
DistributedQuantum Computing: a Survey

MARCELLO CALEFFI∗†‡, University of Naples Federico II, Italy

MICHELE AMORETTI∗§, University of Parma, Italy

DAVIDE FERRARI∗§, University of Parma, Italy

DANIELE CUOMO†, University of Naples Federico II, Italy

JESSICA ILLIANO¶†, University of Naples Federico II, Italy

ANTONIO MANZALINI, TIM, Italy

ANGELA SARA CACCIAPUOTI∗†‡, University of Naples Federico II, Italy

Nowadays, quantum computing has reached the engineering phase, with fully-functional quantum processors

integrating hundred of noisy qubits available. Yet – to fully unveil the potential of quantum computing

out of the labs and into business reality – the challenge ahead is to substantially scale the qubit number,

reaching orders of magnitude exceeding the thousands (if not millions) of noise-free qubits. To this aim, there

exists a broad consensus among both academic and industry communities about considering the distributed
computing paradigm as the key solution for achieving such a scaling, by envision multiple moderate-to-small-

scale quantum processors communicating and cooperating to execute computational tasks exceeding the

computational resources available within a single processing device. The aim of this survey is to provide the

reader with an overview about the main challenges and open problems arising with distributed quantum

computing, and with an easy access and guide towards the relevant literature and the prominent results from

a computer/communications engineering perspective.

Additional Key Words and Phrases: Quantum Computing, Quantum Computation, Distributed Quantum

Computing, Quantum Algorithms, Quantum Internet, Quantum Networks, Quantum Compiler, Quantum

Compiling, Simulator

1 INTRODUCTION
The Quantum Internet [1, 2] is envisioned as the final stage of the quantum revolution, opening new

communication and computing capabilities. In synergy with the classical Internet, the Quantum

Internet will connect quantum processors and devices to achieve capabilities that are provably

impossible using classical communication.

Within the last few years, a major effort is being undertaken by the research community and by

the major ICT companies towards the Quantum Internet design and deployment.

∗
These authors contributed equally to this article.

†
Also with www.QuantumInternet.it research group, FLY: Future communications Laboratory, University of Naples

Federico II.

‡
Also with CNIT, National Inter-university Consortium for Telecommunications.

§
Also with Quantum Software Laboratory, University of Parma.

¶
Jessica Illiano acknowledges support from TIM S.p.A. through the PhD scholarship.

Authors’ addresses: Marcello Caleffi, Department of Electrical Engineering and Information Technologies (DIETI), University

of Naples Federico II, Naples, Italy, marcello.caleffi@unina.it; Michele Amoretti, Department of Engineering and Architecture,

University of Parma, Parma, Italy, michele.amoretti@unipr.it; Davide Ferrari, Department of Engineering and Architecture,

University of Parma, Parma, Italy, davide.ferrari1@unipr.it; Daniele Cuomo, Department of Physics, University of Naples

Federico II, Naples, Italy, daniele.cuomo@unina.it; Jessica Illiano, Department of Electrical Engineering and Information

Technologies (DIETI), University of Naples Federico II, Naples, Italy, jessica.illiano@unina.it; Antonio Manzalini, TIM, Turin,

Italy; Angela Sara Cacciapuoti, Department of Electrical Engineering and Information Technologies (DIETI), University of

Naples Federico II, Naples, Italy.

2022. XXXX-XXXX/2022/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2022.

ar
X

iv
:2

21
2.

10
60

9v
1

 [
qu

an
t-

ph
]

 2
0

D
ec

 2
02

2

HTTPS://ORCID.ORG/0000-0001-5726-5489
HTTPS://ORCID.ORG/0000-0002-6046-1904
HTTPS://ORCID.ORG/0000-0002-4777-7234
HTTPS://ORCID.ORG/0000-0002-9361-5797
HTTPS://ORCID.ORG/0000-0002-7688-9593
HTTPS://ORCID.ORG/0000-0003-1633-3099
HTTPS://ORCID.ORG/0000-0002-0477-2927
http://www.quantuminternet.it
https://www.qis.unipr.it/quantumsoftware.html
https://orcid.org/0000-0001-5726-5489
https://orcid.org/0000-0002-6046-1904
https://orcid.org/0000-0002-4777-7234
https://orcid.org/0000-0002-9361-5797
https://orcid.org/0000-0002-7688-9593
https://orcid.org/0000-0003-1633-3099
https://orcid.org/0000-0002-0477-2927
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Caleffi et al.

Fig. 1. Quantum computing power of isolated vs interconnected processors. The volume of each cube
graphically represents the ideal – i.e., noise free – quantum computing power as the number of qubits within
each processor scales. Figure reproduced from [12].

Within the EU, The Quantum Flagship’s projects are developing some of the most advanced

physical quantum computing and quantum communication platforms in the world [3]. Specifically,

long-term ambition of the Quantum Internet Alliance project is to build a Quantum Internet that

enables quantum communication applications between any two points on Earth [4]. In this decade,

a quantum communication infrastructure (EuroQCI) will cover the whole EU, including its overseas

territories [5].

Overseas, the US government opened a number of publicly funded centers for quantum research in

the last decade [6]. One of them is Q-NEXT [7], whose mission is to “deliver quantum interconnects

and establish a national foundry to provide pristine materials for new quantum devices”. Q-NEXT’s

vision is to help developing the technology that will enable applications in secure communication,

distributed sensing, and scaling quantum computers. Another US public center is the Hybrid

Quantum Architectures and Networks (HQAN) [8], whose goal is “[tackling] the challenge of

scaling quantum processors by pursuing an alternative paradigm: distributed quantum processing

and networks composed of a hybrid architecture”. Furthermore, the Center for Quantum Networks

(CQN) [9] is working directly on key challenges facing the construction of large-scale quantum

networks. CQN’s goals include developing foundational technology – such as optical fibers, quantum

repeaters, and switches – for metropolitan-scale quantum networks.

But Quantum Internet research is not limited to western countries. China is actively advancing

research on quantum communications, with technology implementations such as their quantum

secure communication networks (regional “Trunks”) combined with their quantum satellite project

(nicknamed Micius) [10]. It is estimated that there has been at least a 25 billion dollars Chinese

government investment from the mid-1980s until 2022 into quantum technology [11]. One of

Beijing’s aims for its 14th five-year plan, which ends in 2025, is to establish an intercity quantum

demonstration network based on secure relays.

Meanwhile, companies like IBM, Google, and Amazon are making significant investments in

quantum computing and quantum networking. In May 2017, AT&T announced that it was working

with the California Institute of Technology to build out its quantum networking technology to offer

more secure communications. British Telecommunications (BT), Toshiba Research, ADVA Optical

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 3

Networking, and the UK National Physical Laboratory, are collaborating to research and implement

quantum encryption.

I. Introduction

II. DQC: Distributed Quantum Computing

III. Quantum Preliminaries

III-A. Qubits in a Nutshell

III-B. Quantum Circuits

III-C. Monolithic Execution

III-D. Distributed Execution

IV. Quantum Algorithms

IV-A. Partitioning of Quantum Algorithms

IV-B. Execution Management

IV-C. Open Issues and Research Directions

V. Quantum Networking

V-A. Quantum Internet

V-B. Quantum Teleportation

V-C. Teledata vs Telegate

V-D. Physical vs Virtual Quantum Link

V-E. Open Issues and Research Directions

VI. Quantum Compiling

VI-A. Qubit Assignment

VI-B. Non-local Gate Handling

VI-C. Open Issues and Research Directions

VII. Simulation Tools

VII-A. Hardware-Oriented

VII-B. Protocol-oriented

VII-C. Application-oriented

VII-D. Open Issues and Research Directions

VIII. Conclusions and Future Perspectives

VII-A. Industrial and Standardization Perspective

VII-B. The Journey Ahead

Fig. 2. Structure of the Survey

In June 2018, BT announced that it had built a

“quantum-secured” internet network that spanned

between Cambridge, UK and BT’s laboratory in Ip-

swich, a distance of around 50 miles [13]. Amazon

has recently established the AWS Center for Quan-

tum Networking [14]. Researchers at the center will

work on technologies like quantum repeaters and

transducers, to allow for the creation of global quan-

tum networks.

Among the killer applications of the Quantum

Internet [15], broad interest has been lately devoted

to distributed quantum computing, where individ-

ual quantum processors – limited in the number

of qubits – work together to solve computational

tasks exceeding the computational resources avail-

able within a single processing device [12, 16–19].

