed between
these data qubits without incurring in any overhead induced
by the distributed computation. Conversely, with just one
data qubit available at each processor, each and every CNOT
within the quantum circuit must be mapped into a remote
CNOT, and hence, the overhead induced by the distributed
computation is the highest possible.

Furthermore, we assume that the quantum processors are
interconnected through a 1-D nearest-neighbor topology, as
shown in Fig. 7. Again, the rationale for this choice is to
consider the worst-case scenario in terms of overhead in-
duced by the distributed computation. In fact, the considered
topology is characterized by the lowest possible number of
communications qubits—i.e., 2n — 2, with n denoting the
number of quantum processors—since the removal of any
communication qubit would disconnect the network into two
disjoint subsets of quantum processors. And the quantum
processors are arranged in a line—rather than in a star—to
maximize both the number of nonadjacent quantum proces-
sors and the maximum distance—in terms of hops—between
two nonadjacent quantum processors.

From the above, it becomes clear that the considered archi-
tecture represents the worst-case scenario in terms of over-
head induced by the distributed computation. Hence, the ac-
tual overhead induced by any real-world architecture will
be always upper-bounded by the communication overhead
induced by the considered architecture.

Clearly, we need to choose a metric for measuring the
overhead induced by the distributed computation. As dis-
cussed in Section II-A, there exists a general consensus on
circuit depth as a key performance metric of circuit compi-
lation. Hence, in the following, we measure the overhead in
terms of number of additional layers required to distribute
the computation of a single layer in the original quantum cir-
cuit. Furthermore, we also evaluate the overhead in terms of
how many calls to the link entanglement generation process
are required from the compiling algorithm.

6Clearly, the total number of data qubits within the distributed architec-
ture must be greater than the number of logical qubits within the quantum
circuit to be compiled.

4100720

@IEEE Transactions on

uantum Englneerlng Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

SECOND CNOT IN LAYER #i+1
LAYER #i LAYER #i+1 | (CTTTTTTTTTTm T =
go maTTmaaas = Processor #1 — T i i
Qo G T LinkEnt | LinkFEnt !)
Q1 ———r) Processor #2 — oy : —| EntSwapl ; .
Y] | LinkEnt 1| Link Fnt :

Q2 : —— D . Processor #3 — : D— —| EntSwap l——;—
DL ! LinkEnt | | Link Ent |

Qs =T ! Processor #4 —| & : : EntSwap ———
Q0 . | A : | LinkEnt \| LinkEnt 1
o e] Processor #5 —] ' —IEntSwapl : &
Qs —-+—1 D LinkEnt : LinkEnt i 1
et e ' Processor #6 — & : & i i
_____________________ 7

(@ (b)

FIG. 8. Entanglement swapping strategy. Each remote CNOT in (a) requires two preliminary tasks: 1) link entanglement, for distributing the
entanglement between neighbor nodes and 2) entanglement swapping, for entangling the two remote processors involved within the cNOT. Clearly, the
swapping task is omitted whenever the cNOT operates between data qubits stored at processors that are neighbors within the network topology, as for

the ith layer. (a) Original quantum circuit. (b) Compiled quantum circuit.

B. BASIC STRATEGIES FOR DISTRIBUTING CNOTS

Let us consider a single layer of the original n-qubit quantum
circuit. Clearly, the number of CNOTS in each layer is lower
or equal to 7, given that at most 5 gates can be executed
simultaneously (and thus belong to the same layer) by oper-
ating on different pairs of qubits.

As discussed in Section IV-A, we aim at considering the
worst-case scenario in terms of overhead induced by the dis-
tributed computing architecture. Hence, each CNOT within
the quantum circuit—given that it operates on physical qubits
stored at different processors, as discussed in Section [IV-A—
is aremote CNOT. As a consequence, the compiler must map
at most 5 remote CNOTSs in each layer.

1) ENTANGLEMENT-SWAPPING-BASED STRATEGY

The first strategy for implementing remote CNOTs is based
on the entanglement swapping technique discussed in
Section III-A and shown in Fig. 6.

Accordingly, each remote CNOT is implemented by first
generating link entanglement [44] among neighbor nodes.
To this aim, different techniques for entanglement genera-
tion can be employed, depending on the particulars of the
underlying qubit technology [21]. Nevertheless, link entan-
glements can be simultaneously generated, given that each
processor is equipped with two communication qubits. Once
generated, the entanglement is simultaneously’ swapped at
intermediate nodes so that a Bell state is distributed between
the two remote processors, and, finally, the remote CNOT is
obtained, as shown in Fig. 4(b).

The entanglement-swapping-based strategy is outlined in
Fig. 8(b) in terms of basic tasks. Within the figure, the
particulars of each task are omitted for the sake of clarity.

7In general, the capability to generate (and to regenerate, once depleted)
and distribute entangled Bell states through different links in parallel de-
pends on the quantum resources available, i.e., both the number of commu-
nication qubits at each processor and the interconnection (shared bus versus
point-to-point) among the communication qubits. Differently, the possibility
to simultaneously swap the entanglement at the intermediate nodes depends
only on classical resources, i.e., the possibility to simultaneously transfer
classical information.

4100720

For instance, entanglement swapping—although depicted as
a single block—is indeed obtained with a quantum circuit
composed by three layers, as shown in Fig. 6(b). Similarly,
the link entanglement generation requires a quantum circuit
with a depth equal or greater than two, depending on the par-
ticulars of the quantum technology underlying entanglement
generation and distribution [21].

Nevertheless, the figure® provides a clear intuition of both
the sequentiality constraints between the different tasks and
the parallelism achievable within each task. Specifically,
whenever the CNOTs overlaps® within the network topology
[as for the CNOTs of the layer #i+1 in Fig. 8(a)], they must be
executed sequentially. Differently, CNOTs that do not overlap
[as for the CNOTs of the ith layer in Fig. 8(a)] can be ex-
ecuted simultaneously. Since we are interested in assessing
the worst-case overhead induced by distributed computation,
in the following, we consider the worst-case scenario, in
which all the CNOTs of an arbitrary layer of the quantum
circuit overlap within the network topology. Hence, we have
that the depth overhead of the entanglement-swapping-based
strategy does not exceed the following depth:

n
E des

where n denotes the number of logical qubits within the quan-
tum circuit and d, is a constant factor (independent from the
characteristics of the original quantum circuit) given by

2

3)

des = Cle + Cpgm + Cex

8We note that—for the sake of simplicity—in Fig. 8(b), we simply
mapped the jth logical qubit Q; of layer #i in Fig. 8(a) onto the (j + 1)th
processor, ignoring so any optimization achievable with a proper mapping
of the logical qubits of the quantum circuit onto the physical qubits of the
quantum processor.

9The term “overlap” indicates the case when the execution of the consid-
ered CNOTS involves overlapping sets of intermediate processors as a con-
sequence of the constraint we imposed on the network topology of having
2n — 2 communication qubits. With reference to the example in Fig. 8(a),
the CNOT between Qp and Q- in the layer #i+1 overlaps with the CNOT
between Q) and Qy, being the communication qubits at the processors #1
and #2 needed to both of them. Differently, the CNOT between Q3 and Qs
does not overlap with the CNOT between Qp and Q,, and hence, they can
be performed in parallel.

VOLUME 2, 2021

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

QUBIT SWAPPING

LAYER #i LAYER #i+1 LAYER #i+2 e v
| ' ' |
S B A B Processor #1 — T I T
Qo D I y LinkEnt o] 1
01— E ! A Processor #2 —| - 4 D) —--&
e | .] ol LinkEnt LinkEnt LinkEnt 1 |
o b ! - D ay. I
Q2 D . s : Processor #3 — 1 N> A\
N b ' LinkEnt : i] :
Y U M 1 Ay m AN
Qs DT — : Processor #4 — O N —o
o b] | LinkEnt LinkEnt LinkEnt) |
Q4 T & T b p . Py al .
1 ' [' rocessor #5 — :
Pl Do ' LinkEnt Lo v MR
@ —+— & b= Lo PN
. G ' Processor #6 — D : ; : b : b
(a (b)

FIG. 9. Data-qubit-swapping-based strategy. Swapping data qubits between remote quantum processors can be advantageous whenever the original
quantum circuit presents repetitions of the same cNOT interaction pattern, as for layers #i+1 and #i+2 in (a). Although not shown in the figure, the
entanglement swapping tasks [as in Fig. 8(b)] are needed whenever it is necessary to swap data qubits stored at processors that are not neighbors
within the network topology. (a) Original quantum circuit. (b) Compiled quantum circuit.

with ¢, and cpg, denoting the number of layers required
to perform the link entanglement task and the entanglement
swapping task, respectively, and c., denoting the number
of layers required to perform a remote CNOT once the Bell
state has been distributed between two processors. The actual
values of ¢y, Cpsm, and cqx depend on the particulars of the
underlying hardware technology.

