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Abstract—Multipartite entanglement distribution is a key func-
tionality of the Quantum Internet. However, quantum entan-
glement is very fragile, easily degraded by decoherence, which
strictly constraints the time horizon within the distribution has to
be completed. This, coupled with the quantum noise irremediably
impinging on the channels utilized for entanglement distribution,
may imply the need to attempt the distribution process multiple
times before the targeted network nodes successfully share the
desired entangled state. And there is no guarantee that this is
accomplished within the time horizon dictated by the coherence
times. As a consequence, in noisy scenarios requiring multiple dis-
tribution attempts, it may be convenient to stop the distribution
process early. In this paper, we take steps in the direction of know-
ing when to stop the entanglement distribution by developing a
theoretical framework, able to capture the quantum noise effects.
Specifically, we first prove that the entanglement distribution
process can be modeled as a Markov decision process. Then, we
prove that the optimal decision policy exhibits attractive features,
which we exploit to reduce the computational complexity. The
developed framework provides quantum network designers with
flexible tools to optimally engineer the design parameters of the
entanglement distribution process.

Index Terms—Entanglement Distribution, Quantum Internet,
Quantum Communications, Markov Decision Process

I. INTRODUCTION

The Quantum Internet is foreseen to enable several applica-
tions with no counterpart in the classical world [1]–[7], such
as distributed quantum computing [8], secure communications
[9] and new forms of communications [10]–[12]. To this
aim, the entanglement distribution process plays the key role.
Indeed, the successful distribution of entangled states among
remote network nodes represents a necessary condition for any
entanglement-based network [13].

From a network design perspective, there exist two differ-
ent approaches for entanglement generation and distribution:
proactive or reactive strategies [14], [15]. Proactive strategies
aim at early distribution of entanglement resources, where a
new generation process ideally starts as soon as the entan-
glement resource is depleted. Differently, reactive strategies
aim at on-demand distribution of entanglement, with a new
generation process starting according to an entangled resource
demand, namely, when needed [1]. With this distinction in
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mind, a few theoretical models and analysis of entanglement
distribution have been recently proposed in literature [16]–
[21]. In [16], the authors model the distribution of entan-
gled pairs as a discrete time Markov chain. Specifically,
they assume infinite coherence time and infinite resources
at the central node, with the aim of analyzing the expected
capacity of the central node in terms of number of qubits
to be stored to meet the stability condition of the system.
In [17], the distribution of entangled pairs is modeled as a
continuous time Markov chain. Such a model is based on a
Poisson probability distribution for the successful distribution
of entangled pairs, and it accounts for some non-idealities,
such as decoherence and noisy measurements. Furthermore,
entanglement distribution has been widely investigated in the
context of quantum repeater chains, where end-to-end EPR
pairs are established through entanglement swapping. In [18],
the Markov chain framework is adopted for describing a
quantum repeater chain and the transition probability matrix
is provided for analyzing the waiting time. Stemming from
these results in [19] an optimal scheme for entanglement
swapping in quantum repeater chains is provided by using
the formalism of Markov decision process. Additionally, in
[20], a Markov decision process is used to study the limits of
bipartite entanglement distribution via entanglement swapping,
by using a chain of quantum repeaters equipped with quantum
memories. Finally, in [22]–[24] some practical figures of merit
for entanglement distribution in quantum repeater networks
are provided. In particular, the authors define the average
connection time and the average size of the largest distributed
entangled state for a fixed scenario.

Yet, entanglement does not limit to EPR pairs. In fact,
multipartite entanglement – i.e., entanglement shared between
more than two parties – represents a powerful resource
for quantum communications [1]–[3], [25]–[31]. Indeed, it
enables computing and communication functionalities with
no counterpart in the classical world [1], [27], [32], [33].
Despite the aforementioned research efforts in both EPR-based
and multipartite-based networks, the fundamental problem of
knowing when to stop the entanglement distribution remains
unsolved. And filling this research gap is mandatory for the
efficient engineering of any entanglement distribution process.

Specifically, it is well-known that quantum entanglement is
a very fragile resource, easily degraded by decoherence [12],
[34], [35]. Decoherence severely impacts the time horizon in
which freshly-generated entangled states can be successfully
distributed and exploited for communication needs. Yet, due to
the noise irremediably affecting the quantum communication
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Fig. 1: Pictorial representation of the considered quantum network architecture. The quantum network is the interconnection
of several Quantum Local Area Networks (QLANs). Within each QLAN, client nodes are connected to a super-node. The
super-nodes are specialized nodes equipped with dedicated hardware able to generate the entanglement resources. Client nodes
obtain access to the multipartite entangled states, generated at the super-nodes, through the entanglement distribution process.

channels utilized for entanglement distribution, it may be
necessary to attempt the distribution process multiple times
before that all the selected network nodes successfully share
the targeted entangled state.

As a matter of fact, because of the complex and stochastic
nature of the physical mechanisms underlying quantum noise,
there is no guarantee that all the targeted nodes can success-
fully share the multipartite entangled state within the time
horizon dictated by the coherence times. As a consequence, in
noisy scenarios requiring multiple distribution attempts, it may
be convenient to stop the distribution process early, i.e., before
entangling all the intended nodes. The rationale for this choice
is twofold. On one hand, an early stopping can be required to
account for additional delays induced by the network func-
tionalities exploiting the entanglement resource. On the other
hand, an early stopping can be convenient whenever “enough”
nodes – accordingly to a certain figure of merit – already share
entanglement, so that the entangled resource can be promptly
exploited for the needed communication/computing purpose.

In this paper, we take steps in the direction of knowing when
to stop by developing a theoretical framework. This framework
provides quantum network designers with flexible tools to
optimally engineer the design parameters of the multipartite
entanglement distribution. To the best of our knowledge, this
is the first work addressing the optimal stopping rule for
entanglement distribution.

A. Our contributions
The developed theoretical framework abstracts from the

particular multipartite entangled state to be distributed and pro-
vides a model that can be tweaked to account for the physical
characteristics of the process itself. Specifically through the
paper:

- we provide a comprehensive characterization of the
entanglement distribution problem, by showing that it
can be modeled as a Markov decision process with
minimal assumptions;

- we provide the optimality conditions of the policy to
be adopted, and we prove some key properties of the
optimal policy that can be exploited for reducing the
computational complexity;

- we analyze the impact of different reward functions on
the distribution process of a multipartite entangled state,
through two main figures of merit: the average number
of nodes ultimately sharing the multipartite entangled
state – referred to as cluster size – and the average
distribution time;

- we gain insights on the selection of appropriate reward
functions for engineering the multipartite entanglement
distribution process.

In summary, we present an easy-to-use tool for modeling
and fine-tuning entanglement distribution systems to meet spe-
cific performance requirements. It is important to emphasize
that the model we offer in this study is highly adaptable and
can be tailored to various scenarios and applications.

The rest of the manuscript is organized as follows. In Sec. II,
we introduce the system model along with some preliminaries.
In Sec. III, we first formulate the entanglement distribution as a
decision process, and then we derive both general (Sec. III-B)
and reward-dependent (Sec. III-C) properties of the optimal
policy, which we exploit for reducing the computational com-
plexity of the optimal policy search. In Sec. IV we validate
the theoretical analysis through numerical simulations, and we
discuss the impact of the reward functions on the performance
of the entanglement distribution process. Furthermore, we
provide an example of the adoption of the proposed framework
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in a real world scenario, namely, distributed quantum sensing.
Finally, in Sec. V we conclude the paper, and some proofs are
gathered in the Appendix.

II. SYSTEM MODEL

Generating and distributing entanglement can be a demand-
ing task due to the delicate nature of quantum states and their
susceptibility to environmental disturbances. The complexity
of entanglement generation and distribution becomes more
evident for multipartite entangled states. Indeed, in many
practical scenarios the generation of multipartite entanglement
requires sophisticated and resource-intensive setups, often in-
volving complex experimental apparatuses and precise control
mechanisms. These technological limitations, coupled with the
need for specialized environments that can facilitate quantum
communication processes, make it pragmatic to assume a
specialized super-node responsible for entanglement genera-
tion and distribution [16], [31], [36], [37]. Furthermore, this
assumption of a super-node for the entanglement generation is
needed, not only due to the current maturity of the quantum
technologies, but also due to the unavoidable requirement
of some sort of local interaction among the qubits to be
entangled, as discussed in [31].