This interest came as no surprise since – differently

from classical distributed computing – a linear in-

crease in the number of interconnected quantum

processors unlocks an exponential increase of the

quantum computational power [12, 17], as summa-

rized in Figure 1.

Unfortunately, the existing literature on dis-

tributed quantum computing is spread among dif-

ferent research communities – ranging from the

physics through the communications/computer en-

gineering to the computer science community – lead-

ing to a fundamental gap. The aim of this survey

is precisely to bridge this gap, by introducing the

reader to the astonishing and intriguing properties

of distributed quantum computing.

Stemming from this, in the following we shed the

light on the distinctive characteristics of distributed

quantum computing, with the objective of allowing

the reader:

i) to own the implications of the novel, aston-

ishing and intriguing properties of quantum

information for understanding the differences

between distributed (classical) computing vs.

distributed quantum computing;

ii) to grasp the challenges as well as to appreci-

ate the marvels arising with the paradigmatic

shift from monolithic to distributed quantum

computing

, Vol. 1, No. 1, Article . Publication date: December 2022.

4 Caleffi et al.

Indeed, due to the fast grow of this research field, such an understanding will serve the computer

science community and the communications/computer engineering community alike to have an

easy access and guide towards the relevant literature and to the prominent results, which will be of

paramount importance for advancing the state-of-the-art.

To the best of authors’ knowledge, a tutorial of this type is the first of its own. The paper is

structured as depicted in Figure 2. Specifically, in Section 2, we introduce the rationale for distributed

quantum computing, and we present the four different perspectives – algorithms, networking,

compiling and simulation – discussed within the survey. Then, in Section 3, we provide the reader

with a concise overview about quantum computing, with reference to the quantum circuit model.

In Section 4, we focus on quantum algorithms, the extent to which they can be distributed as well

as their execution management, once they are executed according to a distributed paradigm. In

Section 5, we detail the pivotal role played by quantum networking for enabling distributed quantum

computing, by discussing in detail the unconventional features of quantum communications.

In Section 6, we describe some relevant approaches to the problem of compiling quantum

algorithms for distributed execution, i.e., splitting them conveniently to fit the available networking

and computing hardware. In Section 7, we provide an overview of the most advanced simulation

tools for quantum networking, discussing their suitability for the design and analysis of distributed

quantum computing architectures. Finally, we conclude our survey in Section 8 by first providing

an industrial perspective on distributed quantum computing, and then by discussing the possible

stages of distributing quantum computing development.

2 DQC: DISTRIBUTED QUANTUM COMPUTING
Nowadays, all major quantum computing technologies – e.g., ion traps, superconductors, quantum

dots, etc. – exhibit hard technological limitations on the number of qubits that can be embedded in

a single quantum chip [16]. Accordingly, the consensus of both academic and industry communities

for realizing large-scale quantum processors goes toward a quantum computing paradigm-shift,

which consists in relying on a quantum network infrastructure to cluster together modular and

small quantum chips in order to scale the number of qubits [1, 17, 20, 21].

The aforementioned vision is expected to be realized in a very near future. For instance, IBM

plans to introduce in 2025 Kookaburra – a 1386 qubit multi-chip processor with communication link

support for quantum parallelization –with three Kookaburra chips inter-connected into a 4158-qubit

system [22]. With such modular systems, an ordinarily monolithic quantum computation can be

“split into pieces” and executed on multiple inter-connected processors by following the distributed

quantum computing (DQC) paradigm [12, 23]. Despite being expected further into the future,

metropolitan-area and wide-area quantum networks are also under research and development [24–

26], which would enable DQC among geographically-distributed quantum device.

This survey focuses on DQC, and it analyzes the state-of-the-art and challenges arising by

looking at the DQC according to four main different perspectives, namely: algorithms, networking,
compiling, and simulation.
As illustrated in Figure 3, for each of these four pillars, the most relevant aspects are discussed.

Regarding algorithms, the focus is on the crucial and specific challenges arising when moving

from monolithic to distributed quantum computing, namely, quantum algorithm partitioning and

execution management. Being DQC an application of quantum networking – namely, being some

sort of (quantum) network a fundamental pre-requisite for any form of distributed (quantum)

computing – through the survey we will shed the light on the challenges arising with inter-

networking different quantum processors, by introducing the reader to the fundamental differences

between interconnecting remote classical processors versus interconnecting remote quantum
processors. As regards to compiling, it deals with translating a hardware-agnostic description of

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 5

Fig. 3. Distributed Quantum Computing. The four different perspectives overviewed within the survey,
with algorithms, compiling and networking represented as interdependent layers of a distributed quantum
computing architecture, and simulation represented as an inter-layer enabler, covering layers exhibiting
quantumness, namely, algorithms and networking.

the algorithm – namely, the quantum circuit – into a functionally equivalent description that takes

into account the physical constraints of the underlying computing architecture [18]. Indeed, within

the context of DQC, the compiling must account also for the network constraints, which impact

on the strategy adopted for splitting the circuit into “portions” to be concurrently executed on

the individual quantum processing units (QPUs)
1
. As a matter of fact, a key goal is to minimize

the number of remote operations, i.e., operations involving different QPUs. Last but not least, the

design of DQC architectures can be highly facilitated by adequate simulation tools, as discussed

and detailed in the manuscript.

3 QUANTUM PRELIMINARIES
In this section, we provide a short overview about quantum computing, with reference to the

quantum circuit model. We refer the reader to [27] for a concise introduction to the peculiarities and

the challenges arising with quantum information, whereas an overview about quantum computing

and an in-depth treatise about quantum information and quantum computation are provided

in [28, 29] and [30], respectively.

3.1 Qubits in a Nutshell
Information, either classical or quantum, can be encoded in the state of the simplest quantum

mechanical system, namely, the quantum bit (qubit). Examples of two-level quantum systems are

the spin of the electron, the polarization of a photon, or an atom with a ground state and an excited

state.

Mathematically, the state of a qubit is defined as a vector in a two-dimensional complex Hilbert

space. Hence qubit states can be treated as mathematical objects, thus enabling the construction of

a general theory of quantum computing, which does not rely on the particulars of the underlying

technology. By adopting the bra-ket notation2, the state of an arbitrary qubit can be expressed as a

1
Throughout the manuscript, the two terms quantum processor and quantum process unit are used as synonyms.

2
The bra-ket notation, also known as Dirac’s notation [31], is a standard notation for describing quantum states.

In a nutshell, a ket | ·⟩ represents a column vector, whereas a bra ⟨· | � | ·⟩† represents the conjugate transpose of the

corresponding ket.

, Vol. 1, No. 1, Article . Publication date: December 2022.

6 Caleffi et al.

ẑ

|0⟩

|1⟩

ŷ

𝜙

𝜃

|𝜑⟩

x̂ |+⟩ = |0⟩+ |1⟩√
2

��+𝜋/2〉 = |0⟩+𝑖 |1⟩√
2

Fig. 4. Bloch sphere: geometrical representation of a qubit in spherical coordinates. A pure state |𝜑⟩ =

𝛼 |0⟩ + 𝛽 |1⟩ is represented by a point on the sphere surface, with 𝛼 = cos
𝜃
2
and 𝛽 = 𝑒𝑖𝜙 sin

𝜃
2
.

linear combination – namely, as a superposition – of two basis states |0⟩ and |1⟩:

|𝜑⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ . (1)

with 𝛼, 𝛽 ∈ C : |𝛼 |2 + |𝛽 |2 = 1 (normalization condition). The state of a single-qubit system is

often represented geometrically in spherical coordinates by the Bloch sphere, illustrated in Figure 4.

Specifically, a pure state is represented by a point on the sphere’s surface, with 𝜃 and 𝜙 denoting

the spherical coordinates:

|𝜑⟩ = cos

𝜃

2

|0⟩ + 𝑒𝑖𝜙 sin 𝜃
2

|1⟩ . (2)

𝜙 is known as relative phase of the quantum state and it is crucial in creating the interference

patterns exploited for instance by quantum algorithms.