From (2), we have that the actual depth of an arbitrary
d-depth quantum circuit compiled with the entanglement
swapping based strategy will always be lower than 5 d, ne-
glecting the constant d,;. Hence, the depth overhead grows
linearly with the number of logical qubits of the quantum
circuit to be compiled. Given that this result holds for the
worst-case scenario (one-data-qubit processors arranged in a
one-dimensional network topology), the actual depth over-
head induced by any arbitrary distributed architecture will
always be upper-bounded by (2).

We further note that classical information must be ex-
changed between the quantum processors. For instance, the
entanglement swapping task requires the transmission of
classical information (i.e., the measurement output) through-
out the quantum network. Hence, in case of long-distance
quantum processors, the actual execution time of the com-
piled quantum circuit may be affected by the latency induced
by the classical communications.

Finally, due to the complex and stochastic nature of
the physical mechanisms underlying quantum entangle-
ment [44], several attempts can be required for establish-
ing a link entanglement, and this may also impact the ex-
ecution time of the compiled quantum circuit. Indeed, we
should consider link entanglement as the critical task for
distributed quantum computation, given that the remaining
tasks require only local quantum operations and classical
communications. From this perspective, the entanglement-
swapping-based strategy requires at most % repetitions of the
link entanglement task, regardless of the original quantum
circuit and regardless of the characteristics of the network
topology underlying the distributed computing architecture.

VOLUME 2, 2021

2) DATA-QUBIT-SWAPPING-BASED STRATEGY

The entanglement-swapping-based strategy takes full advan-
tage of the augmented connectivity enabled by the commu-
nication qubits—as discussed in Section III-A—to allow in-
teractions between remote processors within each layer.

Nevertheless, whenever the original quantum circuit
presents repetitions of the same CNOT interaction pattern
between logical qubits—as for layers #i+1 and #i+2 in
Fig. 9(a)—a more elaborate strategy—based on moving the
data qubits—can provide better performance.

The strategy is shown in Fig. 9: the objective is fo arrange
(i.e., to swap) the data qubits within the quantum processors
so that eventually each CNOT of the original layer operates
on qubits stored at neighbor processors within the network
topology.

Intuitively, the strategy goal can be modeled as an array
sorting problem. Indeed, similarly to classical sorting, the
n data qubits (representing the values to be sorted) must be
ordered within the network topology (representing an array
with size equal or greater than n). However, differently from
classical sorting where any couple of values can be swapped
regardless from their position within the array, with the data-
qubit swapping, the constraints arising from the underlying
network topology must be carefully taken into account. To
this aim, by taking advantage of the sorting network theory,
it is easy to model the network topology constraints through
the notion of insertion network (or, equivalently, bubble net-
work). As a consequence, the overall depth of the equivalent
quantum circuit grows with the number n of logical qubits
as [45]

2n—3 “

instead of a logarithmic logn depth factor as for classical
sorting.

Nevertheless, sorting networks—and in general classical
sorting—are based on the assumption that there exists a total
(monotonic) order over the array elements. Hence, there ex-
ists a unique solution to the sorting problem. Conversely, the
data-qubit-swapping-based strategy admits several equiva-
lent solutions for the arranging problem, as exemplified in

4100720

@IEEE Transactions on

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

uantumEngineering
LAYER #1
- -, Proc.#l — &0 proc. #1 —&8
Qo T‘—:_
Q1 — : Proc. #2 —0Q3— Proc. #2 _.Qz_
Q2 : o Proc. #3 & Proc. #3 &
Qs _:_e i Proc. #4 _.Qz_ Proc. #4 —OQJ—

(a) (b) ©

FIG. 10. Data-qubit-swapping-based strategy: equivalent mappings.
Both (b) and (c) represent valid arrangements of the data qubits within
the remote quantum processors so that each cNOT in (a) operates on
qubits stored at processors neighbor within the network topology. (a)
Original quantum circuit. (b) Possible arrangement. (c) Alternative
equivalent arrangement.

Algorithm 1: Data-Qubit Swapping.
Input: n-qubit circuit layer L with mod(n,4) = 0 and
5CNOTs
Output: layer L with each CNOT Operating on Neighbor
Qubits.

1: function Sort (L)

2: if 3CNOT(g;, ;) with i, j < 7 then
3: //3CNOT (g, qi) withk, 1 > 5
4: SWAP(gi+1, 4)
5: SWAP(gir1. d1)
6: L =L\{qi qi+15 qs Gr+1}
7 else
8: /13 CNOT(q%, q) withl > 3
9: // and 3CNOT(q;, q;—1) Withi < n/2
10: SWAP(q% ,q1—1)
11: Swap(g;, Clg—l)
12: L:L\{Q%—va%9ql—l’ql}
13: end if
14: if L # () then
15: Sort(L)
16: end if

17: end Function

Fig. 10. We now formalize these considerations with the
following theorem.

Theorem 1: Let us consider the ith layer of an arbitrary
n-qubit quantum circuit. The depth of the corresponding
compiled quantum circuit, obtained through the data-qubit-
swapping-based strategy, does not exceed the following
depth:

n
3 das + di (5)

where d;s and d;s are constant factors (independent from the
characteristics of the original quantum circuit) given by

dqs = 3 (cre + Cpsm + Cex) (6)
dyy = Cle + Cex (7

with ¢j. and cpg, denoting the number of layers required
to perform the link entanglement task and the entanglement

4100720

swapping task, respectively, and c., denoting the number of
layers required to perform the remote CNOTs once the Bell
state has been distributed between two processors.

Proof: The proof easily follows by recognizing that: 1)
the function SORTY(-), defined in Algorithm 1, is called at
most 7 times; and 2) after these calls to SORT(-), all the
CNOTSs, by acting on qubits stored at neighbor processors,
can be executed at once through link entanglement followed
by local operations, as shown in Fig. 4(b).

More specifically, in each call, we have two disjoint cases
(line 2).

In the former case (lines 3-6), there exists a CNOT act-
ing within the first half portion—i.e., the first 5 logical
qubits—of the original layer. Since we are considering the
worst case—namely, a layer with 5 CNOTs—then we have
that there exists at least one CNOT acting on the last half
portion—i.e., the last 5 logical qubits—of the original layer.
Hence, the two CNOTSs do not overlap and two simultaneous
SWAP operations can be executed—one in each half portion
of the original quantum circuit—as shown here:

a---qigit1 -+ GG G2 oo G R4l - G - Gn

a .- 4 95 ---4qi+1---4q2 -4k qi .- Qk+1 ---Gn

so that, within the compiled circuit—the two CNOTs act on
qubits stored at neighbor processors. Within the previous
diagram, as well as in Algorithm 1, we omitted some minor
particulars for the sake of simplicity. For instance, we implic-
itly assumed that i (and k) is odd—i.e., mod(i, 2) = 1—so
that g ; must be swapped with g; 1. Clearly, whether i should
be even, g; must be swapped with g;_.

In the latter case (lines 8—12), each and every CNOT acts
on two logical qubits belonging to both the half portions of
the original layer. Let us consider, with no lack of generality,
the CNOT acting on the 5th logical qubit (i.e., the last qubit of
the first half portion) and let us denote as g; the second qubit
on which such a CNOT operates. Since we are considering a
layer with 7 CNOTS, then we have that there exists a CNOT
acting on the [— 1th qubit. By denoting as g; the second qubit
on which such a CNOT operates, it follows i < 7. Although
the two CNOTs overlap, by properly selecting two SWAP
operations, as shown here:

S E N A /S R ¢/ B

qr .- qu-1 - "¢ Q-1 ---"q2 @ ---Gn

wl3

we have that the SWAPs can be simultaneously executed so
that—within the compiled circuit—the two CNOTs act on
qubits stored at neighbor processors. Regardless of which
case holds, each call to the SORT (-) function compiles two
CNOTs. By recalling that at most 5 CNOTSs are present in a
layer, the thesis follows. |

From (5), we have that the actual depth of an arbitrary
d-depth quantum circuit compiled with the data-qubit swap-
ping based strategy will always be lower than 7 d, neglecting

VOLUME 2, 2021

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

the constant factors. Hence, the depth overhead is asymptot-
ically lower than the overhead induced by the entanglement-
swapping-based strategy. However, an explicit comparison
between the two strategies depends on the particulars of the
underlying qubit technology through the exact expressions of
des and ds. Furthermore, it also depends on the repetitions
of the same CNOT interaction patterns within the original
quantum circuit.