Hence, it is reasonable to conceptualize an entanglement-
based network architecture as represented in Fig. 1. Specif-
ically, the architecture is organized as the interconnection
of different Quantum Local Area Networks (QLANs), the
building-block of the Quantum Internet [33], [38]. In each
QLAN, a super-node is connected through quantum channels
to other nodes, referred to as clients in the following. In this
context, only super-nodes are equipped with the aforemen-
tioned advanced apparatus and, hence, able to generate entan-
glement. As a consequence, in order to obtain an entangled
state shared among a set of targeted client nodes, first the
super-nodes should locally generate the entangled resource.
Then, the multipartite entangled state should be distributed to
the clients according to a certain distribution strategy.

In principle, the super-node can directly distribute each
qubit of the overall multipartite entangled state to each in-
tended client. However, this approach is not viable for all the
classes of multipartite entanglement, which are characterized
by different1 persistence properties [1], [40]. Accordingly, in
the following we consider the more general case in which mul-
tipartite entangled states are distributed through teleportation
[41], by exploiting the a-priori distribution of EPR pairs via
heralded schemes [42], [43]. As a matter of fact, this strategy
is very common in literature and it has been proved also to
guarantee more resilience to noise and better protection against
memory decoherence [37], [44].

Hence, we consider a scenario where a set of the clients
belonging to a certain QLAN aims at sharing a multipartite
entangled state. This set is in the following referred to as clus-
ter of clients. For this, we assume each client holding at least

1As an example, the direct distribution of GHZ-like states, which are
characterized by the lowest persistence, requires all the photons encoding the
GHZ state to be successfully distributed to the clients in a single distribution
attempt [39].

one communication qubit [8], [13] reserved for communication
purposes. Similarly, we assume the super-node holding at least
S communication qubits, where S is the cardinality of the
multipartite entangled state to be distributed.

By accounting for the above, the considered system model is
depicted in Fig.2. Specifically, Fig.2a provides a zoomed-view
of the QLAN depicted in the lower-right section of Fig. 1.
Within this framework, the super-node ultimate goal is to
distribute a multipartite entangled state to a cluster (subset) of
client nodes. To achieve this, the super-node locally generates
two distinct entangled resources: one being the multipartite
entangled state, and the other a set of EPR pairs necessary for
teleporting the multipartite state.

Ideally, the super-node aims at achieving the scenario illus-
trated in Fig. 2b, wherein each client belonging to the targeted
cluster successfully receives an entanglement bit (ebit) corre-
sponding to an EPR pair. However, the effects of noise imposes
multiple attempts of ebit distribution to attain this scenario.
Eventually, when the distribution of EPR pairs is terminated,
the super-node proceeds to distribute the multipartite entangled
state through teleportation, and, finally, as depicted in Fig. 2c,
once teleportation has been performed, the cluster of clients
collectively shares a multipartite entangled state.

In the following we collect some definitions and assump-
tions that will be used in the paper and summarize the
definitions as well as the notations used in Table I.

EPR Distribution Model: The distribution attempt of an
EPR ebit toward a client, belonging to the targeted cluster,
through a noisy quantum channel is modeled with a Bernoulli
distribution with parameter p, where p denotes the successful
ebit distribution probability.

According to the above, we consider quantum channels
modeled as absorbing channels. Such a model constitutes
a worst-case scenario, since the noise irreversibly corrupts
the information carrier without any possibility of ebit re-
covery [45]–[48]. The channel behavior is captured through
the parameter p, denoting the probability of an ebit being
successfully distributed to a target client, since the ebit carrier
has not experienced absorption during its propagation through
the quantum channel. And, q

△
= 1 − p denotes the loss

probability, i.e., the probability of ebit distribution failure as
a consequence of the carrier absorption.

It is worthwhile to highlight that other noisy channel models
can be easily incorporated in our analysis. As an example,
Pauli channels followed by a purification process can be as
well modeled with a Bernoulli distribution with parameter p,
where p denotes the success probability of the joint distribution
and purification process.

We further observe that, by exploiting heralded schemes,
the super-node is able to recognize which client of the tar-
geted cluster – if any – experienced an absorption over the
channel. And, in case of absorption, further distributions can
be attempted. Indeed, it may be necessary to attempt the
distribution multiple times before having the targeted cluster
of clients successfully received the ebits. From the above,
it follows straightforward to consider, within our model, the
number of possible distribution attempts as the key temporal
parameter. And, the maximum number of distribution attempts
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(a) The super-node generates the EPR pairs (or-
ange squares) and the multipartite entangled state
(purple atom).

(b) The super-node distributes the EPR pairs
to the targeted clients through the physical
quantum channel (gray line).

(c) By exploiting the distributed EPR pairs,
the multipartite entangled state is teleported
to the targeted client nodes.

Fig. 2: Pictorial representation of the system model. The legend of the figure is available in Fig. 1. Subfigure (a) represents a
zoomed-view of the QLAN in the lower-right part of Fig. 1. We consider a scenario where a super-node is connected through
quantum channels to a set of quantum nodes, referred to as clients. The super-node is in charge of generating and distributing
EPR pairs to a cluster of clients. The aim of the process is to distribute the multipartite entangled state through teleportation.
For this, the super-node performs multiple attempts of ebit distribution, as represented in Fig. 2b. Fig. 2b constitutes the ideal
scenario with the successful distribution of all the EPR pairs between the super-node and the targeted clients, but clearly
multiple EPR distribution attempts might be required depending on the noise level affecting the quantum channels. Finally,
the super-node can exploit the distributed EPR pairs for teleporting the multipartite entangled state. As represented in Fig. 2c,
after the teleportation, the cluster of client nodes share a multipartite entangled state.

is determined by the coherence times of the underlying quan-
tum technology, as detailed in the next subsection.

A. Problem Formulation

Definition 1 (Time horizon). We consider the time horizon
of the entanglement distribution process constituted by N time
slots:

N = {1, 2, . . . , N}. (1)

with N implicitly accounting for the minimum guaranteed
coherence time.

The value of N in (1) depends on the particulars of
the technology adopted for generating and distributing the
entangled states, and it is set such that decoherence effects
can be considered negligible within the time horizon.
As shown in Fig. 3, the time is organized into N time-slots,
where at (the end of) each time-slot the super-node can decide
whether another distribution attempt should be performed
(or not) in the subsequent time-slot. Clearly, the number of
clients, belonging to the targeted cluster and having already
successfully received an ebit through the noisy channel, re-
ferred in the following as “connected” clients, represents a key
parameter. We formalize this concept through the following
two definitions.

Definition 2 (Action Set). The action set A denotes the set
of actions available at the super-node:

A = {C,Q}, (2)

with C denoting the action of attempting another distribution
round in the next time slot, and Q denoting the action of not
attempting the distribution.

Definition 3 (State Space). The system state space is defined
as the pair

(s, n) ∈ S̃ × N , (3)

where N is given in (1) and S̃ is defined as follows:

S̃ △
= S ∪ {∆}, (4)

with S △
= {0, 1, 2, . . . , S} denoting the set of possible values

for the number of connected clients within the targeted cluster
– aiming at sharing the multipartite entangled state – with
cardinality S.

Accordingly, the system is in state (s, n) with s ∈ S if s ≤ S
clients of the targeted cluster have successfully received an ebit
from the super-node within the first n distribution attempts. It
is worthwhile to note that ∆ in (4) represents an auxiliary
state, referred to as absorbing state, that denotes the state of
the system where no further distributions are attempted.

In the following, we will use the symbol

sn
△
= (s, n), (5)

as a shorthand notation for the system state (s, n), whenever
this will not generate confusion.

Remark. As mentioned, the overall goal is to distribute –
through teleportation – a multipartite entangled state. However,
the fidelity of a teleported quantum state increases with the
fidelity of the distributed EPR pair, and deterministic quantum
teleportation is achievable only by exploiting high fidelity EPR
pairs. Remarkably, the proposed model allows to account for
the fidelity of the distributed EPR pairs by properly including
such a parameter within the definition of p (and thus of q) as
follows. Whenever the fidelity F of the distributed ebit results
below a given fidelity threshold, Fth, the distribution attempt
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Symbols Definitions

p successful distribution probability of an ebit

q
△
= 1− p probability of ebit distribution failure as a conse-

quence of the carrier absorption

F fidelity of an EPR pair shared between client node
and super-node

Fth fidelity threshold: fidelity value of an EPR pair that
can be considered as exploitable

N time horizon: set constituted by N time slot

N number of time slots within the coherence time

A action set: set of actions available at the super-node

C action of attempting another distribution round in the
next time slot

Q action of stopping (i.e., not attempting) the distribu-
tion

S set of possible values for the number of connected
clients within the targeted cluster

∆ absorbing state: state of the system where no further
distributions are attempted.