The above can be generalized for a composite system of n-qubits, to which an Hilbert space of

dimension 2
𝑛
can be associated, since the vector spaces associated with the constituent quantum

systems are combined through the tensor product. The state of an n-qubit system can be in a

superposition of all the 2
𝑛
basis states:

|𝜙⟩ =
2
𝑛−1∑︁
𝑘=0

𝛼𝑘 |𝑘⟩ , (3)

with 𝛼𝑘 ∈ C :

∑
2
𝑛−1
𝑘=0

|𝛼𝑘 |2 = 1. It must be noted, though, that the vast majority of n-qubit states

cannot be written as the tensor product of n single-qubit states. These states are referred to as

entangled states and they represent the key ingredient in quantum computing [32, 33]. As an

example, a popular two-qubit entangled state, referred to as Bell state or EPR pair3, is given by:��Φ+〉 = |00⟩ + |11⟩
√
2

. (4)

3
With Bell states named in honor of Bell [34], and EPR pairs named in honor of Einstein, Podolsky and Rosen [35].

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 7

Gate Name Gate Matrix Operation

Identity 𝐼 =

(
1 0

0 1

)
does not modify the quantum state

Pauli-X X =

(
0 1

1 0

)
bit-flip

Pauli-Y Y =

(
0 −𝑖
𝑖 0

)
combined bit- and phase-flip

Pauli-Z Z =

(
1 0

0 −1

)
phase-flip

Square-root-of-X SX = 1√
2

(
1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖

)
SX such that X = SX ◦ SX

Hadamard H = 1√
2

(
1 1

1 −1

)
maps an element of the computational basis – either |0⟩ or |1⟩ – into an

even superposition of the basis elements (and vice versa)

S S =

(
1 0

0 𝑖

)
𝜋/2 phase shift

T T =

(
1 0

0 𝑒𝑖𝜋/4

)
𝜋/4 phase shift

Phase shift P𝜃 =

(
1 0

0 𝑒𝑖𝜃

)
𝜃 phase shift

x-Rotation R𝑥 (𝜃) = 𝑒
−𝑖 𝜃

2
𝑋

= cos
𝜃
2
𝐼 − 𝑖 sin 𝜃

2
𝑋 rotation by 𝜃 along 𝑥-axis of the Bloch sphere

y-Rotation R𝑦 (𝜃) = 𝑒
−𝑖 𝜃

2
𝑌
= cos

𝜃
2
𝐼 − 𝑖 sin 𝜃

2
𝑌 rotation by 𝜃 along �̂�-axis of the Bloch sphere

z-Rotation R𝑧 (𝜃) = 𝑒
−𝑖 𝜃

2
𝑍
= cos

𝜃
2
𝐼 − 𝑖 sin 𝜃

2
𝑍 rotation by 𝜃 along 𝑧-axis of the Bloch sphere

Controlled-NOT CNOT =
©«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®¬ bit-flips the second (target) qubit whenever the first (control) qubit is |1⟩

Table 1. Common quantum gates.

3.2 Quantum Circuits
The quantum circuit [30] is the most popular model of quantum computation, where quantum op-

erators are described as quantum gates. More into details, by sequentially interconnecting different

quantum gates, a quantum circuit models the processing of quantum information corresponding

to a specific quantum algorithm is obtained [18]. Indeed, there exist several equivalent quantum

circuits modeling the same computation with a different arrangement or different ordering of gates.

A very simple example of quantum circuit is provided in Figure 5, where each horizontal line

represents the time evolution of the state of a single (logical) qubit, with time flowing from left to

right, dictating the order of execution of the different gates.

Quantum gates (and, overall, quantum circuits) are described by unitary matrices relative to
some basis, i.e., matrix𝑈 such that𝑈 †𝑈 = 𝐼 . It follows that quantum computation is reversible: it is
always possible to invert a quantum computation.

Some widely-used gates
4
are reported in Table 1 and, as a matter of fact, every unitary operator

𝑈 on a single qubit can be formulated as:

𝑈 = 𝑒𝑖𝜃1R𝑥 (𝜃2)R𝑦 (𝜃3)R𝑧 (𝜃4), 𝜃𝑖 ∈ R (5)

4
It is worth noting that most quantum gates are self-inverse (like Hadamard ad Pauli gates) or determining the inverse

is straightforward (e.g., by taking the negated rotation angle for rotation gates).

, Vol. 1, No. 1, Article . Publication date: December 2022.

8 Caleffi et al.

|0⟩ H

|Φ+⟩ = |00⟩+ |11⟩√
2

|0⟩

Fig. 5. Quantum circuit for generating a two-qubit
entangled state – namely, the Bell state in (4) – start-
ing from the input state |00⟩. Time flows from left
to right: the first qubit undergoes through a single-
qubit Hadamard gate – denoted with H – followed
by a two-qubit CNOT gate – represented by • and
⊕ symbols interconnected by a vertical line – both
defined in Table 1.

|0⟩ , |1⟩

0,1
|𝜓 ⟩

Fig. 6. Quantum circuit for measuring a qubit. Single
wires denote quantum states, whereas double wires
denote classical states, namely, bits. The measure-
ment of a qubit – whose output is a classical bit –
induces the state of the qubit to collapse into the
measured state.

with R𝑖 denoting the 𝑖-axis rotation operator, defined in Table 1. More precisely, the possibility of

implementing two arbitrary rotation operators is sufficient, as their combined application can be

exploited to obtain the third type of rotation in (5).

Among two-qubit gates, highly relevant are the controlled ones. The generic Controlled-U
gate operates on two

5
qubits, namely a control qubit (controlling the operation) and a target qubit

(subjected to the operation). By denoting with |𝜑𝑐⟩ and |𝜑𝑡 ⟩ the control and target qubits respectively,
the effect of the controlled U gate on the target qubit is the following:{

I |𝜑𝑡 ⟩ if |𝜑𝑐⟩ = |0⟩
U |𝜑𝑡 ⟩ if |𝜑𝑐⟩ = |1⟩ .

(6)

The most famous example of controlled gate is represented by the CNOT gate, which is a

Controlled-U gate where the U gate is a Pauli-X one. The CNOT gate can be used to create

or destroy entanglement among the inputs. Specifically, to obtain an entangled state, we may start

from the separable input |00⟩ and, by applying H to the first qubit, obtaining (|00⟩ + |10⟩)/
√
2.

Finally, by applying a CNOT gate (where the first qubit is the control one, as shown in Figure 5), the

resulting state is exactly the Bell state given in (4), namely, (|00⟩ + |11⟩)/
√
2.

Gates H, S and CNOT constitute the Clifford group [36], which can be simulated efficiently on

a classical computer according to the Gottesman-Knill theorem [30]. The Clifford group is not

universal, i.e., it cannot be used to describe any arbitrary quantum algorithm. However, it is

sufficient to add the T gate to the Clifford group, and the resulting set is universal, yet it is not the

only possible one. Indeed, each family of quantum computers – e.g., IBM Q one [37] – has its own

specific universal gate set, which usually depends on the particulars of the underlying quantum

hardware technology.

It is worthwhile to note that, regardless the particulars of the adopted gate set, deterministic

cloning of quantum states is impossible. Specifically, there exists no quantum gate (or circuit) able

to make a perfect copy of an arbitrary unknown quantum state. Conversely, if the state is known

in advance – specifically, if we know that the state belongs to some orthonormal basis such as

{|0⟩ , |1⟩} or {|+⟩ , |−⟩} – we can design a specific quantum gate to clone that state. This fundamental

property is known as no-cloning theorem, and it has deep impact on distributed quantum computing

as we will discuss in Section 5.

Another unconventional quantum phenomenon arises with the important operation constituted

by measurement, through which information from a quantum state is extracted [38], as illustrated

5Controlled operations can be also defined for multi-qubit targets.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 9

in Figure 6. In fact, according to the quantum measurement postulate, although a qubit may reside

in a superposition of two orthogonal states as in (1), when we want to observe or measure its value,

it collapses into one of the two orthogonal states |0⟩ – with probability |𝛼 |2 – and |1⟩ – with the

probability |𝛽 |26. After its measurement/observation, the original quantum state collapses to the

measured state. Hence, the measurement irreversibly alters the original qubit state [27].

𝑞0

𝑞1

𝑞2 𝑞3

𝑞4

Quantum Processor

Fig. 7. Coupling maps of a IBM Yorktown quan-
tum processor [39, 40]. The five physical qubits
stored within the processor are represented by cir-
cles. The arrows denote the possibility to realize a
two-qubit CNOT gate between the five qubits. As
an example, a CNOT between qubits 𝑞0 and 𝑞1 can
be directly executed by the quantum processor,
whereas a CNOT between qubits 𝑞0 and 𝑞2 cannot.