As regards the number of repetitions of the link entangle-
ment task, in general, it depends on the characteristics
of the underlying qubit technology, as discussed in
Section IV-C. With reference to the IBM quantum
processors, where a SWAP operation is obtained through
a sequence of three CNOTs, from (5)—(7), we have that
the data-qubit-swapping-based strategy requires at most
2n repetitions of the link entanglement task, regardless
of the original quantum circuit and regardless of the
characteristics of the network topology underlying the
distributed computing architecture.

C. DISCUSSION

As already mentioned above, the performance of the two
strategies firmly depends on the particulars of the underlying
hardware technology through the parameters d,, dys, and d (;s
given in (3), (6), and (7).

To better clarify this point, let us consider d,s, which
inherently denotes the cost for a SWAP operation. Having
assumed in this article the CNOT being the fundamental mul-
tiqubit gate, a single remote SWAP operation can be obtained
through three remote CNOTs, as in Fig. 3(b). And this is
the rationale for the constant factor equal to 3 in (6), which
accounts for the cost of three remote CNOTs.

Clearly, by changing the assumptions on the underlying
hardware technology, the expression of d,; changes as well.
For instance, photonic technology can provide the SWAP gate
as the native operation [46], and in such a case, dy; is equal
to 1. Nevertheless, the main result—i.e., (5)—continues to
hold. Furthermore, whenever the SWAP gate is the native
operation, a single CNOT can be obtained through two con-
secutive SWAPs interleaved by single-qubit operations [47].
Hence, the expression of d,; must change accordingly but the
main result—i.e., (3)—continues to hold as well.

Indeed, it is worthwhile to note that, despite the differ-
ences between the performance of the two strategies, there
exists a one-to-one mapping between the strategies. Specif-
ically, there exists an admissible transformation allowing to
map the compiled circuit obtained with a strategy into the
compiled circuit obtained with the other strategy. And the
corresponding computational task exhibits a polynomial-
time complexity'” for every original circuit.

10Given that both the strategies exhibit a polynomial-time computational
complexity, as proved in Section V-A.

VOLUME 2, 2021

V. PERFORMANCE ANALYSIS

Here, we perform a performance analysis for the compiler
design conducted in Section IV. More in detail, in Section V-
A, we illustrate the algorithmic implementation of the com-
piler, proving so its attractive feature—a polynomial time
complexity that grows quadratically with the number of log-
ical qubits and linearly with the depth of the quantum circuit
to be compiled—from a computational perspective. Then, in
Section V-B, we validate the theoretical upper bounds on the
number of layers that result from compiling a layer of remote
CNOTs, derived in Section IV-B, against an extensive set of
medium-size quantum circuits of practical interest. Finally,
with Sections V-C and V-D, we conclude the performance
analysis through an unfair—as clearly shown with Fig. 14—
comparison with the state of the art for two different network
topologies.

A. COMPILER IMPLEMENTATION

We implemented the strategies discussed in Section IV-B in
Python, using Qiskit [27] as the development framework.
Given a quantum circuit described in the QASM format,
the compiler proceeds to instantiate a distributed architecture
that mimics the one described in Section IV-A. To model the
worst-case scenario depicted in Fig. 7, each QPU has one
data qubit and two communication qubits. Moreover, each
QPU has two neighbor QPUs, with the exception of the outer
QPUs that have one neighbor QPU only. Each qubit of the
circuit is assigned to the data qubit of one QPU.

The compilation process is summarized and illustrated in
Fig. 11. Reading the circuit from left to right, the front layer,
i.e., alayer comprising only CNOT gates that can be executed
in parallel, is updated. To this end, one-qubit gates are imme-
diately mapped to the compiled circuit, while CNOT gates
are added to the front layer. This is done until all logical
qubits are interested by a CNOT or there are no more CNOT
gates that can be executed in parallel in the current front layer.
Then, the front layer is compiled, rendering all currently
involved CNOT gates executable. This process is repeated
until no more front layers can be computed, meaning that all
the circuit gates have been mapped to the distributed archi-
tecture.

Front layer compilation is based on Algorithm 2, where
one can choose between the two strategies discussed in
Section IV-B. When the entanglement-swapping-based
strategy is adopted, remote CNOT gates preceded by entan-
glement swapping are applied whenever the involved QPUs
are not neighbors. Note that to perform entanglement swap-
ping, as well as remote CNOTs, we need to generate link
entanglement between all involved QPUs.

Regarding the more advanced data-qubit-swapping-based
strategy, the list representing the interaction between qubits
is prepared, and then, Algorithm3 is used to compute the data
swap operations needed to reorder the qubits. Referring to
Fig.12(a), the list representing the interaction between qubits
before swapping would be [112323], while the sorted list

4100720

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

Algorithm 2: COMPILEFRONTLAYER.

Input: the Front Layer F to be Compiled, the Executed
Gates £ until now

Output: the Executed Gates £ Updated With the Com-
piled Front Layer F.

if data-qubit-swapping-based strategy then
prepare interactions vector
swaps <— SORTPAIRS(INTERACTIONS)
for all swap € swaps do // Perform remote
SWAPs
if two EPR pairs between QPUs then
Teleport(swap.ql, swap.q2)
else
ReEmMOTECNOT(swap.ql, swap.q2)
REMOTECNOT(swap.q2, swap.ql)
REMOTECNOT(swap.ql, swap.q2)
end if
end for
end if
for all gate € F do
REMOTECNOT(gate.control, gate.target)
end for
return £
function REMOTECNOT(control, target)
if control and target are not on neighboring QPUs
then
gpug < QPUs of control
qpu, < QPUs of target
forie {0,..,n—2}do
add link entanglement between gpu; and
qpuit1t0 €
end for
add entanglement swap between gpug and gpu,,
to &
end if
add link entanglement between gpugy and gpu,, to £
add a remote CNOT between control and target
to&
end Function
function TELEPORT(g1, ¢2)
if g1 and g2 are not on neighboring QPUs then
gpug < QPUs of gl
qpu, < QPUs of g2
foric {0,..,n—2}do
add link entanglement between gpu; and
qpuiyi to €
using two available EPR pairs between
QPUs
end for
eo1, ep2 < the two communication qubits
at gpug
enl, ep2 < the two communication qubits at
qpun
add entanglement swap between eq; at gpug and
en1 at gpuy, to &

4100720

add entanglement swap between eqy at gpug and
enn at gpuy to &
add quantum teleportation between g1 and
ey to&
add quantum teleportation between g2 and e,
to &
add local swap between g1 and eq;
add local swap between g2 and e,
end if
end Function

after swapping would be [112233], meaning that no overlap-
ping CNOTs are left in the layer.

The data-qubit swapping routine operates on lists with a
number of elements—i.e., a number of logical qubits—that
is a multiple of 4. For this reason, a couple of dummy values,
set to —1, may have to be added to the end of the list when-
ever the number of CNOTs is odd. Given that the algorithm
searches for swaps form left to right, the dummy couple at the
end will be left untouched. After creating masks to keep track
of already swapped qubits, the algorithm finds all necessary
swaps in exactly 7 steps, where n is the number of elements
in the list, i.e., the number of logical qubits interested by
CNOTs.

Taking into account the topology of the worst-case sce-
nario shown in Fig. 7, to perform a swap, at least three remote
CNOTs are needed. After all the data-qubit swaps have been
applied, the necessary remote CNOTs have to be placed.
Ideally, this last step would involve only remote CNOTs
between neighbor QPUs, but when not all qubits of the circuit
are involved in the front layer, such as Q; in Fig. 12(a), it may
be still necessary to perform some entanglement swapping
operations, as shown in Fig. 12(b). This is because, when
sorting pairs, our algorithm does not take into account QPUs
that are not involved in the current front layer. Consequently,
the implementation of the data-qubit-swapping-based strat-
egy is actually a hybrid between the two strategies described
in Section IV-B, avoiding data-qubit swapping if not neces-
sary and resorting instead to entanglement swapping.

As shown in Fig. 12, starting from the layer in
Fig. 12(a), following the data-qubit-swapping-based strat-
egy, in Fig. 12(b), we apply a remote SWAP between qubit 3
and qubit 4, and then, we can execute all remote CNOTS in
parallel.