S̃ set of possible values for the state of the client set
at any time slot

s ∈ S̃ state of the client set

n ∈ N n-th time slot within the time horizon of the system

(s, n)
△
= sn system state: pair of client set state and considered

time slot

Asn allowed action set: set of action available at the
super-node when the system state is sn

r(sn, a) reward function: overall reward achieved when the
system is in state sn and action a is taken

f(sn) continuation cost function: function modelling the
overall cost of further attempting the ebit distribution
when the system is in sn

g(sn) pay-off function: function modelling the gain achiev-
able by stopping the ebit distribution when the sys-
tem is in sn

Symbols Definitions

p(s̃n+1|sn) transition probability: probability of the system
evolving into the state s̃n+1 from the state sn when
action a is taken

p(s̃|s) probability of having s̃ connected client nodes with
one distribution attempt given that s client node have
already successfully received an ebit

π(·) policy: rule determining the action to be taken in any
possible state of the considered system.

vπ(s1) total expected reward, recursively obtained starting
from the initial state s1

vπ(s̃n) expected remaining reward at the timeslot n

π∗(s1) strategy that maximizes the expected total reward

p(s) probability of successfully distributing ebits to s
clients

v∗(s1)
△
= vπ∗ (s1) maximum expected total reward: expected total re-

ward achieved by the optimal policy

v∗Q maximum expected reward achievable when action
Q is taken

v∗C maximum expected reward achievable when action
C is taken

p(s̆n+k|sn, C) extended transition probability, probability to evolve
into state s̆n+k = (s̆, n + k) at time slot n + k,
starting from state sn = (s, n) with s ̸= ∆, by
having chosen always action C at the end of each of
time-slot between n and n+ k − 1

v+(sn) reward majorant

v−(sn) reward minorant

SQ
n OLA set: one step look ahead set of system states

where the instantaneous reward achievable by stop-
ping is not lower than the expected reward achievable
by attempting a further distribution attempt and then
deciding to stop the distribution

Sn+1 random variable describing the system state at step
n+ 1

TABLE I: Adopted Notation

Fig. 3: Pictorial representation of the model for the entanglement distribution process. The overall goal is to decide when to
stop the entanglement distribution.

is considered as failed – although the ebit does not experience
channel absorption – since this event prevents the correct

teleportation of the multipartite entangled state. In this light,
p is still the probability of an ebit successfully distributed to
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an intended client, but it jointly accounts for the probabilities
of the two events: i) the ebit does not experience absorption
during its propagation through the quantum channel and ii)
the received ebit has fidelity above the threshold F > Fth.
By following a similar reasoning, q

△
= 1 − p denotes the

probability of ebit distribution failure as a consequence of the
carrier absorption, or as a consequence of the reception of an
ebit with fidelity below the threshold F < Fth.

Remark. Whenever an ebit of an EPR pair is received with
fidelity above the threshold F > Fth, the fidelity of the
teleported multipartite state can be increased, by performing
entanglement purification of the EPR pairs before the exe-
cution of the teleportation process. Entanglement purification
generally refers to the strategy able to obtain a single entan-
gled state characterized by an higher fidelity from multiple
imperfect entangled states [49]. Accordingly, entanglement
purification demands for more than one ebit to be successfully
distributed to each client. Then, let L be the number of ebits
required at each node to perform entanglement purification
and to distill one EPR with an higher fidelity value. With the
above in mind, our theoretical framework continues to hold
also if entanglement purification is adopted, by considering an
equivalent system where the cluster of client nodes aiming at
sharing the multipartite entangled state is redefined as having
cardinality equal to S = LS. In other words, S substitutes S
in Def. 3. We further observe that entanglement purification
implicitly assumes that each intended client has at least L
communication qubits available at its side. Ideally, the super-
node should distribute simultaneously L ebits to each client.
Clearly, this imposes additional requirements, as instance, on
the number of communication qubits held at the super-node.
Furthermore, the quantum channels should allow a distribution
in batch, as instance with some sort of frequency-division
strategy. Yet, whenever parallel distribution attempts are not
allowed, the request of multiple ebit distribution per client
imposes a delay in the distribution process as it demands for
additional time-slots.

Definition 4 (Allowed Action Set). The allowed action set
Asn denotes the set of actions available at the super-node
when the system state is sn, and it results:

Asn =

{
{C,Q} s ∈ S \ {S} ∧ n < N

{Q} s = S ∨ s = ∆ ∨ n = N
(6)

From Def. 4 it results that the only allowed action is Q when-
ever the system either: i) successfully distributed entanglement
to all the clients, or ii) is in the absorbing state s = ∆, or iii) is
at the last available time-slot N . Assuming the system being
in the state sn ∈ S̃ × N and depending on the particular
action a ∈ Asn taken, the system will evolve into some state
s̃n+1 ∈ S̃ × N with some probability p(s̃n+1|sn, a), which
will be derived with Lemma 1 in Section III.

Decision Formulation. During the first time-slot, the super-
node simultaneously transmits S ebits to the S clients. In
case of absorption, further distributions can be attempted.
This requires additional time, thus challenging the decoherence
constraints as well as impacting the overall distribution rate.

Hence there exists a trade-off between the number of target
clients that successfully receive an ebit – which we refer
to as distributed cluster size – and the distribution time,
i.e., the number of time slots after which the distribution
process is either completed or arrested. This trade-off deeply
impacts the performance of the overlaying communication
functionalities. Thus, its optimization becomes crucial in the
design of quantum networks.

To capture this trade-off by abstracting from the particulars of
the underlying hardware technology(ies), we model the effects
of the action a ∈ Asn , taken by the super-node starting from
the state sn, through the notion of an utility function r(sn, a),
referred to as reward function. Accordingly, we formalize this
concept in the following Definition.

Definition 5 (Reward function). Assuming that action a ∈
Asn is taken when the system is in state sn ∈ S̃ × N , the
overall reward achieved is:

r(sn, a) =


−f(sn) s ∈ S, a = C

g(sn) s ∈ S, a = Q

0 s = ∆

(7)

where:
- f(sn) denotes the continuation cost function, which mod-

els the overall cost of attempting (continuing) the ebits
distribution when the system is in sn;

- g(sn) denotes the pay-off function, which models the gain
achievable by stopping the ebits distribution when the
system is in the state sn.

It is clear that, according to our formulation, once the system
reaches the absorption state, no further costs or rewards are
obtained since the distribution process has been stopped.

Remark. The notion of reward function allows us to abstract
from the particulars of i) the underlying technology for en-
tanglement generation and distribution, and ii) the overlying
network functionalities exploiting entanglement as a commu-
nication resource. In turn, this enables the following two key
features: i) it restricts our attention on the effects of the
entanglement distribution process; b) it allows us to measure
the performance of an entanglement distribution strategy, and
thus it allows us to quantitatively compare different strategies.

In the following we restrict our attention on payoff functions
{g(sn)} satisfying the two following properties.

Property 1 (Monotonicity with s). The payoff function g(sn)
is a monotonic non-decreasing function of s:

g(sn) ≤ g(s̃n) with s < s̃. (8)

Property 2 (Monotonicity with n). The payoff function g(sn)
is a monotonic non-increasing function of n:

g(sn) ≥ g(sm) with n ≤ m. (9)

The rationale for these two properties is to model scenarios
with meaningful meaning from an entanglement distribution
perspective. Specifically, with Property 1 the reward function
tunes the system choice towards larger s, i.e., higher number of
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connected clients. Clearly, this is reasonable since the higher
is the number of connected clients, the larger is – as instance –
the distributed multipartite entangled state. Conversely, Prop-
erty 2 tunes the system choice towards shorter distribution
times, which is mandatory to account for the fragile, easily
degraded nature of entanglement.

Remark. It is worthwhile to note that the theoretical frame-
work developed in Sec. III-A continues to hold regardless of
whether the reward exhibits any monotonicity. Conversely, we
will exploit these two properties in Sec. III-B for reducing the
computational complexity of the optimal decision strategy.

According to the theoretical framework developed so far,
the entanglement distribution process is modeled through the
quintuple:

{S̃,N ,Asn , p(s̃n+1|sn, a), r(sn, a)}. (10)

The reader can refer to Table I for a comprehensive summary
of the notations used in the paper.

III. KNOWING WHEN TO STOP

Here, we develop the theoretical framework for model-
ing the entanglement distribution process. Specifically, in
Sec. III-A, we prove that – with the minimal set of assumptions
about the quantum technologies underlying entanglement gen-
eration and distribution – the entanglement distribution process
can be modeled as a Markov decision processes. Then in
Sec. III-B we prove some key properties that we will exploit
to reduce the computational complexity of the problem.

A. Optimal Decision Model

In Theorem 1 we prove that the entanglement distribution
process can be modeled as a Markov Decision Process. To this
aim, the preliminary result in Lemma 1 is needed.