Finally, it is worthwhile to mention that a quan-

tum circuit exhibits three important quantitative

features: the width, i.e., the number of qubits, the

gate count and the depth, i.e., the longest path in the

circuit. Each and all of them affect the overall quality
of the computation result. To get an easy flavor about

the aforementioned statement, it is enough to think

that due to imperfect hardware the expected error

propagation is upper bounded by 2(1−(1−𝑟)𝑚) [41]
where 0 ≤ 𝑟 < 1 is a constant independent of the

qubit number and𝑚 is the number of gates in the

circuit.

3.3 Monolithic Execution:
Gate Synthesis and Circuit Compilation
As mentioned in the previous subsection, even if

there exists an uncountable number of quantum

logic gates, the set of gates that can be executed on

a certain quantum processor is limited, as a conse-

quence of the constraints imposed by the underlying

qubit technology [42]. In this case, any gate outside

this reduced set must be obtained with a proper combination of the allowed gates through a process

known as gate synthesis. As an example, IBM quantum processors are realized exploiting the super-

conducting technology, and any logical gate that can be run on current IBM quantum processors

is built from a gate set composed by the controlled-not (CNOT) gate and four single-qubit gates

(namely, I, R𝑍 , SX, X gates).

Furthermore, regardless of the underlying qubit technology, the abstract qubits subjected to

quantum gates as specified by the quantum circuit, known as logical qubits, should not be confused

with the physical qubits embedded within a quantum processor [18]. With reference to the physical

qubits, any quantum processor exhibits hardware constraints affecting the allowed interactions

between them. As an example, CNOT gates cannot be applied to any physical qubit pair of an

IBM quantum processor, but they are instead restricted
7
to certain pairs. The allowed pairs are

usually represented with the coupling map – namely, with a graph where vertices denote qubits

and arrows denote the possibility of realizing a two-qubit CNOT gate between the connected qubits

– as illustrated in Figure 7. From the above, it becomes clear that the monolithic execution of a

quantum algorithm on a single quantum processor requires a circuit pre-processing known as

quantum compiling [18, 43–45]. In a nutshell, compiling a quantum circuit is a two-step
8
process

where:

6
The measurement of a qubit state may also be carried out in a basis different from that in which the qubit was prepared

in [28–30]. In the above description, for the sake of clarity, we assumed the standard basis also for the measurement.

7
These limitations arise as a consequence of both the: i) noise effects induced by qubit-interactions, and ii) physical-space

constraints within a single processor [18].

8
With the two steps being inter-dependent, affecting each others.

, Vol. 1, No. 1, Article . Publication date: December 2022.

10 Caleffi et al.

SWAP 𝑞0 and 𝑞2 SWAP back

≡ ≡

𝑞0

𝑞2

𝑞4

Fig. 8. Example of equivalent quantum circuits generated during quantum compiling for mapping an arbitrary
CNOT into a sequence of CNOTs that can be directly executed by a given quantum processor. A CNOT between
qubits 𝑞0 (control) and 𝑞4 (target) with the coupling map given in Figure 7 can be obtained through either: i)
quantum state transfer, by first swapping qubits 𝑞0 and 𝑞2, then by performing a CNOT between 𝑞2 and 𝑞4,
and finally by swapping again qubits 𝑞0 and 𝑞2 so that they recover their initial position, or ii) ancilla qubit,
by performing four CNOT operations between neighbour qubits with the help of the intermediate qubit 𝑞2.
Figure reproduced from [18].

i) each logical qubit of the quantum circuit must be mapped onto one (or more, when adopting

fault-tolerant techniques [46]) physical qubit of the quantum processor, and

ii) each two-qubit gate – as instance, a CNOT – between physical qubits non-adjacent within the

coupling map must be mapped into a computational-equivalent sequence of gates between

adjacent physical qubits, as exemplified in Figure 8.

Clearly, the overall process must be optimized to account for the key performance metrics affecting

quantum computation [47–49]. Typically, this consists in minimizing the depth of the compiled
circuit, namely, the equivalent quantum circuit satisfying all the constrains imposed by the quantum

processor coupling map.

3.4 Distributed Execution
So far, we focused on quantum circuits by abstracting from the particulars of the underlying

computing technology. Indeed, we mentioned that the natively-available gates depends on the

underlying hardware. Yet, this is not an issue since – as long as the available gate set is univer-

sal – any arbitrary gate can be implemented with a finite sequence of the available gates up to

arbitrary accuracy [29]. From the above, we can safely assume that any quantum circuit can be

directly executed on a given quantum processor, either in the original form or by properly re-

placing unavailable gates with sequences of available ones. But the task becomes significantly

harder when we move from monolithic quantum computing to distributed quantum computing.

Specifically, any universal gate set must include one multi-qubit gate – typically a 2-qubit gate

such as the CNOT – and any quantum circuit of some interest includes multi-qubit gates as well. As

a consequence, as illustrated with the toy-model in Figure 9, a distributed quantum computation

involves operations between qubit pairs across different end-nodes (i.e., non-local gates). At a first

sight, this might seem not a big deal. Also (classical) distributed computing involves operations

between classical information located at different processors. And these operations are performed

by simply moving the information from one processor to another. So one might be tempted to

believe that the same strategy can be adopted when it comes to distributed quantum computing.

Unfortunately, this is not true: quantum information requires a paradigm shift for dealing with inter-

processor communications, and the rationale for this would be deeply discussed in the next sections.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 11

Quantum Processor #1

Quantum Processor #2

|𝑞0⟩ 𝐻

|𝑞1⟩

|𝑞2⟩

|𝑞3⟩

Fig. 9. Toymodel for distributed quantum compu-
tation. The quantum circuit is composed by three
two-qubit gates, i.e, CNOTs. First and last gates
operate locally, namely, between qubits stored
within the same QPU, whereas the intermediate
gate operates remotely, namely, between qubits
stored within different QPUs.

4 QUANTUM ALGORITHMS
There exists several quantum algorithms known

or expected to outperform classical algorithms for

problems spanning different areas, including cryp-

tography, search and optimization, simulation of

quantum systems and learning [50]. Remarkably,

most known quantum algorithms use a combination

of algorithmic paradigms – namely, sub-routines

– specific to quantum computing [37]. These

paradigms include the Quantum Fourier Trans-

form (QFT) [51], the Grover Operator (GO) [52],

the Harrow/Hassidim/Lloyd (HHL) method for lin-

ear systems [53], Variational Quantum Algorithms

(VQA) [54], and direct Hamiltonian simulation (SIM).

A prominent example is Shor’s algorithm for integer

factorization [51], which is based on QFT, illustrated

by the quantum circuit in Figure 10.

For most practical applications, quantum algo-

rithms require large quantum computing resources – in terms of qubit number – much larger than

those available with current noisy intermediate-scale quantum (NISQ) processors. For example, the

recently announced IBM Quantum Osprey device has 433 qubits, which is an impressive progress

with respect to state-of-the-art quantum processors, but not yet sufficient, as an example, for

running practical implementations of Shor’s algorithm
9
.

Distributed quantum computing is envisioned as a scalable approach for increasing the number of

qubits available for computational tasks. However, moving from monolithic to distributed quantum

computing implies crucial and specific challenges.

4.1 Partitioning ofQuantum Algorithms
A first issue that arises with quantum algorithms is whether a given algorithm – equivalently, a

given quantum circuit – is natively suitable for distributed execution. More specifically, a perfectly
distributable quantum algorithm is a quantum algorithm that can be split into autonomous parts

that do not interact – or, at least, weakly interact – with each others. If this is the case, each part

can be assigned to some quantum processor, and each processor can contribute autonomously to

the overall computation without introducing communication overhead for interacting with other

processors.

Unfortunately, this is not the usual case. As an example, let us consider the QFT algorithm,

whose circuit is given in Figure 10, notably used as sub-routine in many quantum algorithms –

e.g., Shor’s algorithm and the quantum phase estimation algorithm – as mentioned above. From

Figure 10, it is easy to assess that QFT requires each qubit to strongly interact with all the other

qubits through controlled R𝑛 gates. Hence, QFT can be considered as the archetype of monolithic

quantum algorithms, namely, of an algorithm not natively-suitable for distributed execution.