Moving from the topology illustrated in Fig. 7 to the one in
Fig. 13, we can devise a different strategy to execute swaps
by exploiting the augmented connectivity, described in Algo-
rithm 2. Specifically, to perform a SWAP between QPU O,
and Qy, our compiler uses one communication qubit at each
QPU as a buffer memory and exploits quantum teleportation
to move the state of a data qubit from Q, to Q, and vice
versa, in parallel. After the two parallel teleportations, we
can execute two parallel local SWAPs between communica-
tion qubits and data qubits at each QPU to effectively achieve

VOLUME 2, 2021

@IEEE Transactions on

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING uantum Englneerlng
T N \
! Compile { Compile Front Layer | D
H i ! Distributed
| : | I —): Quantum
| : | All Gates | | Circuit
| ; : Executed | |
| | i \
| i If !
Distribute Update | ! Sortil Apply
learzz‘:tm —3| Data Qubits |— Front § orting > R !
to Devices | Layer Else CNOTs |
[} ' L}
| A 1
| Else| |
\ /
Ne——————— _____________—___—_——C -
FIG. 11. Workflow of the proposed compiler.
CNOT 1 CNOT 1 CNOT |
QO —:——e— Processor #1 — Link Ent E E Processor #1 — T :
1 ankbn i 1 LinkEnt []
@ ! : Processor #2 — Enf,SwapI N Processor #2 — ~| EnfSu,‘{);)I I
0 I LinkEnt [LinkEnt .
—_—— '
2 Ll Processor #3 — 1 : Processor #3 — D
o e 2" REMOTESWAP CNOT 2
' B e e
Qs — CII\I‘O‘T z Processor #4 —| L I
1 CNOT 3 e |]
Ve i Processor #4 — T LinkEnt| | o
Qi ——1 - LinkEnt [N i BN
1] o Processor #5 LA Processor #5 — 4 D
' — ! H - . . [t
Qs : 5 5 : RemoteSwap ':__ ;: E LinkEnt LinkEnt LinkEnt ' Pt
S - 1 ~ess — - ' Processor #6 — 1 L—e—t
cNoT2 i Processor#6 = ot ! [: LinkEnt | | HE
1 1 L) !t 1
Qs 52 Processor #7 — D T Processor #7 — 1 N
-l U S
oNoT cNoT3
(a) (b) ()

FIG. 12. Compilation of a layer with three parallel CNOTs using the sorting strategy. (a) Layer with three parallel CNOTs. (b) Layer distributed with the

Sort strategy. (c) Distributed layer after decomposing the Remote SWAP.

QUANTUM PROCESSOR #1 QUANTUM PROCESSOR #2

QUANTUM PROCESSOR #3

QUANTUM LINK

(GUANTUM LINK

QUANTUM PROCESSOR #N

FIG. 13. Improving over the worst-case scenario topology. Only one data qubit is available at each quantum processor, but neighboring quantum

processors are connected with two quantum links, realized by two EPR pairs.

data qubit swapping between Q. and Q,. This is clearly
beneficial as it only requires one layer of link entanglement
generation between the interested QPUs, unlike the previous
scenario where we needed three layers of link entanglement
generation to perform three remote CNOTs.

The difference between data-qubit swapping and entan-
glement swapping lies in the fact that, if the subsequent front
layers are similar (in terms of CNOT interaction pattern) to
the one just compiled, not much data swapping and very little
entanglement swapping (given that the front layers involve
most of the qubits) will be necessary to compile those layers.

Regarding the computational complexity, the compiler
(whose behavior is summarized also by Algorithm 4 in
the Appendix) reads the circuit from left to right while
updating the front layer, so its computational complexity is
0O(d), where d is the depth of the circuit, i.e., the number
of layers. Algorithm 2 loops through all necessary swaps
found by Algorithm 3, and applies remote CNOTs. As we
must take into account for possible entanglement swapping
operations between QPUs, applying a remote CNOT has a

VOLUME 2, 2021

computational complexity of O(n), with n being the number
of QPUs. Given that we need at most /4 swaps, the compu-
tational complexity of Algorithm 2 turns out to be O(n?). The
overall computational complexity of distributing a circuit is,
therefore, O(dn?).

B. COMPILING OVERHEAD VALIDATION

We validate the theoretical upper bounds (derived in
Section IV-B) on the number of layers that result from com-
piling a layer of remote CNOTs, considering an extensive set
of medium-size quantum circuits (the largest ones requiring
16 qubits, with the exception of a GHZ circuit, used to pro-
duce Greenberger—Horne—Zeilinger states, and two random
circuit with 20 qubits). Specifically, we consider quantum
circuits that are publicly available and widely adopted for
testing quantum compilers [25], [26],'! plus a few quan-
tum chemistry circuits for the implementation of the unitary

https://github.com/deeptechlabs/quantum_compiler_optim/tree/
master/examples

4100720

https://github.com/deeptechlabs/quantum_compiler_optim/tree/master/examples

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

Algorithm 3: SORTPAIRS.

Input: a Vector v representing CNOT interactions be-
tween qubits pairs, ex. [1 223 1 3]

Output: the swaps to Perform.

/I f.e.o. stands for “first element of”
if length(v) mod4 # O then // length(v) must be
multiple of 4
add {—1, —1} to v // Add a dummy pair at the end
end if
swaps < ¥ // List of SWAPs to perform
n < length(v)
maskl < {0, ..., 5 — 1}
mask2 < {5,...,n— 1}
cycle < 0
while cycle < n/4 do
w < indexes of unique values in v
index_last < {0, ..., |v[mask1]|} \ w
if index_last = () then
swap v[mask1[end]] and
fe.o. s.t. vimask2] # v[maskl[end]]
update swaps
end if
v, maskl, swaps < swap(v, maskl, swaps)
v, mask2, swaps < swap(v, mask2, swaps)
end while
return swaps
function swap(v, mask, swaps)
w < indexes of unique values in v
index_last < f.e.0. {0, ..., |v[mask]|} \ w
index_first < f.e.o.v[mask] s.t. =
v[mask[index_last]]
if index_last is odd then
index_swap < index_last — 1
else
index_swap < index_last + 1
end if
swap v[mask[index_swap]] and
v[masklindex_first]]
update swaps
remove mask[index_swap] and mask[index_last]
from mask
return v, mask, swaps
end Function

quantum coupled cluster [48], [49] and the RYRZ heuris-
tic [50] wavefunction Ansitze.

More into details, Table 1 reports a sample of the re-
sults that have been collected by compiling the circuits
with both entanglement-swapping-based and data-qubit-
swapping-based strategies. Within the table, the first column
shows the name of the circuit and the second column shows
the number n of logical qubits within the circuit. The third
column shows the number of CNOT layers in the original
circuit—i.e., the uncompiled circuit. The fourth and seventh

4100720

columns show the theoretical upper bound of the depth of the
compiled CNOT layers—computed in agreement with (2)
and (4), respectively—whereas the fifth and eighth column
show the depth of the compiled CNOT layers. For comput-
ing the upper bound values and collecting the experimental
results, we set the parameters cje, Cpsm, and cqy in (3), (6),
and (7) as unit factors, thus obtaining d,s = 3, dgy = 9, and
dys = 2.

Table 1 clearly shows that the upper bounds on the number
of layers that result from compiling the layers of remote
CNOTs are widely respected and hold for all the considered
examples. Indeed, by comparing the actual depth with the
theoretical one, the overestimation of the bounds given in
Section IV-B becomes evident. The rationale for this lays
in the number of CNOTs in each layer, which are usually
significantly lower than what assumed. For instance, let us
consider the GHZ circuits, where each layer contains a single
CNOT, and hence, the derived bounds—by assuming n/2
CNOTs in each layer—overestimate the depth. Nevertheless,
the discrepancy can be easily fixed by substituting the /2
factor with the actual estimation on the average number of
CNOTs in each layer with no loss of generality.

C. EXPERIMENTAL RESULTS FOR THE WORST-CASE
TOPOLOGY

We compared our compiler with the one proposed by Andrés-
Martinez and Heunen [42], in respect of which we were able
to set each QPU memory to one data qubit but we could not
impose any limitation over the number of communication
qubits per QPU nor the topology of the quantum network,
which is always assumed to be an hypercube. Such a topol-
ogy is shown in Fig. 14(b), where one can clearly see the
connectivity disparity, compared to the worst-case topology
illustrated in Fig. 14(a). In Figs. 15-17, the results of the
comparative evaluation are plotted. For a better readability of
the figures, we omit data related to a 20-qubit random circuit
that presents values far greater than the rest of the dataset, for
all compiling strategies including the state of the art (such
data have been included in Table 1).

Fig. 15 shows the number of link generation layers, i.e., the
number of layers in the distributed circuit that comprise only
Bell state generation and distribution between QPUs. It is
clear that our compiler requires less layers of link generation
for almost every tested circuit. Having fewer layers of link
generation reduces the time that data qubits have to spend
idle, i.e., possibly affected by decoherence, while waiting
to be able to perform remote operations. Fig. 15(c) also
shows that choosing the data-qubit-swapping-based strategy
against the entanglement-swapping-based strategy is gener-
ally the best choice.