Lemma 1. Assuming action a ∈ Asn is taken when the system
is in state sn ∈ S̃ × N , the probability p(s̃n+1|sn, a) of the
system evolving into state s̃n+1 ∈ S̃ × N depends only on
current state and action, and it is given by:

p(s̃n+1|sn, a) =


p(s̃|s), if a = C ∧ s, s̃ ∈ S : s̃ ≥ s

1 if a = Q ∧ s̃ = ∆

0 otherwise
,

(11)
with

p(s̃|s) =
(
S − s

s̃− s

)
qS−s̃ps̃−s. (12)

Proof: See Appendix A

Remark. The available actions defined in (6) establish two
disjoint functioning regimes for the system, namely, the regime
of action C and the regime of action Q, as shown in Fig. 4
with reference to a system with S = 3 clients. Specifically,
Fig. 4a represents the regime of action C. Here, the system
evolves according to the transition probabilities p(s̃|s) in (11).
It is worth noting that there exists no transition towards
the absorbing state through action C. Differently, Fig. 4b
represents the region of action Q. Specifically, by accounting

for (11), once the super-node decides to perform action Q, the
system will only evolve towards (or remain in) the absorbing
state ∆, where no further ebit transmissions are attempted.

Theorem 1. The entanglement distribution process can be
modeled as a Markov Decision Process.

Proof: The proof follows from Lemma 1 by accounting
for the Markov property of the transition probabilities [50].

In the following, stemming from the result stated in The-
orem 1, we will embrace the powerful framework of the
Markov Decision Process to (optimal) “know when to stop” the
entanglement distribution process. To this aim, the following
definition is needed.

Definition 6 (Policy). A policy π(·) is a rule determining
the action to be taken in any possible state of the considered
system. Hence, it is a function that maps the set of system
states over the set of the allowed actions:

∀sn ∈ S̃ × N : π(sn) ∈ Asn (13)

In the following, Π denotes the set of all possible policies.

We note that, in (13), we exploited the Markovianity by
considering policies π(·) depending on the current system
state only, rather than on the entire history of the system
state evolution [50]. Furthermore, we note that the overall
reward achieved by adopting any policy π(·) ∈ Π is inherently
stochastic, due to the noise affecting entanglement distribution.
Thus, to assess and to compare the decision maker’s preference
toward different policies, we need a criterion to measure
the performance of the selected policy. One widely adopted
criterion in literature is the expected total reward, which we
introduce in the following.

Expected Rewards. Given that the strategy π(·) is adopted,
the total expected reward vπ(s1), obtained when the system
state starts in state s1, is recursively defined as:

vπ(s1) = r
(
s1, π(s1)

)
+

∑
s̃∈S̃:s̃2=(s̃,2)

p
(
s̃2|s1, π(s1)

)
vπ(s̃2),

(14)
where vπ(s̃n) denotes the expected remaining reward at

time slot n, and it is given by (15) shown at the top of the
next page. Specifically, the boundary condition at time slot N
in (15) prevents from infinite loops in the absorbing state.

We note that, for deriving the expression in (14), we
exploited Theorem 4.2.1 in [50]. Accordingly, it is possible to
restrict our attention on deterministic policies π(·) ∈ Π with
no loss of optimality. Furthermore, we note that the expected
total reward vπ(s1) has been defined as a recursive function,
where the recursive step vπ(sn) at time slot n is function
of three key parameters. These parameters are the number of
connected clients s, the policy π(·) through action π(sn), and
the reward at time slot n + 1 via the transition probabilities
p
(
· |sn, π(sn)

)
.

Stemming from the above, we are ready now to formally
define the problem of (optimal) knowing when to stop the
entanglement distribution.
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Fig. 4: Representation of the two functioning regimes for a network with S = 3 clients: (a): regime of the action C. (b):
regime of the action Q.

vπ(sn) =


r
(
sn, π(sn)

)
+

∑
s̃∈S̃

p
(
s̃n+1|sn, π(sn)

)
vπ(s̃n+1) if n < N

r
(
sN , Q

)
otherwise

(15)

(Optimally) Knowing When to Stop. By accounting for
(14), the overall objective is to find the strategy π∗ ∈ Π that
maximizes the expected total reward when the system is in
state s1:

vπ∗(s1) = max
π∈Π

{
vπ(s1)

}
(16)

As a matter of fact, being the considered sets S̃ and N
finite, there always exists a deterministic strategy achieving
the maximum in (16) [50]. Furthermore, we have implicitly
assumed as overall goal to maximize the reward for some
specific initial state s1. Alternatively, the goal might be to
find the optimal policy π∗ prior to know the initial state s1. In
such a case, by accounting for (14), the total expected reward
vπ is given by:

vπ =
∑

s∈S:s1=(s,1)

p(s)vπ(s1) (17)

with p(s), namely, the probability of successfully distributing
ebits to s clients during the first distribution attempt, given by:

p(s) = psqS−s (18)

However, the reward in (17) is maximized by maximizing the
reward in (14) for each s1 in S [50]. Hence, in the following
we will focus on the problem formulation in (16) without any
loss in generality.

B. Optimal Decision Strategy: Properties

In this subsection, we prove that the optimal policy π∗(·)
exhibits specific properties with respect to the reward function.
Then, we will engineer these properties to derive effective,
practical strategies for reducing the computational complexity
of the decision problem. To this aim, some preliminaries are
needed.

First, we explicit the expression of the expected remaining
reward in (15). Specifically, let us denote with v∗(s1) the
maximum expected total reward, which is equivalent to the

expected total reward achieved by the optimal policy π∗ given
in (16):

v∗(s1)
△
= vπ∗(s1) (19)

By accounting for the allowed action set Asn given in (6)
and for the reward function defined in Def. 5, the maximum
expected total reward v∗(s1) is given in (20) shown at the
top of the next page, with the maximum expected remaining
reward at the n-th recursive step given by:

v∗(sn) =

{
max

{
v∗Q(sn), v

∗
C(sn)

}
if n < N

r(sN , Q) otherwise
(21)

In (20), v∗Q(s1) and v∗C(s1) denote the maximum expected
reward achievable when action Q or C is taken, respectively,
starting from state s1.

Furthermore, let us denote with p(s̆n+k|sn, C) the proba-
bility to evolve into state s̆n+k = (s̆, n+k) at time slot n+k,
starting from state sn = (s, n) with s ̸= ∆, by having chosen
always action C at the end of each of time-slot2 between n
and n + k − 1. By exploiting the Markovianity in Lemma 1,
this probability, referred to as extended transition probability,
can be recursively written as follows:

p(s̆n+k|sn, C) =

s̆∑
s̃=s

p (s̆n+k|s̃n+1, C) p (s̃n+1|sn, C) , (22)

with the expression of p (s̃n+1|sn, C) given in Lemma 1.
Stemming from the extended transition probabilities given

in (22), we define two rewards functions, that will be exploited
in the following for efficiently deriving the optimal policy.

Reward Majorant and Minorant. Given that the system is
in state sn = (s, n), with s ̸= ∆ and n < N , we introduce

2Namely, by choosing action C regardless whether the number of connected
clients s is either s < S or s = S.
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v∗(s1) = max


△
=v∗

Q(s1)︷ ︸︸ ︷
r(s1, Q) ,

△
=v∗

C(s1)︷ ︸︸ ︷
r
(
s1, C

)
+

∑
s̃∈S̃

p
(
s̃2|s1, C)

)
v∗(s̃2)

 = max

g(s1) , −f(s1) +
∑
s̃∈S̃

p
(
s̃2|s1, C)

)
v∗(s̃2)

 (20)

the quantities v+(sn) and v−(sn), referred to as the reward
majorant and the reward minorant, respectively:

v+(sn) = r
(
sn, C

)
+

∑
s̆∈S̃

p
(
s̆N |sn, C

)
v∗Q

(
s̆n+1

)
(23)

= −f(sn) +
∑
s̆∈S̃

p
(
s̆N |sn, C

)
g(s̆n+1)

v−(sn) = r
(
sn, C

)
+

∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
v∗Q

(
s̃n+1

)
= (24)

= −f(sn) +
∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
g(s̃n+1),

with s̃n+1 = (s̃, n+ 1) and s̆n+1 = (s̆, n+ 1).
Both the majorant and the minorant model the reward

achievable by deciding first to continue the entanglement
distribution at time slot n and, then, to stop the distribution at
the subsequent time slot n + 1. Yet, they differ significantly
from each other:

- The reward minorant v−(sn) is obtained by assuming the
system evolving from state sn to state s̃n+1 in agreement
with the transition probabilities given in (13).