9
Factoring 𝐿 = 2048 bit primes – for breaking current RSA implementations – requires about 3𝐿 = 6144 noise-free

qubits [30]. It is worth noting that merely increasing the number of physical qubits is not sufficient, as some sort of quantum

error correction [55] is also required to guarantee high-quality – namely, noise-free – computations.

, Vol. 1, No. 1, Article . Publication date: December 2022.

12 Caleffi et al.

.

.

.

.

.

.

|𝜑1⟩ 𝐻 𝑅2 𝑅3 𝑅𝑛−1 𝑅𝑛

|𝜑2⟩ 𝐻 𝑅2 𝑅𝑛−2 𝑅𝑛−1

|𝜑3⟩

|𝜑𝑛−1⟩ 𝐻 𝑅2

|𝜑𝑛⟩ 𝐻

Fig. 10. Quantum Fourier Transform (QFT) circuit. The 𝑖-th qubit is obtained through an Hadamard gate
followed by 𝑛 − 𝑖 controlled R𝑛 operations – with R𝑖 = P

2𝜋/𝑖 denoting the phase gate given in Table 1 – with
the controlled operations controlled by the 𝑛 − 𝑖 higher-order qubits.

As we anticipated in Section 2, to distribute a monolithic quantum algorithm, a quantum compiler

must be used to find the best breakdown, i.e., the one that minimizes the number of gates that

are applied to qubits stored at different devices. Quantum compilation is reviewed in Section 6.

Here we discuss some literature that addresses the partitioning of relevant quantum algorithms,

using techniques that are tailored to the specific considered algorithms rather than general-purpose.

These works may represent a good reference for a comparative evaluation of quantum compilers.

In [56], Neumann et al. present two distribution schemes for the quantum phase estimation
algorithm, give the resource requirements for both and show that using less noisy shared entangled

states results in a higher overall fidelity. Introduced by Kitaev [57], the quantum phase estimation

algorithm returns an approximation of an eigenvalue of a given unitary 𝑈 and a corresponding

eigenvector. It has numerous applications, including Shor’s algorithm [51]. The solution proposed

by Neumann et al. is based on the distributed version of the QFT circuit, obtained by means of

non-local controlled𝑈 -gates
10
.

Another example of distributable quantum algorithm is the Variational Quantum Eigensolver
(VQE), a VQA that can be used to estimate ground state energies of molecular chemical Hamiltoni-

ans. In [59], DiAdamo et al. provide a Local to Distributed Circuit algorithm that, given a circuit

representation as a series of layers and a mapping of qubits, searches for any control gates where

the control and target are physically separated between two QPUs. When found, the algorithm

inserts, between the current layer and next layer in the circuit, the necessary steps to perform the

control gate in a nonlocal way
11
. The size (maximum number of qubits) of the achievable Ansatz

state for the VQE algorithm grows linearly with the number of QPUs, with slope linearly increasing

with the number of qubits per QPU. The depth of the resulting quantum circuit is Ω(𝑛), meaning it

has a tight upper and lower bound proportional to the number 𝑛 of qubits.

In [61], the authors present a distributed adder and a distributed distance-based classification

algorithm. Both applications are framed in a way where a quantum server and 𝐾 other quantum

nodes interact, with specific behaviors. In particular, the server is responsible for orchestrating

the computation by means of non-local CNOT gates, while the 𝐾 parties provide inputs. It is pos-

sible to reframe these applications, such that the proposed quantum circuits are considered as

monolithic and subsequently split in𝐾 +1 parts to be submitted for execution to a quantum network.

10
Non-local controlled𝑈 -gate generalizes the telegate operation discussed in Section 5.3 to arbitrary unitary𝑈 [58].

11
By using the cat-entangling method by Yimsiriwattana et al. [60], which is substantially equivalent to telegate

introduced in Section 5.3.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 13

Fig. 11. Execution of multiple quantum circuit instances
with 𝑘 QPUs. For each execution round 𝑖 , a schedule 𝑆 (𝑖)
maps some quantum circuit instances to the quantum net-
work – each QPU receiving a quantum circuit 𝑃 𝑗

𝑖
that is

either a monolithic one or a sub-circuit of a monolithic one.
The classical outputs are accumulated into an output vector
𝑂 .

4.2 Execution Management
Another challenge is related to the execu-

tion management of distributed quantum

computations. In general, given a collec-

tion P of quantum circuit instances to be

executed, this collection should be parti-

tioned into non-overlapping subsets P𝑖 ,

such that P = ∪𝑖P𝑖 . One after the other,

each subset will be assigned to the avail-

able QPUs. In other words, for each execu-

tion round 𝑖 , there exists a schedule 𝑆 (𝑖)
that maps some quantum circuit instances

to the quantum network. If DQC is sup-

ported, some quantum circuit instances

may be split into sub-circuit instances,

each one to be assigned to a different QPU,

as illustrated in Figure 11). A QPU sched-

uling algorithm that partially address this

service was proposed by Parekh et al. [23]. Such an algorithm is based on a greedy approach, trying

to fill all available QPUs while minimizing the number of distributed quantum circuit instances.

Here the partitioning of quantum circuit instances is arbitrary, not taking into account the features

of the programs.

Recalling Section 4.1, we stress that partitioning should be an orthogonal service with respect

to QPU scheduling. It is worth noting that the QPU scheduling plane must be clearly separated

from the networking plane. We demand that any subset of the available QPUs can be the target of

any quantum computation, provided that the total number of physical qubits fits the circuit width.

This means that the underlying network should allow to create entangled quantum states across

any two QPUs. Technical details on entanglement distribution are presented in Section 5. Here we

recall a recent work by Cicconetti et al. [62], which investigates the requirements and objectives of

DQC from the perspective of quantum network provisioning. In particular, the authors elaborate

on two different classes of traffic, namely constant-rate flows and DQC applications.

4.3 Open Issues and Research Directions
Future directions are both theoretical and practical. Despite a considerable amount of work on

the fundamentals of distributed quantum computing [63–65], an ultimate theory of distributable

quantum algorithms is still missing. It is known that the quantum circuit model and the DQC

model are equivalent up to polylogarithmic depth overhead [64], but a general framework for

ranking quantum algorithms in terms of distributability has not been defined. To this purpose,

it is necessary to provide a quantitative definition of quantum circuit distributability. Regarding

execution management, the broad literature on job scheduling for high performance computing

may be a starting point, but it is clear that the peculiarities of quantum computing – quantum

parallelism, no-cloning, entanglement, etc. – demand for novel and specific strategies for the efficient

execution of concurrent distributed quantum computations. A trade-off between the complexity

of the distributed quantum circuit and the physical distance between quantum processors is also

envisaged.

, Vol. 1, No. 1, Article . Publication date: December 2022.

14 Caleffi et al.

To compare different deployments and schedules, DQC-specific key performance indicators must

be defined. Recently, two frameworks with similar names have been proposed almost at the same

time, namely Quantum Network Utility Maximization (QNUM) [66] and Quantum Network Utility

(𝑈𝑄𝑁) [67]. While QNUM is specifically tailored to the evaluation of entanglement routing schemes

in quantum networks (see Section 5 for details about entanglement), 𝑈𝑄𝑁 is more abstract, aiming

to capture the social and economic value of quantum networks, for a variety of applications (from

secure communications to distributed sensing). Incidentally, in [67] the example of DQC is studied

in detail, through the lens of𝑈𝑄𝑁 . More specifically, a quantum network utility metric is presented,

which applies the Quantum Volume
12
proposed in [68] to the𝑈𝑄𝑁 framework. Such a metric quanti-

fies the value derived from performing QC tasks, and it is viewed as a “quantum volume throughput”.

source QPU

bsm

destination QPU

|𝜓 ⟩ 𝐻

|Φ+⟩
𝑋 𝑍 |𝜓 ⟩

Fig. 12. Pictorial representation of the quantum teleportation
circuit. The first two wires belong to the source node, whereas the
bottom wire belongs to the destination node. A generic state |𝜓 ⟩
is initially stored at the source, and a Bell state such as

��Φ+
〉
given

in (4) must be distributed through a quantum link so that one
entangled member is stored at the source and the other at the
destination. Once the Bell state is available, the teleportation is
obtained with some processing of |𝜓 ⟩ and the entangled member
at the source, followed by two conditional gates on the entangled
pair at the destination, depending on the measurement of the two
qubits at the source. Each double line denotes the transmission
of one classical bit – i.e., the measurement output – between the
remote processors. The two classical bits are thus used as detailed
in Table 2 for determining whether the two conditional gates X
and Z must be applied to recover the original state |𝜓 ⟩ from the
entangled member available at the destination.