Regarding the depth of the distributed circuits, illus-
trated in Fig. 16, we can see that for some circuits,
our compiler clearly outperforms Andrés-Martinez’s one.
Fig. 16(c) confirms that the data-qubit-swapping-based
strategy 1is better than the entanglement-swapping-based
one.

VOLUME 2, 2021

@IEEE Transactions on

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING uantum Engineering

TABLE 1. Validation of the theoretical upper bounds derived in Section IV-B against a heterogeneous set of quantum circuits each circuit is
characterized by a number of qubits n and a number of CNOT layers, i.e., layers that comprise only CNOT gates. For each compiling strategy, there is a
theoretical upper bound on the number of layers that are necessary to realize the remote CNOTs and an actual number of layers resulting from the
compilation process. The ratio between the latter and the former is also reported

circuit name # qubits n | # CNOT layers Entanglement Swap Data-Qubit Swap
CNOT layers X 5d.s | compiled # layers | compiled/theoretical | # CNOT layers x (jjdys + d;,) | compiled # layers | compiled/theoretical

4gt12-v1_89 16 88 2112 212 0.10 3344 233 0.07
4gt4-v0_73 16 160 3840 372 0.10 6080 399 0.07
4mod7-v1_96 16 65 1560 151 0.10 2470 155 0.06
9symml_195 16 12849 308376 34721 0.11 488262 32809 0.07
adder 10 55 825 144 0.17 1100 187 0.17
alu-v2_31 16 172 4128 459 0.11 6536 436 0.07
ghz_20 20 19 570 56 0.10 893 56 0.06
ghz_4 4 3 18 8 0.44 33 8 0.24
H2_RYRZ 4 25 150 66 0.44 275 69 0.25
H2_UCCSD 4 52 312 72 0.23 572 72 0.13
H20_RYRZ 14 125 2625 971 0.37 3625 2040 0.56
H20_UCCSD 14 12937 271677 16017 0.06 375173 16017 0.04
ising_model_16 16 20 480 31 0.06 760 31 0.04
life_238 16 8356 200544 22391 0.11 317528 21073 0.07
LiH_RYRZ 12 105 1890 711 0.38 3045 1547 0.51
LiH_UCCSD 12 7264 130752 9216 0.07 210656 9216 0.04
one-two-three-v2_100 | 16 29 696 76 0.11 1102 69 0.06
Random_20q_RYRZ 20 185 5550 1991 0.36 8695 4113 0.47
Random_20q_UCCSD | 20 110497 3314910 130197 0.04 5193359 130197 0.03
randoml_n5_d5 5 15 90 69 0.77 165 53 0.32
random2_n16_d16 16 48 1152 666 0.58 1824 588 0.32
rd53_138 16 42 1008 116 0.12 1596 100 0.06
root_255 16 5965 143160 16699 0.12 226670 15973 0.07
sqn_258 16 3719 89256 9713 0.11 141322 9210 0.07
sym9_146 16 91 2184 271 0.13 3458 254 0.07

(@ (b)

FIG. 14. Comparison of the worst-case scenario LNN topology with the hypercube topology assumed by the compiler proposed by Andrés-Martinez and
Heunen [42]. As shown in (a), for n = 16 QPUs, the longest path between two QPUs consists of n — 1 = 15 links, while with the hypercube topology in
(b) is only about log,n = 3 links. (a) LNN topology. (b) Hypercube topology.

— T — 77— — T

24000 1= 750 T T 1 24000 1 750 T T 1 24000 750 T T]
g 2000 | . | | g g 2000 o] . | | g g 2000 | . | | g
20000 | e 4 @ 20000 | Lt ‘A & 20000 |- et "4
— 250 ;." 4 - 250 ;." 4 - 250 [- ;." 4
S 18000 | 4 S 18000 | 4 S 18000 | 4
= o . . =1 o . . =3 o . .
o S s & o IS S S S o S s S S
q:) 16000 [& & I 1 g 16000 ,‘\l’a & ,{0 1 g 16000 b, § A 1
Q o} K7}
O 14000 [g O 14000 [g O 14000 g
5 12000 O 4 5 12000 S 4 5 12000 S 4
Q10000 |- g g 10000 |- g T 10000 | g
8 . i . e} .
o 8000 [g o 8000 [g o 8000 [g
a - a - a “.
S eooo & 1 S 000 | .. 1 2 000 N 1
12 (2] wn
€ 4000 | O 4 € 4000 | O 4 € 4000 | O 4
w o w " w o

2000 — 2000 — 2000 [ae . —

- e
o S S S S RO S o T S S S RO S o S S S SR
°$ s s S&SS ° s s & N S s § TS SSsSs s NN
FEEEFSFESFSESSS FEESFEFEEFSTSS FEESESEFFSFTSS
Martinez - Link Generation Layers Martinez - Link Generation Layers Martinez - Link Generation Layers
(a) (b) (©)

FIG. 15. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez's

compiler [42], in terms of link entanglement generation layers. Our compiler distributes circuits on the worst-case topology, with only one link between
neighboring QPUs (illustrated in Fig. 7), while Andrés-Martinez’s one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both
topologies are characterized by one data qubit per QPU.

VOLUME 2, 2021 4100720

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

200000

180000

160000

140000

120000

100000

80000

Ent Swap Based - Depth

60000

40000

20000

1000

s
° §§
¥

§88SsFES

Martinez - Depth

(2)

&4

Data-Qubit Swap Based - Depth

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

=

1000
750
500
250

ol

TEEES

3

§5é¢

Martinez - Depth

(b)

¢

$

S

Data-Qubit Swap Based - Depth

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

1000

750 -
500 -

250 -

e & & & & o
FEFEsddeds
Ent Swap Based - Depth
()

FIG. 16. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez’s

compiler [42], in terms of circuit depth. Our compiler distributes circuits on the worst-case topology, with only one link between neighboring QPUs
(illustrated in Fig. 7), while Andrés-Martinez’s one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both topologies are
characterized by one data qubit per QPU.

100000

90000

80000

70000

60000

50000

40000

30000

Ent Swap Based - EPR Pairs

20000

10000

0

4000 q
3000 4
2000 - 4
1000 f 4

e &S
§§ffs

£

Martinez - EPR Pairs

(@)

Data-Qubit Swap Based - EPR Pairs

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

4000 4
[3000 - 47
L 2000 1
1000 | 4
L S
o
LS
S S & § § & &
EA A B S A A B SV & |
Martinez - EPR Pairs

(b)

Data-Qubit Swap Based - EPR Pairs

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

4000 q
3000 8|
2000 4

1000 -~ 4

§&E8E
o
(N S & &
FEFFFFSESFS
Ent Swap Based - EPR Pairs

©

FIG. 17. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez's

compiler [42], in terms of consumed EPR pairs. Our compiler distributes circuits on the worst-case topology, with only one link between neighboring
QPUs (illustrated in Fig. 7), while Andrés-Martinez’s one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both topologies
are characterized by one data qubit per QPU.

24000

22000

20000

18000

16000

14000

12000

10000

8000

6000

4000

Ent Swap Based - Link Generation Layers

2000

750

500 -

250 -

<
.

TEEEEESESESESS
Martinez - Link Generation Layers
(a)

Data-Qubit Swap Based - Link Generation Layers

24000

22000

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

500

ot
.
'*'.\\\\\\\\\\
5 5
FEEFFSEFESFSS

Martinez - Link Generation Layers

(b

Data-Qubit Swap Based - Link Generation Layers

24000 [

22000

20000 [

18000 -

16000

14000 -

12000 |

10000 -

8000 [

6000

4000

2000

N
'

S8
Ent Swap Based - Link Generation Layers

©

-
.

S
&

FIG. 18. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez's

compiler [42] over link entanglement generation layers. Our compiler distributed circuits on the topology illustrated in Fig. 13, with two links between
neighboring QPUs (illustrated in Fig. 7), while Andrés-Martinez’s one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both
topologies are characterized by one data qubit per QPU.