- Conversely, the reward majorant v+(sn) is obtained by
assuming the system able to evolve freely from state sn
to state s̆N – with s̆N = (s̆, N) representing the state
that would have been reached by performing N − n
subsequent distributions attempts by choosing only action
C and never action Q – in a single time slot. In other
words, the majorant models the expected reward achieved
when the system performs N−n subsequent distributions
attempts, yet i) by paying only a single continuation cost
−f(sn), and ii) by obtaining a pay-off g(s̆n+1) as if s̆
would have been reached in a single time slot.

The proof of the main result, namely, Theorem 2 requires
the following preliminary lemma.

Lemma 2. Given that the system state is sn with s ∈ S and
n < N , it results:

v−(sn) ≤ v∗C(sn) ≤ v+(sn) (25)

Proof: See Appendix A.

Theorem 2. Given that the system state is sn with s ∈ S and
n < N , it results:

π∗(sn) =

{
Q if g(sn) ≥ v+(sn)

C if g(sn) ≤ v−(sn)
(26)

Proof: The proof follows directly from Lemma 2, by
accounting for the definition of v∗C(sn) and v∗Q(sn) given in
(20).

Markov decision problems such as the one we considered
in (16) are generally solved with backward induction [50].
Specifically, stemming from the expression of the maximum
expected remaining reward given in (21), backward induction
works as follows: starting from n = N and going backward in
time, the optimal action maximizing the expected total reward
is obtained for each state sn by exploiting the already-derived
optimal actions for states s̃n+1, with s̃ > s.

Remark. When the system state is sn, backward induction
requires to preliminarily evaluate

(
S − s + 1

)N−n
optimal

actions – i.e., to compute the optimal action for each possible
future state – before determining the optimal action π∗(sn) for
the current state. Luckily, with Theorem 2 we have derived
an efficient strategy for finding the optimal action without
the need of evaluating the future evolution of the system.
Specifically, whenever g(sn) satisfies one of the conditions
in (26), the optimal action can be decided regardless of any
further evolution of the system. We validate this result with
the first experiment in Sec. IV.

Finally, it is important to discuss the assumptions underlying
Theorem 2. As regards the continuation cost f(·), Theorem 2
does not require any assumption or constraint, except that
f(·) is reasonably non negative3. As regards the pay-off
function g(·), Theorem 2 requires that Properties 1-2that are
satisfied. However, these properties are not restrictive, since
they reasonably drive the entanglement distribution toward
entangling the larger number of client nodes in the shorter
possible time-frame.

In the next subsection, we will introduce and discuss some
(reasonable) assumptions on the pay-off function which allows
us to further simplify the search of the optimal policy.

C. One-Step Look Ahead

Here we depart from the general discussion of Sec. III-B,
by further extending the result of Theorem 2 for deriving the
optimal policy, albeit imposing additional constraints on the
rewards. To this aim, the following preliminaries are need.

Given that there exists only two actions in (2) – namely, con-
tinue or stop – the entanglement distribution problem belongs
to the framework of optimal stopping problems, for which
there exists a very simple (hence, computational efficient) rule
– namely, one-step look ahead (OLA) rule – for deciding the
action to be taken.

Definition 7 (OLA Set). At time-step n, the one-step look
ahead (OLA) set SQ

n ⊆ S̃ is the set of system states where
the instantaneous reward achievable by stopping is not lower

3Otherwise it would represent a pay-off rather than a cost.
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than the expected reward achievable by attempting a further
distribution attempt and then deciding to stop the distribution.

SQ
n =

{
s ∈ S : g(sn) ≥ v−(sn)

}
(27)

with v−(sn) given in (24).

Definition 8 (OLA Rule).

π(sn) =

{
Q if sn ∈ SQ

n ⇐⇒ g(sn) ≥ v−(sn)

C otherwise
(28)

The naming for the OLA rule follows by noting that the
reward minorant v−(sn) represents the expected reward when
the policy is to continue for one-step and then to stop, namely:

v−(sn) = −f(sn) + E[g(Sn+1)] (29)

with Sn+1 denoting the random variable describing the system
state at step n+ 1.

The OLA rule is optimal whenever the OLA set is closed
[51], [52], namely, whenever the system state remains con-
fined within the OLA set, once entering. Unfortunately, the
optimality of the OLA rule strictly depends on the particulars
of the cost f(·) and pay-off g(·) functions, and no general
conclusions can be taken independently.

Yet, we can consider different settings for the cost/pay-off
functions – which allows us to model a wide range of possible
communication scenarios – and discuss the optimality of the
OLA rule with respect to this setting. More into details, we
consider the following three base-cases:

g(sn) =
s

n
(30)

g(sn) = λns, with λ ∈ (0, 1] (31)

g(sn) =
s

S
− n

N
(32)

with f(sn) = 0 since we already incorporated the cost arising
with additional distribution attempts into the reward.

Remark. As an example, with the first base-case given in
(30) we model a scenario where the reward, represented by
the number s of entangled clients, is discounted by a factor
equal to the number of time-slots used for entangling such
clients. The rationale for this scenario is to model the reward
as a sort of entanglement throughput – namely, as an average
entanglement per unit of time – similarly to the bit throughput
that represents one of the key metric for classical networks.
As regards the second base-case given in (31), it introduces
a discount factor λ which exponentially weights the reward s
as time passes. As a matter of fact, multiplicative decreasing
the rate of some process such as in (31) is widely adopted in
classical networks, with TCP exponential back-off constituting
the most famous case. Finally, with (32) we meant to introduce
another base-case for conferring generality to the discussion.

By considering the settings of the base-cases, we have the
following result.

Proposition 1. When the rewards are modeled as in (31) or
(31), the OLA rule is optimal and it results:

π∗(sN ) = Q ⇐⇒

s ≥ λSp

1− λ+ λp
if g(sn) = λns

s ≥ S − S
Np if g(sn) = s

S − n
N
(33)

whereas when the rewards are modeled as in (30), the OLA
rule is not optimal.

Proof: See Appendix C.

From an engineering perspective, it is evident that having
an efficient (i.e., low-computational-complexity) optimal rule,
such as the OLA rule, for deriving the optimal policy – namely,
for deciding when to stop distributing entanglement within a
quantum network – is highly advantageous. Hence, whenever
possible, the opportunity of choosing rewards satisfying the
optimality condition of the OLA rule should be preferred.

Nevertheless, if this is not possible, we can still exploit the
main result – namely, Theorem 2 – to design an efficient rule,
as long as we are willing to tolerate finding a sub-optimal
policy rather than an optimal one.

Definition 9 (Sub-Optimal Rule).

π(sn) =

{
Q if sn ≥ v+(sn)+v−(sn)

2

C otherwise
(34)

Clearly, the “amount” of sub-optimality – hence, the loss
in reward – introduced by such a rule strictly depends on the
particular settings of the rewards. In the next subsection, we
will evaluate such a sub-optimality for the three base-cases
introduced above.

IV. PERFORMANCE EVALUATION

In this section, we first validate the theoretical results
derived in Secs. III-B and III-C.

Then, we discuss the impact of the reward functions on the
performance of the entanglement distribution process. To this
aim, we focus on two key metrics:

• average distribution time, namely, the average number of
time-slots before the distribution is arrested;

• average cluster size, namely, the average number of client
nodes successfully entangled;

More into details, we investigate how the choice of the reward
setting influences these two key metrics. This allows us to draft
some guidelines for selecting a reward function able to drive
the system to fulfill some specific performance requirements.

With the first experiment, we evaluate in Fig. 5 the expected
total reward vπ given in (17) as a function of the ebit
distribution probability p. The adopted simulation set is as
follows: the number of clients is S = 100, the time-horizon is
constituted by N = 100 time-slots, the rewards are modeled as
in (30) with g(sn) =

s
n , and p varies with a step set as 0.025.

Within the experiment, we consider four different rewards.
First, we consider the reward vπ∗ achieved with the optimal
policy π∗, with π∗ obtained via exhaustive search through
backward induction. Clearly, this is the maximum expected
reward that can be achieved, and it represents the performance
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Fig. 5: Expected total reward vπ as a function of the ebit
distribution probability p for S = 100, N = 100 and g(sn) =
s
n . Logarithmic scale for axis y.

Fig. 6: Average total reward vπ as a function of the ebit
distribution probability p for the same setting of Fig. 5. Lines
denote the mean, whereas shading areas denote the standard
deviation. Logarithmic scale for axis y.

baseline for any sub-optimal policy. We note that higher values
of p correspond to higher values of the reward vπ∗ . This
result is reasonable as higher values of p represent favourable
entanglement distribution scenarios, namely, “good” quantum
communication channels. Accordingly, favourable distribution
scenarios allow the system to evolve toward states character-
ized by higher cluster sizes s and lower distribution times n.