It differs from the quantum volume in

twoways: i) it explicitly considers the

rate at which non-local operations

can be performed, and ii) it accounts

for the utility derived simultaneously

from tasks executed on different parts

of the network.

5 QUANTUM NETWORKING
As mentioned in the previous sec-

tions, when it comes to distributed

quantum computing, qubits are dis-

tributed among multiple smaller

quantum processors, interconnected

by some sort of quantum network.

Accordingly, whenever a quan-

tum gate must operate on remote
qubits – namely, qubits located in dif-

ferent quantum processors – some

sort of communication primitive must

be available for performing inter-

processor operations. Unfortunately,

this communication primitive can-

not be easily accomplished through

classical protocols. Indeed, the differ-

ent physical phenomena underlying

quantum communications impose a

paradigm shift.

To better understand the above statement, in the following we shed the light on the challenges

arising with networking different quantum processors. To this aim, in the following we first

substantiate in Section 5.1 the fundamental differences arising with interconnecting remote classical
processors versus interconnecting remote quantum processors. Then, in Section 5.2 we introduce the

marvels of quantum teleportation, which represents the underlying communication functionality

enabling remote quantum operations. Stemming from this, in Section 5.3 we discuss the two

12
Quantum Volume (QV) is a single-number metric that can be measured using a concrete protocol on near-term

quantum computers of modest size. The QV method quantifies the largest random circuit of equal width and depth that the

quantum processor successfully executes.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 15

possible strategies – namely, telegate and teledata – for implementing quantum gates between

remote qubits. Then, in Section 5.4 we present a key strategy – referred to as entanglement swapping
– for virtually-augmenting the connectivity among different quantum processors. And finally, in

Section 5.5, we discuss the open problems arising with interconnecting remote quantum processors.

5.1 Quantum Internet
According to the on-going IETF RFC draft on Quantum Internet architectures [69], the Quantum In-

ternet can be defined as an interconnection of heterogeneous
13
quantum networks, able to exchange

qubits and to generate and share entangled states among themselves. Hence, the Quantum Internet

services ground on the manipulation and transmission of qubits as well as on the distribution of

entangled states. This, in turn, imposes several challenges with no-counterpart in classical network

and that cannot be solved through existing classical protocols.

As an example, Internet (and classical networks in general) extensively relies on the possibility

of freely duplicating information. But this basic assumption does not hold when it comes to the

Quantum Internet [70, 71] accordingly to the no-cloning theorem
14
. Furthermore, according to the

measurement postulate, even the simple action of measuring a qubit – i.e., reading the quantum

information stored within – irreversibly alters its quantum properties, such as superposition and

entanglement.

The above peculiarities of quantum mechanics have deep implications on the design of quantum

communication techniques for the Quantum Internet [1]. To further elaborate on the above state-

ment, let us clarify that it is possible to map a qubit into a photon degree of freedom by directly

transmitting this qubit to a remote node via a fiber link or free space. However, if the traveling

photon is lost due to attenuation or it is corrupted by decoherence15, the associated quantum infor-

mation cannot be recovered via a measuring process or by re-transmitting a copy of the original

information. As a consequence, the techniques mitigating the imperfections imposed on the qubits

cannot be directly borrowed from classical communications [27].

Thankfully, quantum entanglement [73] can be exploited as a communication resource to face

with the aforementioned challenges. Indeed, entanglement enables a communication technique,

known as quantum teleportation, for transmitting an unknown qubit without the physical transfer

of the particle storing the qubit, as described in the following.

5.2 Quantum Teleportation
As introduced in Section 3, whenever two qubits are entangled, they exist in a shared state, such that

any action on a qubit affects instantaneously the other qubit as well, regardless of the distance [70].

This unconventional correlation is exploited by the so-called quantum teleportation process [27],
which enables the possibility of “transmitting” – namely, teleporting – an unknown qubit without

the physical transfer of the particle storing the qubit.

13
With heterogeneity arising, as instance, since different networks may be owned by different organizations and/or

based on different quantum hardware technologies.

14
Distributed quantum computing represents the perfect archetype for scenarios where an unknown qubit must be

transmitted. Indeed, let us consider distributed computing between two remote quantum processors, where one processor

executes a quantum algorithm – more precisely, some portion or task of a quantum algorithm – and the other processor

must further process the result of the task. The partial result of the processing at the first node is indeed an unknown

quantum state – otherwise, if known in advance, the whole processing would have been pointless – and any attempt to

measure it would irreversibly alter the partial result, hence wasting the computation performed so far.

15
Any quantum system inevitably interacts with the environment and it is afflicted by decoherence, a phenomenon that

irreversibly scrambles the quantum state and therefore its inner information [72]. This kind of quantum noise affects every

quantum operation, from qubit processing through qubit storing to qubit transmission, and it causes an irreversible loss of

the quantum information as time passes.

, Vol. 1, No. 1, Article . Publication date: December 2022.

16 Caleffi et al.

Measurement Output Decoding operation
00 I

01 X

10 Z

11 X followed by Z

Table 2. Quantum teleportation: post processing operations
to be performed at the destination for recovering the original
quantum state. Measurement output aligned with right-
most digit representing the outcome of the entangled qubit
measure in Figure 12, and gates X and Z – corresponding to
a bit- and a phase-flip, respectively – detailed in Table 1.

More into details, quantum teleporta-

tion requires:

i) an EPR pair, namely a pair of max-

imally entangled qubits such as the

Bell state in (4), with one qubit of the

pair distributed at the source node

and the other qubit distributed at

the destination;

ii) local quantum operations both at

the source and at the destination;

iii) the transmission of two classical bits

from the source to the destination.

The circuital representation of the quan-

tum teleportation process is illustrated in

Figure 12. More into details, the source performs a pre-processing, namely, a Bell State Measurement
(BSM) on both the unknown qubit encoding the information, say |𝜓 ⟩, to be transmitted and the

entangled qubit. As represented in the gray box in the figure, the BSM consists of a CNOT gate – with

the information qubit acting as control and the entangled qubit acting as target – followed by an

Hadamard gate on the information qubit and, finally, a measurement of both the qubits. Then, the

source transmits – though classical communications – two classical bits encoding the measurement

outcomes of the BSM. Remarkably, after the BSM, the source quantum state has been already

teleported at the destination. Nevertheless, the teleported state may have been undergone a phase

and/or a bit-flip, with each flip event occurring individually with a probability equal to 0.25. Luckily,

the measurement of the two qubits at the source allows the destination – once the measurement

outcomes have been received through a classical communication channel – to determine whether

these flip events occurred. Hence, the destination performs a post-processing to reconstruct the

original state |𝜓 ⟩, as detailed in Table 2.

In conclusion, by pre-sharing a maximally-entangled pair of qubits
16
, two nodes can reliably

exchange quantum information through the teleportation process [74], which represents the

underlying communication functionality enabling remote quantum operations, as further elaborated

in the following subsection.

5.3 Teledata vs Telegate
In distributed quantum computing, quantum teleportation constitutes the fundamental communi-

cation primitive underlying the communication paradigms known as TeleData and TeleGate [75],
which generalize the concept of moving quantum states among remote devices.

To provide concrete examples of the TeleData and TeleGate concepts, we must classify qubits

within a QPU either as communication qubits or as data qubits [12]. Specifically, within each

quantum processor, a subset of qubits is reserved for inter-processor communications and we refer

to these qubits as communication qubits [69], to distinguish them from the remaining qubits within

the device devoted to processing/storage, which we refer as data qubits.