4100720

VOLUME 2, 2021

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

200000

200000

1000

180000 [180000 (- 1000

750 750 -

160000 F spp |- 42 4 160000 -

250 -

250 -

140000 - 140000

500 - 74

25|
500 L
oL
1000
%0
2

120000 - 120000

100000 - 100000

80000 - 80000 [

Ent Swap Based - Depth

60000 - 60000 [

Data-Qubit Swap Based - Depth

40000 - 40000 -

20000 - 20000 -

okl L = wl

.

ol

K

200000

180000 [1000 N
750 - o
160000 [500 &

250
140000

2L
500 L
|
‘o0

120000

100000

80000 -

60000 -

Data-Qubit Swap Based - Depth

40000 -

20000 e
-
o

PP iiiiiiis

K

Martinez - Depth

(a)

TS

Martinez - Depth

o
R AR A A
Ent Swap Based - Depth

(©)

i

$§

(b)

FIG. 19. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez’s
compiler [42], in terms of circuits’ depth. Our compiler distributed circuits on the topology illustrated in Fig. 13, with two links between neighboring
QPUs (illustrated in Fig. 7), while Andrés-Martinez's one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both topologies

are characterized by one data qubit per QPU.

With respect to the number of generated Bell states, de-
picted in Fig. 17, it can be observed that our compiler con-
sumes a fair amount of Bell states compared to Andrés-
Martinez’s compiler. This was expected, and it is mostly due
to the fact that Andrés-Martinez’s compiler benefits from a
hypercube network topology, as showed in Fig. 14(b). Us-
ing such a topology means that, in most cases, a link be-
tween two QPUs can be directly generated with just one
Bell state, which is in direct contrast with the worst-case
topology that we used, depicted in Fig. 14(a). In our linear
topology, to generate a link between two nonneighboring
QPUs, we need to perform entanglement swapping, gen-
erating, and consuming Bell states shared by all the oth-
ers QPUs in between. Nevertheless, the time needed to
generate one Bell state should be the same as to gener-
ate n Bell states in parallel, and with Fig. 15, we already
showed that our compiler usually needs fewer layers of link
generation.

It is worthwhile to note that with network topologies
different from the considered one—namely, the worst-case
topology where each CNOT must be mapped into a remote
CNOT—new optimization challenges arise. As instance,
whenever multiple data qubits are available at each (or some
nodes), only a subset of CNOTs must be mapped into remote
operations. Hence, the compiler should be able to optimize
choices such as which subcircuit should be mapped to which
node or which CNOT should be performed via communica-
tion qubits. Clearly, the optimal strategies—as well as the
metrics to measure the optimality of a strategy—represents
interesting open problems.

D. ADDITIONAL EXPERIMENTAL RESULTS

To show that the proposed compiling strategies can be ap-
plied to more complex topologies, we tested them on a slight
variation of the worst-case scenario. This new topology is de-
picted in Fig. 13, where we doubled the number of EPR pairs
per QPU; hence, we doubled the number of links between

VOLUME 2, 2021

neighbor QPUs. As described in Section V-A, this setting
enables our compiler to perform data-qubit swapping in a
more efficient way and also greatly reduces the number of
layers dedicated to the link entanglement generation, as we
can generate and use double the number of links in parallel.
Such a performance improvement is clearly shown in Fig. 18.

The same considerations apply to the depth of the com-
piled circuits, illustrated in Fig. 19, where we can observe
an appreciable improvement against the worst-case scenario
and the state-of-the-art compiler. As for the number of gener-
ated EPR pairs rendered in Fig. 20, aside from an impercep-
tible difference with the worst-case scenario, the advantage
of an hypercube topology is still evident.

VI. CONCLUSION

In this article, we have discussed the main challenges aris-
ing with compiler design for distributed quantum comput-
ing. Then, we analytically derived an upper bound of the
overhead induced by quantum compilation for distributed
quantum computing. The derived bound accounts for the
overhead induced by the underlying computing architecture
as well as the additional overhead induced by the suboptimal
quantum compiler. To this aim, we designed a quantum com-
piler with three key features: 1) general-purpose, namely,
requiring no particular assumptions on the quantum circuits
to be compiled; 2) efficient, namely, exhibiting a polynomial-
time computational complexity so that it can successfully
compile medium-to-large circuits of practical value; and 3)
effective, being the total circuit depth overhead induced by
the quantum circuit compilation always upper-bounded by a
factor that grows linearly with the number of logical qubits of
the original quantum circuit. We validated the theoretical up-
per bound against an extensive set of medium-size quantum
circuits of practical interest, and we confirmed the validity
of the compiler design through an extensive performance
analysis.

4100720

@IEEE Transactions on

? .
uantum Engmeerlng Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING
100000 . — 100000 e T ——— 100000 ————

90000 - 1 90000 |- 1 90000 |- 1
o y
80000 - 1 £ soo00 - 1 £ soo0o | 1

v o a

5 70000 1 & 70000 [1 & 70000 [1

™ w w

« . .

& oo 1 g ooor 1 g owr 1

o © ©

Q50000 g @ 50000 g 2 5000 g

k3 g &

2 H H

o 40000 |- 1 & 40000 [1 & 40000 -

g ——— = ——— = ——

& 4000 [] 5 4000 [] 5 4000]

o 30000 - 2000 - 1 3 om0 3000 - 1 ER 2000 - 1A

¥ 20000 |- 2000 1 £ 20000 - 2000 1 2 20000 - 2000 1A

1000 g o 1000 g o 1000 - g
o0 - ok §‘ 3 §§ 1 10000 |- 02 g?‘ §‘ < 10000 | R yrays S?‘ §‘ J
INIF s N NI
S LS e S
e . T S S o . T
S s S s S s S s o s S
FESFFSFEES S FEFFFSESFSESE SEFESFESFEFS

Martinez - EPR Pairs

(a)

Martinez - EPR Pairs

Ent Swap Based - EPR Pairs

(©)

FIG. 20. Comparing the entanglement-swapping-based and data-qubit-swapping-based strategies of our compiler with Andrés-Martinez’s
compiler [42] over consumed EPR pairs. Our compiler distributed circuits on the topology illustrated in Fig. 13, with two links between neighboring
QPUs (illustrated in Fig. 7), while Andrés-Martinez's one exploits a more favorable topology, i.e., the hypercube illustrated in Fig. 14(b). Both topologies

are characterized by one data qubit per QPU.

Algorithm 4: COMPILE.
Input: the circuit to be Compiled
Output: the Compiled Circuit.

G < all gates from circuit
E <« /] executed gates
create new_circuit as an empty circuit
while G £ ¢ do
G, F,E < UPDATEFRONTLAYER(G, &) // F is the
front layer
if 7 # ¢ then
& < CoMPILEFRONTLAYER(F, &)
end if
end while
for all gate € £ do :
add gate to new_circuit
end for
return new_circuit

APPENDIX

Here, we present a pseudocode description of the whole
compilation process illustrated in Fig. 11 and summarized
by Algorithm 4. The front layer is iteratively updated with
Algorithm 5 and compiled by Algorithm 2. This is done
until no more front layers can be computed, meaning that
all gates have been mapped and the compilation process has
finished.

ACKNOWLEDGMENT

This article benefited from the High Performance Computing
facility of the University of Parma, Parma, Italy. The authors
would like to thank Pablo Andrés-Martinez for answering
questions about his related work.

REFERENCES

[1] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherar-
dini, and G. Bianchi, “Quantum Internet: Networking challenges in dis-
tributed quantum computing,” IEEE Netw., vol. 34, no. 1, pp. 137-143,
Jan./Feb. 2020, doi: 10.1109/MNET.001.1900092.

4100720

Algorithm 5: UPDATEFRONTLAYER.

Input: G Gates to be Executed, £ Executed Gates Until
Now

Output: Updated G, Updated £, New Front Layer F.

A < (/] allocated qubits
F < ¥/ new front layer
R < () // gates to remove
width < total number of data qubits available
for all gate € G do
if | A| = width then
break
end if
if A N gare.qubits = () then
if gate is a one-qubit gate then
add gateto &£
else
add gate to F
add gate to £
add gate.qubits to A
end if
add gate to R
else:
add gate.qubits to A
end if
end for
for all gate € R do
remove gate from G
end for
return G, F, £

[2] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, “Quantum Inter-
net: From communication to distributed computing!” in Proc. 5th
ACM Int. Conf. Nanoscale Comput. Commun., 2018, Art. no. 3,
doi: 10.1145/3233188.3233224.

[3] M. Caleffi, D. Chandra, D. Cuomo, S. Hassanpour, and A. S. Cacciapuoti,
“The rise of the quantum Internet,” Computer, vol. 53, no. 6, pp. 67-72,
2020, doi: 10.1109/MC.2020.2984871.

VOLUME 2, 2021

https://dx.doi.org/10.1109/MNET.001.1900092
https://dx.doi.org/10.1145/3233188.3233224
https://dx.doi.org/10.1109/MC.2020.2984871

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

@IEEE Transactions on,
uantumEngineering

(41

=

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

R. V. Meter and S. J. Devitt, “The path to scalable distributed quan-
tum computing,” Computer, vol. 49, no. 9, pp.31-42, Sep. 2016,
doi: 10.1109/MC.2016.291.