Additionally, we consider the reward vπ∗ achieved with the
policy π∗ computed via Theorem 2. Specifically, π∗(sn) is
obtained with Theorem 2 whenever either of the two constrains
in (26) holds, and via backward induction otherwise. Clearly,
by comparing this reward with the optimal reward vπ∗ , we
can observe a perfect agreement between the two rewards.
This constitutes an experimental validation of the analytical
results derived in Theorem 2.

Furthermore, we consider the reward vπ achieved when the
policy π is obtained with the OLA rule given in Definition 8.
Indeed, it must be noted that – although barely noticeable
even in the zoomed-in inset of Fig. 5 – the reward achievable
with the OLA rule is lower than the reward vπ∗ achievable
with the optimal policy for any value of p. This validates
the theoretical results derived in Prop 1, and, specifically,
the sub-optimality of the OLA rule for g(sn) = s

n . Yet,
the performance degradation of the OLA rule is practically
negligible.

Finally, we consider the reward vπ achieved with the policy π
obtained via the sub-optimal rule given in Definition 9. From
Fig. 5, one might question the rationale for this sub-optimal
rule and, specifically, one might incorrectly believe that – given
that the OLA rule significantly outperforms the sub-optimal
rule given in Definition 9 – the last rule is useless. However,
it must be noted that the performance of the OLA rule strictly
depends on some specific assumptions on the cost f(·) and
pay-off g(·) functions, assumptions which are not required by
the rule given in Definition 9.

Remark. From the above discussion, it becomes clear that
there exists a trade-off between optimality and computational-
efficiency, that must be properly engineered by the quantum
network designers. Specifically, designers can decide to adopt
generalist heuristic policies – such as the one in Def. 9 –
which does not impose limitations on the choice of the reward
functions albeit at the price of sub-optimal decisions. Or they
can leverage optimal, efficient policies – such as the OLA
one – as long as they can tolerate additional constraints in the
reward function definition.

With the second experiment, we aim at assessing the im-
portance of an optimal policy for achieving the highest total
reward. For this, in Fig. 6 we plot the average total reward vπ
given in (17) as a function of the ebit distribution probability
p for 106 Montecarlo distribution process trials, for the same
simulation set adopted in Fig. 5. We note that lines denote
the mean of the total rewards over the different trials, whereas
shading areas denote the standard deviation of the different
trials4.
We extend the set of policies by considering – along with the
optimal and the two sub-optimal policies already considered
in the previous experiment – 20 random policies. We observe
that the higher is the ebit distribution probability p , the higher
is the performance gap between the expected total reward
achieved by the optimal strategy and the reward achieved
by a random strategy. As a matter of fact, the performance
gap remains evident even if we consider the distribution of
the optimal reward via standard deviation. This result shows
the importance of the considered problem for scenarios of
practical interest, namely, for scenarios where entanglement
can be fairly distributed.

In Fig. 7, we present the average cluster size s as a function
of the ebit distribution probability p, computed with the same

4With the shading areas of optimal and OLA rewards practically overlap-
ping.
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Fig. 7: Average cluster size s as a function of the ebit
distribution probability p for the same setting of Fig. 5. Lines
denote the mean, whereas shading areas denote the standard
deviation. Logarithmic scale for axis y.

Fig. 8: Average distribution time n as a function of the ebit
distribution probability p for the same setting of Fig. 5. Lines
denote the mean, whereas shading areas denote the standard
deviation. Logarithmic scale for axis y.

106 Montecarlo distribution process trials of Fig. 6. As before,
lines denote the mean over the different trials, whereas shading
areas denote the standard deviation of the different trials. First,
we note that the random policies might achieve larger cluster
sets with respect to the optimal policy. The rationale for this
behavior is that the optimal policy aims at: i) maximizing
the cardinality of the cluster set, while simultaneously ii)
minimizing the distribution time. Hence, depending on g(·)
and p, the optimal policy might prefer an earlier stop of the
distribution process. And this was, indeed, the overall objective
of our modeling.

These considerations are confirmed by Fig. 8, which
presents the average distribution time n as a function of
ebit distribution probability p, computed with the same 106

Montecarlo distribution process trials of Fig. 6. Indeed, it is
possible to note that the values of p in Fig. 8 – for which the
random policies achieve larger cluster sizes with respect to
the optimal policy – are characterized by longer distribution
times.

Finally, with the latest experiment, we aim at discussing
the impact of the rewards settings – and, specifically, of
the three base-cases introduced in (30)-(32) – on the overall
entanglement distribution process.

For this, we preliminary compare the optimal policy π∗ for
the different settings of the pay-off function via the action
matrices represented in Fig 9. Formally, the action matrix A∗ :
S ×N −→ p ∈ [0, 1] is defined as follows:

a∗s,n ∈ A∗ = p̃ ⇐⇒ π∗(sn) =

{
Q ∀p ≤ p̃

C ∀p > p̃
(35)

As an example, by considering the action map for the pay-
off function g(sn) =

s
n represented in Fig. 9a, we note that,

for an arbitrary time-slot n, a∗s,n increases as the cluster size
s increases. This means that, as the cluster size s increases,
higher values of p are needed for having action C being the

optimal action. Clearly, for a given n, for the lowest values of
s, action C is optimal for almost all the values of p. This is
very reasonable: when the current cluster size s is very small,
so is the pay-off reward. Hence, it is likely more convenient to
attempt another entanglement distribution rather than to stop
here. And, vice-versa, for the highest values of s, action Q is
optimal for almost all the values of p.
Furthermore, we observe that the values of the action matrices
in Fig. 9 strongly depend on the particular pay-off function.

As instance, the action map for the pay-off function g(sn) =
λn represented in Fig. 9b strongly depends on the cluster
size, whereas it is largely independent from the time-slot.
As a result, the pay-off function g(sn) = λn drives the
entanglement distribution process towards larger cluster sizes
at the price of significantly longer distribution times.
These considerations are are clearly confirmed by Fig. 10,
which presents the average cluster size s as a function of the
ebit distribution probability p – for the same 106 trials of Fig. 6
– for the different settings of the pay-off function given in
(30)-(32). As before, lines denote the mean over the different
trials, whereas shading areas denote the standard deviation of
the different trials.
First, we note that the larger is the parameter λ in (31), the
larger is the average cluster size s and the steeper is the slope
of the related curve. As a matter of fact, the largest values of
the average cluster size are achieved when the pay-off function
is g(sn) = s

S−
n
N as in (32). This agrees with the action matrix

in Fig 9c, where action Q becomes optimal only for the largest
values of s.
Interestingly, the pay-off functions significantly impact the
performances for lower values of p. Indeed, both in Fig. 10 and
Fig. 11, as p increases, the distance between the curves in the
graph tends to reduce. The rationale is that, as p increases, the
target system state – namely, the system state maximizing the
reward – can be quickly achieved in shorter distribution times.
Thus, different reward functions result in vastly different ebit
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(a) Action matrix for pay-off function
g(sn) =

s
n

.
(b) Action matrix for pay-off function
g(sn) = λns, with λ = 0.95.

(c) Action matrix for pay-off function
g(sn) =

s
S
− n

N
.

Fig. 9: Action matrices: compact representation of the optimal policy π∗(sn) as a function of the system state sn = (s, n) and
ebit distribution probability p. Setting: S = 100 and N = 100.

Fig. 10: Average cluster size as a function of the ebit distribu-
tion probability p for S = 100, N = 100 and different settings
of the pay-off function g(·). Lines denote the mean, whereas
shading areas denote the standard deviation.

Fig. 11: Average distribution time as a function of the ebit
distribution probability p for S = 100, N = 100 and different
settings of the pay-off function g(·). Lines denote the mean,
whereas shading areas denote the standard deviation.

distribution performances under bad transmission conditions.

Remark. From the above, it becomes evident that, whenever
there exist requirements in terms of average cluster size
or average distribution time, our modeling allows to meet
the performance requirements by choosing a suitable reward
function, as instance by tuning the value of λ in g(sn) = λns.
Thus, our formulation of the entanglement distribution process
as an optimal decision problem constitutes an effective, handy
tool for quantum network designers aiming at engineering the
entanglement distribution process.

A. Application Scenario: Distributed Quantum Sensing

To better highlight the versatility and the effectiveness of the
proposed framework, in the following we provide an example
of its adoption in a real-world scenario, namely, quantum
sensor networks. We note that this example is far from being
exhaustive: although our protocol can be used to optimize the
amount of multi-partite entanglement being distributed across

a subset of users, it still constitutes an open problem how such
partial entanglement states can be used in different application
scenarios to achieve the best performance.