More into detail, entanglement distribution among network nodes requires that at least one

qubit at each processor, referred to as communication qubit, must be reserved for the generation of

the entangled state [69]. Clearly, the more communication qubits are available within a network

16
We may observe that direct transmission of qubits is still needed to distribute entangled states among the network

nodes. However and as deeply clarified in [70], differently from unknown qubits, entangled states can be repeatedly prepared

for facing with losses and/or noise corruptions.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 17

𝑞0

𝑞1
DataQubit

𝑞2 𝑞3

𝑞4

Quantum Processor #1

𝑞′
0

Communication

Qubit

𝑞′
1

𝑞′
2

𝑞′
3

𝑞′
4

Quantum Processor #2

Quantum Network

Quantum Link

Classical Link

(a) Two IBM Yorktown quantum processors given in Figure 7 interconnected through a quantum network,
composed by a classical and a quantum link. The classical link is used to transmit classical information,
whereas the quantum link is needed for distributing entangled states between the two remote processors to
enable communication functionalities. Indeed, at least one physical qubit at each processor must be reserved
for entanglement generation. This kind of qubits – dark-blue-colored in the figure – are the communication
qubits to distinguish them from the data qubits – white-colored in the figure.

Quantum Processor #1

Quantum Processor #2

𝑞4 𝐻 DataQubit (control)

|Φ+⟩

𝑞3 Communication Qubit

𝑞′
0

𝑋 𝑍 Communication Qubit

𝑞′
1

DataQubit (target)

(b) TeleData. To perform a TeleData between remote
processors – say to move the quantum state |𝜑⟩ stored
by data qubit 𝑞4 in Figure 13a to communication qubit
𝑞
′
0
– a Bell state such as

��Φ+
〉
must be distributed

through the quantum link so that each pair member is
stored within the communication qubit at each proces-
sor. Once |𝜑⟩ is teleported at 𝑞

′
0
(with local quantum

operations and classical transmission), the remote op-
eration – for instance, a CNOT with |𝜑⟩ as control and
the state stored by qubit 𝑞

′
1
as target as shown with

the last CNOT in the figure – can be executed through
local operations.

Quantum Processor #1

Quantum Processor #2

𝑞4 𝑍 DataQubit (control)

|Φ+⟩

𝑞3 CommunicationQubit

𝑞′
0

𝐻 CommunicationQubit

𝑞′
1

𝑋 DataQubit (target)

(c) TeleGate. A TeleGate enables a direct gate be-
tween remote physical qubits stored at different pro-
cessors without the need of quantum state teleporta-
tion, as long as a Bell state such as

��Φ+
〉
is distributed

through the quantum link. As instance, a remote CNOT
between 𝑞4 and 𝑞′

1
in Figure 13a can be implemented

with two local CNOTs between the data and the com-
munication qubit at each processor, followed by a con-
ditional gate on the data qubit depending on the mea-
surement of the remote communication qubit.

Fig. 13. Remote operations through either TeleData or TeleGate. Figure 13a shows the network topology
along with the processors coupling maps, whereas Figures 13b and 13c illustrate the quantum circuit detailing
the classical (2 bits) and the quantum (the Bell state) resources needed to execute a TeleData and a TeleGate,
respectively. Figure reproduced from [18].

node, the more entanglement resource is available at that node, with an obvious positive effect on

entanglement rate achievable by that node [70]. But the more communication qubits are available,

the less data qubits are available for quantum computing.

As an example, consider two quantum processors interconnected via a quantum network as

depicted in Figure 13. Qubits 𝑞3 and 𝑞
′
0
are communication qubits and any interaction between

, Vol. 1, No. 1, Article . Publication date: December 2022.

18 Caleffi et al.

the two remote processors is carried out by exploiting them via either a TeleData or a TeleGate
process.

With a TeleData, quantum information stored within a data qubit at the first processor, say |𝜑⟩
in 𝑞4 in Figure 13a, is teleported into a communication qubit of the second processor, say 𝑞

′
0
in

the same figure. Once the quantum state |𝜑⟩ is teleported in 𝑞
′
0
, any remote operation – originally

involving 𝑞4 and some data qubits at the second processor – can be now implemented through

local operations as shown with the last CNOT in Figure 13b. It must be noted, though, that whether

the teleported quantum state should subsequently interact with data qubits at the first processor, a

new teleportation process must be performed for teleporting the quantum state back to the first

processor. TeleData is not the only available option for implementing remote operations. In fact,

a TeleGate enables to execute a direct gate between qubits belonging to remote processors by

exploiting again entanglement. As instance, a remote CNOT with data qubit 𝑞4 and 𝑞
1

0
in Figure 13a

acting as control and target, respectively, can be implemented with local CNOTs at each quantum

processor, as shown with the quantum circuit in Figure 13c.

5.4 Physical vs VirtualQuantum Links
From Figure 13, one might assume that distributed quantum computing requires a fully-connected

network topology – namely, that each quantum processor must be directly inter-connected with

all the other processors – as a consequence of the unconventional characteristics of quantum infor-

mation. In other words, one might assume the connectivity between quantum processors strongly

dependent on the availability of a direct entanglement generation and distribution architecture. As

a matter of fact, the very opposite is true. Distributed quantum computing can exploit a strategy –

called entanglement swapping [42] and summarized in Fig 14 – to implement a remote CNOT between
qubits stored at remote processors, even if the processors are not directly connected through a

quantum link.

In a nutshell, to distribute a Bell state between remote processors – say quantum processor #1

and #3 in Figure 14a – two Bell states must be first distributed through the quantum links so that

one Bell state is shared between the first processor and an intermediate node and another Bell state

is shared by the same intermediate node and the second processor. Then, by performing a BSM

on the communication qubits at the intermediate node – i.e., qubits 𝑞′
0
and 𝑞′

3
in Figure 14b – a

Bell state is obtained at the remote communication qubits 𝑞3 and 𝑞
′′
0
in Figure 14b – by applying

some local processing at the remote nodes depending on the (classical) output of the Bell state

measurement.

From the above, it becomes clear that entanglement swapping significantly increases the connec-

tivity within the virtual quantum processor. And the higher is the number of available quantum

processors, the higher is the number of possible interactions. Indeed, the number of additional

interactions via entanglement swapping scales linearly with the number of available processors

when only two communication qubits are available at each intermediate processor. If this constraint

is relaxed, the number of additional interactions via entanglement swapping scales more than

linearly.

5.5 Open Issues and Research Directions
Stemming from the discussion carried out in the previous subsections, here we summarize some

fundamental open issues and research directions towards the interconnection of different quantum

processors for enabling distributed quantum computing.

First, in Section 5.3 we introduced the two possible strategies – TeleGate and TeleData – for

implementing quantum gates between remote qubits. From a communication resource perspective,

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 19

𝑞0

𝑞1

𝑞2 𝑞3

𝑞4

Quantum Processor #1

𝑞′
0

𝑞′
1

𝑞′
2

𝑞′
3

𝑞′
4

Quantum Processor #2

𝑞′′
0

𝑞′′
1

𝑞′′
2

𝑞3

𝑞′′
4

Quantum Processor #3

Quantum Link Quantum Link

VirtualQuantum Link

(a) By swapping the entanglement at an intermediate node – namely, quantum processor #2 – it is possible
to distribute a Bell state between remote processors – namely, processors #1 and #3 – even if they are not
directly connected through a quantum link. Hence, entanglement swapping enhances the quantum processors
connectivity through virtual quantum links.

Quantum Processor #1

Quantum Processor #3

|Φ+⟩

𝑞3 𝑍 𝑞3

|Φ+⟩
𝑞′
0

𝐻

|Φ+⟩

𝑞′
3

𝑞′′
0

𝑋 𝑞′′
0

(b) Entanglement swapping circuit. A
Bell state can be distributed between
remote processors by swapping the en-
tanglement at an intermediate node –
as instance, processors #2 in Figure 14a
– through local processing and classi-
cal communication.

𝑞0

𝑞1

𝑞2

𝑞4

VirtualQuantum Processor

𝑞′
1

𝑞′
2

𝑞′
4

𝑞′′
1

𝑞′′
2

𝑞′′
3

𝑞′
4

local CNOT

time-constrained remote CNOT

time-constrained remote CNOT

via entanglement swapping

(c) Dynamic coupling map for the network topology shown in Fig-
ure 14a. The solid blue lines denote remote CNOTs between adjacent
processors, whereas the dotted blue lines denote remote CNOTs be-
tween distant processors achievable via entanglement swapping.

Fig. 14. Augmented connectivity. Entanglement swapping increases the connectivity between physical qubits,
with a number of possible remote CNOTs that scales at least linearly with the number of processors. Figure
reproduced from [18].