S. Pirandola and S. L. Braunstein, “Physics: Unite to build a quan-
tum internet,” Nature, vol. 532, no. 7598, pp. 169-171, Apr. 2016,
doi: 10.1038/532169a.

E. Gibney, “Chinese satellite is one giant step for the quantum Internet,”
Nature, vol. 535, no. 7613, pp. 478-479, Jul. 2016, doi: 10.1038/535478a.
W. D, R. Lamprecht, and S. Heusler, “Towards a quantum Internet,” Eur.
J. Phys., vol. 38, no. 4, May 2017, Art. no. 043001, doi: 10.1088/1361-
6404/aa6df7.

C. Simon, “Towards a global quantum network,” Nat. Photon., vol. 11,
no. 11, pp. 678-680, 2017, doi: 10.1038/s41566-017-0032-0.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for
the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. eaam9288,
doi: 10.1126/science.aam9288.

M. Zomorodi-Moghadam, M. Houshmand, and M. Houshmand, “Opti-
mizing teleportation cost in distributed quantum circuits,” Int. J. Theor.
Phys., vol. 57, pp. 848-861, 2018, doi: 10.1007/s10773-017-3618-x.

L. Gyongyosi and S. Imre, “Entanglement concentration service for
the quantum Internet,” Quantum Inf. Process., vol. 19, no. 8, 2020,
Art. no. 221, doi: 10.1007/s11128-020-02716-3.

L. Gyongyosi and S. Imre, “Routing space exploration for scalable routing
in the quantum Internet,” Sci. Rep., vol. 10, no. 1, 2020, Art. no. 11874,
doi: 10.1038/s41598-020-68354-y.

D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, “Towards a distributed
quantum computing ecosystem,” IET Quantum Commun., vol. 1, pp. 3-8,
Jul. 2020, doi: 10.1049/iet-qtc.2020.0002.

A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of quan-
tum circuit compilation,” in Proc. Symp. Combinatorial Search, 2018,
pp. 138-142.

E. G. Rieffel and W. H. Polak, Quantum Computing: A Gentle Introduc-
tion, Cambridge, MA, USA: MIT Press, 2011, doi: 10.5555/1973124.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information, Cambridge, U.K.: Cambridge Univ. Press, 2010,
doi: 10.1017/CB0O9780511976667.

D. Deutsch, “Quantum theory, the Church-Turing principle and the uni-
versal quantum computer,” Proc. Roy. Soc. London A, Math., Phys. Eng.
Sci., vol. 400, pp. 97-117, 1985, doi: 10.1098/rspa.1985.0070.

S. Boixo, “Characterizing quantum supremacy in near-term devices,”
Nat. Phys., vol. 14, no. 6, pp. 595-600, 2018, doi: 10.1038/s41567-018-
0124-x.

A. Kandala, K. Temme, A. D. Crcoles, A. Mezzacapo, J. M. Chow, and
J. M. Gambetta, “Error mitigation extends the computational reach of a
noisy quantum processor,” Nature, vol. 567, no. 7749, pp. 491-495, 2019,
doi: 10.1038/s41586-019-1040-7.

L. Gyongyosi and S. Imre, “Circuit depth reduction for gate-model
quantum computers,” Sci. Rep., vol. 10, no. 1, 2020, Art. no. 11229,
doi: 10.1038/s41598-020-67014-5.

A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entan-
glement meets classical communications: Quantum teleportation for the
quantum internet,” JEEE Trans. Commun., vol. 68, no. 6, pp. 3808-3833,
Jun. 2020, doi: 10.1109/TCOMM.2020.2978071.

IBM, IBM quantum systems, 2020. [Online]. Available: https://quantum-
computing.ibm.com/docs/cloud/backends/systems/system-backends-
systems-available

J. C. Garcia-Escartin and P. Chamorro-Posada, “Equivalent quantum cir-
cuits,” 2011, arXiv:1110.2998.

A. D. Crcoles et al., “Challenges and opportunities of near-term quan-
tum computing systems,” Proc. IEEE, vol. 108, no. 8, pp. 1338-1352,
Aug. 2020, doi: 10.1109/JPROC.2019.2954005.

A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 7, pp. 1226-1236,
Jul. 2019, doi: 10.1109/TCAD.2018.2846658.

G.Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-
era quantum devices,” in Proc. Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 2019, pp. 1001-1014, doi: 10.1145/3297858.3304023.
Qiskit: An Open-Source Framework for Quantum Computing, 1BM,
Armonk, NY, USA, 2019.

VOLUME 2, 2021

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

D. Ferrari and M. Amoretti, “Efficient and effective quantum com-
piling for entanglement-based machine learning on IBM Q devices,”
Int. J. Quantum Inf.,, vol. 16, no. 08, 2018, Art. no. 1840006,
doi: 10.1142/S0219749918400063.

L. Cincio, Y. Subasi, A. T. Sornborger, and P. J. Coles, “Learning the quan-
tum algorithm for state overlap,” New J. Phys., vol. 20, no. 11, Nov. 2018,
Art. no. 113022, doi: 10.1088/1367-2630/aac94a.

W. Kozlowski, S. Wehner, R. Van Meter, B. Rijsman, A. S. Cacciapuoti,
and M. Caleffi, “Architectural principles for a quantum internet,” Inter-
net Engineering Task Force, Internet-Draft draft-irtf-qirg-principles-03,
Mar. 2020.

N. M. Linke et al., “Experimental comparison of two quantum computing
architectures,” Proc. Nat. Acad. Sci., vol. 114, no. 13, pp. 3305-3310,
2017, doi: 10.1073/pnas.1618020114.

R. Van Meter and K. M. Itoh, “Fast quantum modular expo-
nentiation,” Phys. Rev. A, vol. 71, May 2005, Art. no. 052320,
doi: 10.1103/PhysRevA.71.052320.

A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, “Implementation of
SHOR’s algorithm on a linear nearest neighbor qubit array,” Quantum Inf.
Comput., vol. 4, pp. 237-251, 2004, doi: 10.5555/2011827.2011828.

Y. Takahashi, N. Kunihiro, and K. Ohta, “The quantum Fourier transform
on a linear nearest neighbor architecture,” Quantum Inf. Comp., vol. 7,
pp- 383-391, 2007, doi: 10.5555/2011725.2011732.

R. Van Meter, “Communications topology and distribution of the quantum
Fourier transform,” in Proc. Quantum Inf. Technol. Symp., 2004.

S. A. Kutin, “Shor’s algorithm on a nearest-neighbor machine,” 2007,
arXiv:quant-ph/0609001.

R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh, “Arith-
metic on a distributed-memory quantum multicomputer,” ACM J.
Emerg. Technol. Comput. Syst., vol. 3, no. 4, Jan. 2008, Art. no. 2,
doi: 10.1145/1324177.1324179.

B.-S. Choi and R. Van Meter, “On the effect of quantum interaction dis-
tance on quantum addition circuits,” J. Emerg. Technol. Comput. Syst.,
vol. 7, no. 3, 2011, Art. no. 11, doi: 10.1145/2000502.2000504.

R. Beals et al., “Efficient distributed quantum computing,” Proc. Roy. Soc.
A, Math., Phys. Eng. Sci., vol. 469, no. 2153, 2013,Art. no. 20120686,
doi: 10.1098/rspa.2012.0686.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Cambridge, MA: USA: MIT Press, 2001.

Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, and M. Nouri-
Baygi, “A dynamic programming approach for distributing quantum
circuits by bipartite graphs,” Quantum Inf. Process., vol. 19, 2020,
Art. no. 360, doi: 10.1007/s11128-020-02871-7.

P. Andrés-Martinez and C. Heunen, “Automated distribution of quantum
circuits via hypergraph partitioning,” Phys. Rev. A, vol. 100, Sep. 2019,
Art. no. 032308, doi: 10.1103/PhysRevA.100.032308.

Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering a direct
k-way hypergraph partitioning algorithm,” in Proc. Meeting Algorithm
Eng. Exp., 2017, pp. 28-42, doi: 10.1137/1.9781611974768.3.

M. Caleffi, “Optimal routing for quantum networks,” IEEE Access, vol. 5,
pp. 22 299-22 312, 2017, doi: 10.1109/ACCESS.2017.2763325.

D. E. Knuth, The Art of Computer Programming: Sorting and Search-
ing. vol. 3, 2nd ed. Boston, MA, USA: Addison Wesley Longman,
1998.