We first summarize the main steps of a non-distributed (lo-
cal) quantum sensing process based on multipartite entangled
states [53], [54]. As depicted in the leftmost-part of Fig. 12,
first a multipartite entangled state is generated, with each
qubit of the multipartite state acting as a sensor probe for
the selected physical process/quantity to be monitored. Then,
the multipartite state is manipulated, and eventually measured.
These three steps are repeated – say M times – for obtaining
statistically significant results. Finally, the collected data is
used to compute an estimation of the target quantity. The
time interval over which the sensor probes interact with the
target quantity and acquire useful information is referred to as
sensing time Ts.

Another crucial parameter of the quantum sensing processes
is the sensitivity, which is a metric defined as the minimum
detectable signal vmin that yields to unit Signal-to-Noise Ratio
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Fig. 12: Block diagram representation of a quantum sensing process.

Fig. 13: Reward achievable by setting the pay-off function as
g(sn) =

s
n in a distributed quantum sensor scenario.

(SNR) for an unit integration time [54], [55]. It is related to the
quantities describing the sensing process and the underlying
hardware as follows:

vmin ∝ eχ(t)
√
Ts + Tm

C(tm)γℓT ℓ
s

. (36)

In (36), Ts – as said – is the sensing time, namely, the time
interval between the end of entanglement generation step and
the start of the transformation step, whereas Tm is the time
needed for generating the entangled state, manipulating it and
for collecting the measurement data. C(·) is an overall read-
out efficiency parameter, while γ is the technology-dependent
transduction factor (the higher the factor, the better is the
technology) and ℓ is a (integer, generally equal to 1 or 2)
factor depending on the experiment particulars. Finally, χ(·)
is a function – which accounts for decoherence and relaxation
– often approximated by a power law, i.e., χ(t) = (t/Tχ)

a

with a = 1, 2, 3 and with Tχ denoting the coherence time
[48]. From (36), it results that in order to have low values
of the sensitivity, the sensing time should be as long as
possible. However, χ(t) exponentially penalizes the sensitivity
for sensing times greater than the coherence time t > Tχ, as a
consequence the optimum sensing time is reached for t ≈ Tχ.
Indeed, the multipartite entangled state should be measured
before the effects of decoherence irreversibly affect the state.
Hence, the sensing period is strictly upper-bounded by the
coherence time, namely, Tm + Ts < Tχ.

When it comes to distributed quantum sensing, entangle-
ment distribution must be added as an additional functional
block of the overall sensing process, as depicted in the middle
part of Fig. 12. Consequently, the time interval Td, needed
to complete the entanglement distribution, has to satisfy the
following inequality: Td + Tm + Ts < Tχ. This means
that, in a distributed sensor network, the sensing time is
significantly reduced by the additional step to be performed,
namely, the entanglement distribution. This, in turn, implies
that the sensitivity is negatively affected by the corresponding
reduction of the sensing time.

As a matter of fact, the entanglement distribution is noisy in
any practical scenario. Hence, Td could be significantly larger
with respect to the scenario of ideal entanglement distribution,
since multiple attempts of the distribution process might be
necessary, due to the noisy impinging on the communication
channels. In this light, it is clear that the sensing time is further
reduced in presence of noise, since the distribution process
lasts longer. Without an early distribution stop – namely,
without the framework presented in this manuscript – it may
be even possible that no time is left for the sensing process,
since the distribution process could last for (or exceed) the
entire time window allowed by the coherence time.

From the above, it appears clear that the decision regard-
ing when to stop the entanglement distribution is pivotal
in distributed sensing networks, since it directly influences
the admissible values for the sensing time, and hence it
impacts the ultimate performance of the sensing process. As a
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consequence, it becomes pivotal to engineer the entanglement
distribution so that the sensing time Ts – and thus the
sensitivity – is not harshly impacted. And this can be done,
within our mathematical framework, by properly leveraging
the expression of the reward function r(sn, a).

Specifically, with our framework, it is possible to engineer
the time interval Td, so that it jointly and dynamically accounts
for two key factors: i) the underlying condition of the quantum
channels utilized for the distribution process, ii) the ultimate
sensitivity required by the distributed sensing.

Specifically, let us consider again the pay-off function g(sn)
given in (30), i.e. g(sn) = s

n . In a distributed quantum sensing
scenario, this setting of the pay-off would model a gain that
linearly increases with the number s of entangled nodes. And
this is reasonable, since the more are the entangled nodes,
the higher5 the performance of the sensing process is likely
to be. However, this gain is discounted by a factor equal to
the number n of time-slots used for entangling such clients.
Thus, the longer lasts the entanglement distribution, the lower
becomes the achievable gain. And this is not only reasonable,
but indeed it is fundamental for achieving our goal, i.e., to
avoid that the entanglement distribution lasts so long that the
overall sensitivity becomes harshly impacted.

Clearly, a different choice for the expression of g(sn),given
in (30) could be done, so that such an expression can be
properly tuned according to the particulars of the considered
sensing scenario. Nevertheless, even with the simple setting
given in (30), we can observe a very desirable feature: Td

is not a fixed value, but it rather depends on the underlying
communication scenario through the probability of successful
ebit distribution p, namely, Td = Td(p) as depicted in the
rightmost part of Fig. 12.

This feature becomes evident by observing the plot in
Fig. 13, showing the pay-off g(sn) achieved by stopping the
distribution at time-slot n during one Montecarlo distribution
process trial for three different network scenarios, i.e., three
different values of ebit distribution probability p. The different
communication scenarios are represented with different colors,
and for each scenario we highlight the optimal stopping time
– i.e., the stopping time that maximizes the expected total
reward given in (16) – with a vertical dotted line.

Without an early stopping as proposed in this paper, the
distribution would be concluded once all the targeted clients
have been entangled. This case corresponds to the right-most
vertical dotted line, where the entire time window allowed by
the coherence time is devoted to entanglement distribution.
Although all the sensor may be connected by the end of the
coherence time, in such a case there is not time left for sensing.
Thus, the entanglement distributed is useless. Differently, by
adopting our framework, a smaller number of sensors receive
the entanglement, but there is some time left for sensing.
To elaborate more, with the adopted setting of the pay-off
function g(sn), the less noisy is the communication channel,
the earlier the distribution can be stopped and, hence, the
larger is the time devoted to sensing. Remarkably, the reward

5We refer the reader to Sec.IX.C and Eq. 116 and 117 in [54] for further
details on the improved sensitivity.

at the coherence-induced stopping time corresponds to a lower
reward.

V. DISCUSSION AND CONCLUSION

Multipartite entanglement is a key resource for various
quantum network functionalities and applications, each pre-
senting distinct requirements and serving different purposes.
As a consequence, multipartite entanglement distribution de-
mands careful engineering. To this aim, a crucial step involves
the formulation of a general model capable of not only
assessing the impact of noise on the distribution process
but also positioning itself as a versatile tool for the diverse
applications of multipartite entanglement.

This work moves a step towards the aforementioned direc-
tion, by developing an handy-tool for tuning and engineering
the entanglement distribution process so that it can meet the
performance requirements through proper reward functions.
The developed theoretical framework jointly accounts for the
constraints arising from the underlying technologies as well
as for the overlaying communication protocol requirements.
We exploited our formulation for discussing the trade-off
arising between the two key performance metrics – i.e., the
average cluster size and the average distribution time – and for
discussing the impact of the reward function and the decision-
making policy on the entanglement distribution performance.

APPENDIX A
PROOF OF LEMMA 1

According to the model developed in Sec. II, a distribution
attempt takes place only if action a = C is taken. And in
this case, at time slot n + 1, the system – as a result of the
distribution attempts – evolves into another state characterized
by a number s̃ of “connected nodes”, which cannot be smaller
than the number s of “connected nodes” in the time slot n.
The reason for which s̃ ≥ s is twofold: i) the heralded scheme
allows the super-node to recognize which node – if any –
experienced an ebit loss in a given time-slot. Hence, in the
successive time slot, the super-node distributes entanglement
only to the missing nodes; ii) by restricting the distribution
attempts within a time interval N where the decoherence
effects are negligible, the system state evolution is restricted
from “backward” transitions towards smaller connected sets
with s̃ < s. Stemming from this and in according to the
EPR distribution model given in Sec. II, each ebit distribution
attempt follows a Bernoulli distribution with parameter p.
Accordingly, it follows that when a = C and s, s̃ ∈ S : s̃ ≥ s,
the transition probability p(s̃n+1|sn, C) is given by:

p(s̃n+1|sn, C) = p(s̃|s) =
(
S − s

s̃− s

)
qS−s̃ps̃−s. (37)

Conversely, when action a = Q is taken, the system can
only evolve in the absorption state ∆, which is a fictitious
state modeling the state where no further distribution attempts
are performed. It is worthwhile to observe that once in the
absorption state s = ∆, the system remains in such a state,
i.e., no evolution towards s̃ ̸= ∆ is allowed. As a consequence
the proof follows.
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APPENDIX B
PROOF OF LEMMA 2

We have two statements to prove within the inequality given
in (25).