T. Ono, R. Okamoto, M. Tanida, H. F. Hofmann, and S. Takeuchi, “Im-
plementation of a quantum controlled-SWAP gate with photonic circuits,”
Sci. Rep., vol. 7, no. 1, 2017, Art. no. 45353, doi: 10.1038/srep45353.

N. Schuch and J. Siewert, “Natural two-qubit gate for quantum com-
putation using the XY interaction,” Phys. Rev., vol. 67, Mar. 2003,
Art. no. 032301, doi: 10.1103/PhysRevA.67.032301.

A. Peruzzo et al., “A variational eigenvalue solver on a photonic
quantum processor,” Nat. Commun., vol. 5, 2014, Art. no. 4213,
doi: 10.1038/ncomms5213.

P. K. Barkoutsos ef al., “Quantum algorithms for electronic struc-
ture calculations: Particle-hole Hamiltonian and optimized wave-function
expansions,” Phys. Rev. A, vol. 98, Aug. 2018, Art. no. 022322,
doi: 10.1103/PhysRevA.98.022322.

A. Kandala et al., “Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” Nature, vol. 549, no. 7671,
pp. 242-246, Sep. 2017, doi: 10.1038/nature23879.

4100720

https://dx.doi.org/10.1109/MC.2016.291
https://dx.doi.org/10.1038/532169a
https://dx.doi.org/10.1038/535478a
https://dx.doi.org/10.1088/1361-6404/aa6df7
https://dx.doi.org/10.1038/s41566-017-0032-0
https://dx.doi.org/10.1126/science.aam9288
https://dx.doi.org/10.1007/s10773-017-3618-x
https://dx.doi.org/10.1007/s11128-020-02716-3
https://dx.doi.org/10.1038/s41598-020-68354-y
https://dx.doi.org/10.1049/iet-qtc.2020.0002
https://dx.doi.org/10.5555/1973124
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1098/rspa.1985.0070
https://dx.doi.org/10.1038/s41567-018-penalty -@M 0124-x
https://dx.doi.org/10.1038/s41586-019-1040-7
https://dx.doi.org/10.1038/s41598-020-67014-5
https://dx.doi.org/10.1109/TCOMM.2020.2978071
https://quantum-computing.ibm.com/docs/cloud/backends/systems/system-backends-systems-available
https://dx.doi.org/10.1109/JPROC.2019.2954005
https://dx.doi.org/10.1109/TCAD.2018.2846658
https://dx.doi.org/10.1145/3297858.3304023
https://dx.doi.org/10.1142/S0219749918400063
https://dx.doi.org/10.1088/1367-2630/aae94a
https://dx.doi.org/10.1073/pnas.1618020114
https://dx.doi.org/10.1103/PhysRevA.71.052320
https://dx.doi.org/10.5555/2011827.2011828
https://dx.doi.org/10.5555/2011725.2011732
https://dx.doi.org/10.1145/1324177.1324179
https://dx.doi.org/10.1145/2000502.2000504
https://dx.doi.org/10.1098/rspa.2012.0686
https://dx.doi.org/10.1007/s11128-020-02871-7
https://dx.doi.org/10.1103/PhysRevA.100.032308
https://dx.doi.org/10.1137/1.9781611974768.3
https://dx.doi.org/10.1109/ACCESS.2017.2763325
https://dx.doi.org/10.1038/srep45353
https://dx.doi.org/10.1103/PhysRevA.67.032301
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1103/PhysRevA.98.022322
https://dx.doi.org/10.1038/nature23879

@IEEE Transactions on,
uantumEngineering

Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING

Davide Ferrari (Graduate Student Member,
IEEE) received the B.Sc. degree in computer en-
gineering from the Polytechnic of Milan, Milan,
Italy, in 2016, and the M.Sc. degree in computer
engineering from the University of Parma, Parma,
Italy, in 2019, where he is currently working to-
ward the Ph.D. degree with the Department of
Engineering and Architecture.

He has been a Research Scholar with the Future
Technology Laboratory, University of Parma,
working on the design of efficient algorithms for
quantum compiling. He is involved in the Quantum Information Science
research initiative with the University of Parma, where he is a member of
the Quantum Software research unit. His research interests include efficient
quantum compiling for quantum simulations and quantum machine learn-
ing.

Mr. Ferrari won the IBM Quantum Awards Circuit Optimization Devel-
oper Challenge, in 2020.

Angela Sara Cacciapuoti (Senior Member,
IEEE) received the “Laurea” (integrated
B.S/M.S.) (summa cum laude) degree in
telecommunications engineering and the Ph.D.
degree in electronic and telecommunications
engineering from the University of Naples
Federico II, Naples, Italy, in 2005 and 2009,
respectively.

She is currently an Associate Professor with
the University of Naples Federico II. She was a
Visiting Researcher with the Georgia Institute
of Technology, Atlanta, GA, USA, and the Universitat Politecnica de
Catalunya, Barcelona, Spain. Since July 2018, she has held the national
habilitation as a Full Professor in Telecommunications Engineering. Her
work has appeared in first-tier IEEE journals. Her current research interests
include quantum communications, quantum networks, and quantum
information processing.

Dr. Cacciapuoti is an Area Editor for the IEEE COMMUNICATIONS
LeTrTERS and an Editor/Associate Editor for the IEEE TRANSACTIONS
ON COMMUNICATIONS, the IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS, the IEEE TRANSACTION ON QUANTUM ENGINEERING, the
IEEE NETWORK, and the IEEE OPEN JOURNAL OF THE COMMUNICATIONS
SocIETy. She has received various awards. She was a recipient of the
2017 Exemplary Editor Award of the [IEEE COMMUNICATIONS LETTERS. In
2016, she was an appointed member of the IEEE Communications Society
(ComSoc) Young Professionals Standing Committee. From 2017 to 2018,
she was the Award Co-Chair of the N2Women Board. From 2017 to 2020,
she was the Treasurer of the IEEE Women in Engineering Affinity Group
of the IEEE Italy Section. In 2018, she was appointed as the Publicity Chair
of the IEEE ComSoc Women in Communications Engineering (WICE)
Standing Committee. Since 2020, she has been the Vice-Chair of WICE.

4100720

Michele Amoretti (Senior Member, IEEE) re-
ceived the Ph.D. degree in information technolo-
gies from the University of Parma, Parma, Italy,
in 2006.

He is currently an Associate Professor of Com-
puter Engineering with the University of Parma.
In 2013, he was a Visiting Researcher with LIG
Lab, Grenoble, France. He authored or coau-
thored more than 100 research papers in refer-
eed international journals, conference proceed-
ings, and books. He is involved in the Quantum
Information Science research and teaching initiative with the University
of Parma, where he leads the Quantum Software research unit. He is the
CINI Consortium delegate in the CEN-CENELEC Focus Group on Quan-
tum Technologies. His current research interests include high-performance
computing, quantum computing, and the Internet of Things.

Dr. Amoretti is an Associate Editor for the IEEE TRANSACTIONS ON
QUANTUM ENGINEERING and the International Journal of Distributed Sen-
sor Networks.

Marcello Caleffi (Senior Member, IEEE) re-
ceived the M.S. degree (summa cum laude) in
computer science engineering from the Univer-
sity of Lecce, Lecce, Italy, in 2005, and the Ph.D.
degree in electronic and telecommunications en-
gineering from the University of Naples Federico
1L, Naples, Italy, in 2009.

He is currently an Associate Professor with the
Department of Electrical Engineering and Infor-
mation Technology, University of Naples Fed-
erico II. From 2010 to 2011, he was a Visiting
Researcher with the Broadband Wireless Networking Laboratory, Georgia
Institute of Technology, Atlanta, GA, USA. In 2011, he was also a Visit-
ing Researcher with the NaNoNetworking Center in Catalunya, Universitat
Politecnica de Catalunya, Barcelona, Spain. Since July 2018, he has held
the Italian national habilitation as a Full Professor in Telecommunications
Engineering. His work appeared in several premier IEEE transactions and
journals.

Dr. Caleffi received multiple awards, including Best Strategy Award, Most
Downloaded Article Awards, and Most Cited Article Awards. He is an
Associate Technical Editor for the IEEE Communications Magazine and an
Associate Editor for the IEEE TRANSACTIONS ON QUANTUM ENGINEERING
and the IEEE CoMMUNICATIONS LETTERS. He served as Chair, Technical
Program Committee (TPC) Chair, Session Chair, and TPC Member for
several premier IEEE Conferences. In 2017, he became a Distinguished
Lecturer for the IEEE Computer Society. In December 2017, he has been
elected Treasurer of the Joint IEEE Vehicular Technology Society/IEEE
Communications Society Chapter Italy Section. In December 2018, he was
appointed a Member of the IEEE New Initiatives Committee.

VOLUME 2, 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