Proof: First Inequality.
We start by proving the first part of the inequality in (25),

namely:
v−(sn) ≤ v∗C(sn) ∀ s ∈ S ∧ n < N (38)

By exploiting the expression of v∗C(sn) in (20), one can
recognize that:

v∗C(sn) = −f(sn) +
∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
v∗
(
s̃n+1

)
(39)

According to (21), v∗
(
s̃n+1

)
≥ v∗Q(s̃n+1) and by accounting

for the expression of v−(sn) in (24), the proof follows.
Proof: Second Inequality.

We now prove the second part of the inequality in (25), i.e.:

v+(sn) ≥ v∗C(sn) ∀ s ∈ S ∧ n < N (40)

By exploiting the expressions of v+(sn) in (23) and v∗C(sn)
reported in (39), one recognizes that proving (40) is equivalent
to prove that:∑
s̆∈S̃

p
(
s̆N |sn, C

)
v∗Q

(
s̆n+1

)
≥

∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
v∗
(
s̃n+1

)
,

(41)
where, by definition

v∗
(
s̃n+1

)
= max

{
v∗Q(s̃n+1), v

∗
C(s̃n+1)

}
(42)

To prove (41), we can consider the two elements in (42)
separately. To this aim, let us consider the more general case,
namely, the case where n+ 1 < N 6.

Case 1: v∗
(
s̃n+1

)
= v∗Q(s̃n+1).

Let us conduct a proof with a reductio ad absurdum, i.e., let
us suppose that:∑
s̆∈S̃

p
(
s̆N |sn, C

)
v∗Q

(
s̆n+1

)
<

∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
v∗Q(s̃n+1)

)
.

(43)
By accounting for the extended transition probabilities given
in (22), we obtain equation (44) given at the top of the next
page. We note that (44) is satisfied only if there exists at least
one s̃ ∈ S : s̃ ≥ s so that:∑

s̆≥s̃

p
(
s̆N |s̃n+1, C

)
p
(
s̃n+1|sn, C

)
g(s̆n+1) <

< p
(
s̃n+1|sn, C

)
g(s̃n+1) ⇐⇒

⇐⇒
∑
s̆≥s̃

p
(
s̆N |s̃n+1, C

)
g(s̆n+1) < g(s̃n+1). (45)

By accounting for Property 1 and by recognizing that∑
s̆≥s̃ p

(
s̆N |s̃n+1, C

)
= 1, (45) constitutes a reductio ab

absurdum and so does (43).

6Indeed, when n+1 = N , no decision has to be made since the distribution
is interrupted and the system goes in the absorption state

Case 2: v∗
(
s̃n+1

)
= v∗C(s̃n+1).

Let us conduct the proof again with a reductio ad absurdum
by supposing that:∑
s̆∈S̃

p
(
s̆N |sn, C

)
v∗Q

(
s̆n+1

)
<

∑
s̃∈S̃

p
(
s̃n+1|sn, C

)
v∗C(s̃n+1)

)
(46)

By accounting for the extended probabilities given in (22), we
obtain equation (47) given at the top of the next page. For the
sake of notation simplicity and with no loss in generality – as
discussed at the end of this proof – let us assume N = n+2.
Accordingly, v∗(s̆n+2) = g(s̆N ) and (47) holds only if there
exists at least one s̃ ∈ S : s̃ ≥ s so that:∑

s̆≥s̃

p
(
s̆N |s̃n+1, C

)
g(s̆n+1) <

< −f(s̃n+1) +
∑
s̆≥s̃

p
(
s̆N |s̃n+1, C

)
g(s̆N ) (48)

Hence, by accounting for Property 2, (48) constitutes a
reductio ab absurdum and so does (46). We finally note
that, whether N should be greater than n + 2 – say N =
n + 3 as instance – we have that v∗(s̆n+2) is equal to
max

{
v∗Q(s̃N−1), v

∗
C(s̃N−1)

}
, and the proof follows recur-

sively by adopting the same reasoning adopted for the two
elements in (42).

APPENDIX C
PROOF OF PROPOSITION 2

A. Case I: rewards modeled as in (30).
Here we prove that the OLA rule is not optimal when the

rewards are modeled as in (30), namely, when:

g(sn) =
s

n
(49)

Let us assume the system state being sn ∈ S. Whether action
C is chosen, the expected state E[Sn+1] is given by:

E[Sn+1] =
∑
s̃∈S

(
S − s

s̃− s

)
qS−s̃ps̃−s = s+ p(S − s) (50)

Accordingly, stemming from the definition of OLA set in (27)
and by accounting for (29), we have that SQ

n and SQ
n+1 are

given by:

SQ
n =

{
x ∈ S :

x

n
≥ x+ p(S − x)

n+ 1

}
(51)

SQ
n+1 =

{
x ∈ S :

x

n+ 1
≥ x+ p(S − x)

n+ 2

}
(52)

Hence, after simple algebraic manipulations, it results:

s ∈ SQ
n =⇒ s ≥ np

1 + np
S (53)

s̃ ∈ SQ
n+1 =⇒ s̃ ≥ (n+ 1)p

1 + (n+ 1)p
S (54)

Let us conduct the proof with a reductio ab absurdum by
assuming that, starting from state sn : s ∈ SQ

n and evolving
into state s̃n+1, it must result s̃ ∈ SQ

n+1 for any s̃. Without
any loss of generality, we assume:

s =
np

1 + np
S ∧ s̃ = s (55)
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∑
s̆≥s

p
(
s̆N |sn, C

)
g(s̆n+1) =

∑
s̆≥s̃

s̆∑
s̃≥s

p
(
s̆N |s̃n+1, C

)
p
(
s̃n+1|sn, C

)
g(s̆n+1) <

∑
s̃≥s

p
(
s̃n+1|sn, C

)
g(s̃n+1) (44)

∑
s̆≥s̃

s̆∑
s̃≥s

p
(
s̆N |s̃n+1, C

)
p
(
s̃n+1|sn, C

)
g(s̆n+1) <

∑
s̃≥s

p
(
s̃n+1|sn, C

)−f(s̃n+1) +
∑
s̆≥s̃

p
(
s̆n+2|s̃n+1, C

)
v∗(s̆n+2)

 (47)

and, by jointly accounting for (54) and (55), it results:

s̃ = s =
np

1 + np
S >

(n+ 1)p

1 + (n+ 1)p
S =⇒ p < 0 (56)

which clearly constitutes a reductio ab absurdum.

B. Case II: rewards modeled as in (31).

Here we prove that the OLA rule is optimal when the
rewards are modeled as in (31), namely, when:

g(sn) = λns (57)

To this aim, let us assume sn ∈ SQ
n and let us conduct

the proof with a reductio ab absurdum by assuming that the
system can evolve into a s̃n+1 /∈ SQ

n+1. From (50), we have
that SQ

n and SQ
n+1 are given by:

SQ
n =

{
x ∈ S : λnx ≥ λn+1x+ p(S − x)

}
(58)

SQ
n+1 =

{
x ∈ S : λn+1x ≥ λn+2x+ p(S − x)

}
(59)

Hence, after simple algebraic manipulations, it results:

s ∈ SQ
n =⇒ s ≥ λpS

1− λ− λp
(60)

s̃ /∈ SQ
n+1 =⇒ s̃ <

λpS

1− λ− λp
(61)

which constitutes a reductio ab absurdum, given that the
system cannot evolve from sn to s̃n+1 with s̃ < s.

C. Case III: rewards modeled as in (32).

Here we prove that the OLA rule is optimal when the
rewards are modeled as in (32), namely, when:

g(sn) =
s

S
− n

N
(62)

To this aim, let us assume sn ∈ SQ
n and let us conduct

the proof with a reductio ab absurdum by assuming that the
system can evolve into a s̃n+1 /∈ SQ

n+1. From (50), we have
that SQ

n and SQ
n+1 are given by:

SQ
n =

{
x ∈ S :

x

S
− n

N
≥ x+ px

S
+ p+

n+ 1

N

}
(63)

SQ
n+1 =

{
x ∈ S :

x

S
− n+ 1

N
≥ x+ px

S
+ p+

n+ 2

N

}
(64)

Hence, after simple algebraic manipulations, it results:

s ∈ SQ
n =⇒ s ≥ S − S

Np
(65)

s̃ /∈ SQ
n+1 =⇒ s̃ < S − S

Np
(66)

which constitutes a reductio ab absurdum, given that the
system cannot evolve from sn to s̃n+1 with s̃ < s.
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