TeleData and TeleGate consume the same amount of quantum and classical resources, namely

one EPR pair and the transmission of two classical bits. Yet the overall performance of the two

strategies depends on a range of factors, including i) the pattern of remote operations exhibited

by the quantum circuit to be executed, ii) the characteristics of the network interconnecting the

remote quantum processors, and iii) the ratio between data and communication qubits [70, 75].

With reference to the latter factor, a fundamental trade-off arises [18]. Specifically, each remote

operation – regardless whether it is implemented with a TeleData or a TeleGate – consumes

the entangled resource. Consequently, a new Bell state must be distributed between the remote

processors before another remote operation could be executed. Hence, the more communication

qubits are available within each processor, the more remote operation can be executed in parallel,

reducing the communication overhead induced by the distributed computation. But the more

communication qubits, the less data qubits are available for computing in each processor.

, Vol. 1, No. 1, Article . Publication date: December 2022.

20 Caleffi et al.

Accordingly to the above reasoning, the selection of the set of communication qubits is a crucial

task for distributed quantum computing, with profound effects on the overall performance of the

distributed computation. As a matter of fact, the fundamental role played by communication qubits

is further stressed by the augmented connectivity enabled by entanglement swapping, discussed in

Section 5.4. Indeed, it must be acknowledged that such an augmented connectivity does not come

for free. Entanglement swapping consumes the Bell states at each intermediate processor. And

the longer is the path between the two processors involved in the remote operation, the higher

is the number of consumed Bell states. Clearly, the more Bell states are devoted to entanglement

swapping, the less Bell states are available for implementing remote operations between neighbor

quantum processors. Hence, a trade-off between “augmented connectivity” and “EPR cost” arises

with entanglement swapping [18], and the impact of this trade-off on the overall performance of

distributed quantum computing must be carefully accounted for.

Another fundamental issue arising with networking remote quantum processors is represented

by noise and imperfections affecting the quality of the distributed Bell states. Clearly the noisier is

the distributed Bell state, the noisier is the overall distributed quantum computation. Luckily, a

well-known technique for counteracting the noise impairments affecting the entanglement genera-

tion/distribution process is constituted by entanglement distillation (also known as entanglement
purification) [63, 76–81]. Accordingly, as long as the “quality” of the noisy entanglement exceeds

a certain threshold, it is possible to purify multiple imperfect Bell states into a single “almost-

maximally entangled” pair, albeit at the price of consuming multiple noisy entangled states within

the process. From the above, it follows that one of two orthogonal resources must be exploited for

implementing the distillation process, namely, time or space. More into details, time-expensive

distillation requires multiple rounds of entanglement generation and distribution, with each round

involving few
17
communication qubits. Conversely, space-expensive distillation can be completed

with few rounds, but with each round involving several communication qubits. Hence, there ex-

ists a fundamental trade-off between i) quality of the overall computation, ii) delay induced by

entanglement distillation, and iii) communication qubits reserved for distilling a high-quality Bell

state.

6 QUANTUM COMPILING
As mentioned in Section 3.3, quantum compilation means translating an input quantum circuit into

themost efficient equivalent of itself, considering the characteristics of the device(s) that will execute

the computation and minimizing the number of required multi-qubit gates. An example of quantum

compilation is provided with Figure 15, where the original quantum circuit is translated into the

compiled one to account for the coupling characteristics of IBM Yorktown quantum processors,

shown in Figure 7. Clearly, as long as the hardware provides a universal set of operations, there

exists a feasible transformation.

Compilers are well-established in NISQ architectures, because of their role as intermediary

between the user and the hardware. Specifically, in designing a quantum algorithm using the

quantum circuit formalism introduced in Section 3.2, the designer is generally focused on expressing

the computation required by the algorithm with a circuit that minimizes the number of utilized

qubits and gates, regardless from the particulars of the quantum hardware that will execute the

circuit. This abstract circuit is then mapped to a circuit to be executed on a specific quantum

hardware by means of a suitable compiler. Clearly, introducing such an abstract circuit has two

main advantages: i) the user can focus on the logic of the circuit, namely, on the essence of the

17
At least two communication qubits at each processor are required.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 21

⇒

𝑞0 𝑞2 : 𝑞0

𝑞1 𝑞0 : 𝑞1

𝑞2 𝑞3 : 𝑞2

𝑞3 𝑞1 : 𝑞3

𝑞4 𝑞4 : 𝑞4

Fig. 15. Pictorial representation of quantum compiling. The circuit on the left is translated into the circuit on
the right, in order to cope with the coupling map provided in Figure 7. Within the rightest figure, the 𝑞𝑖 with
purple font denotes the physical qubits assigned to the logical qubits 𝑞 𝑗 with black font. The SWAP gate–
represented by two × symbols interconnected by a vertical line – introduced between logical qubits 𝑞1 and 𝑞2
swaps their quantum states, so that the last CNOT gate can be applied between two neighbor physical qubits.

≡

Fig. 16. Example of ebit optimization for the circuit of Figure 17: the left part of the equivalence can be
optimized to the right one, which reduces the number of non-local gates.

quantum algorithm, without caring too much about the hardware constraints, and ii) the designed

quantum circuit is portable, in theory, to any quantum back-end.

Intuitively, a circuit transformation may introduce some overhead, in terms of number of op-

erations and noise. In DQC architectures, there is also a non-negligible communication cost, as

discussed in Section 5. Therefore, the compiler faces an optimization problem, i.e., finding a fea-

sible transformation while minimizing the overhead. In general, this problem is known to be

NP-hard [43, 82], even for the case of a single processor.

A fundamental issue in quantum compiling is related to qubit connectivity. From the perspective

of the quantum algorithm designer, any qubit is assumed to be directly connected with any other

qubit. i.e., any two-qubit gate can be placed across any qubit pair. However, even on a single quantum

processor as introduced in Section 3.3, the actual connectivity degree is usually low, to mitigate

the noise caused by cross-talking phenomena [83]. Qubit routing refers to the task of modifying

quantum circuits so that they satisfy the connectivity constraints of a target quantum computer.

This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between

adjacent physical qubits. Of course, the number of SWAP gates should be minimized, in order keep

the circuit depth reasonably small. The problem gets harder when considering distributed quantum

processors, where the connectivity degree of the physical qubits can be even lower.

For DQC to be effective and efficient, the quantum compiler must perform some preliminary ebit

optimization (such as the one illustrated in Figure 16), then find the best split for the abstract circuit,

i.e., the split that minimizes the overall communication cost required to execute the distributed

, Vol. 1, No. 1, Article . Publication date: December 2022.

22 Caleffi et al.

Compiler Language Network Topologies Qubit Assignment Non-local Gate Handling Open Source

[85] Haskell hypergraph minimum k-cut telegate and teledata YES

[86] unknown hypergraph minimum k-cut telegate NO

[87] unknown any Tabu search telegate and teledata NO

[88] MATLAB / heuristic teledata NO

[89] MATLAB / dynamic programming teledata NO

[90] C++ and CPLEX n.a. minimum k-cut telegate and teledata NO

[18] Python LLN sorting telegate and teledata NO

[91] pseudo-code any integer linear programming telegate /

[92] MATLAB n.a. genetic alg. teledata NO

[64] / any sorting teledata /

[65] / hypercube sorting teledata /

Table 3. Comparison of DQC-oriented quantum compiling strategies. Some strategies find the best partition
of the input monolithic quantum circuit in a completely network-agnostic fashion. Some strategies are purely
theoretical, not supported by a software implementation.

circuit. At the same time, the quantum compiler must find the best local transformation for each

piece of computation.

From the above, it should be clear that designing an efficient compiler is a tough task. Because

of this, a plethora of proposals to tackle the problem emerges from the literature. In future work,

some of them may be combined to more sophisticated compilers. This already happened for local

computing. For example, the quantum compiler from the IBM Q framework [84] has several layers

of optimization, each tackling the problem from different perspectives.

Most quantum compilers for DQC are characterized by two fundamental steps, namely qubit
assignment and non-local gate handling. In the following, we present these two compilation steps,

with reference to the most relevant literature. In Table 3, we compare some prominent DQC-

oriented quantum compiling strategies. To this purpose, we consider the programming language,

the supported network topologies, the qubit assignment strategy, the non-local gate handling

strategy, and the availability of an open source release of the software.

In the remainder of the section, we first present some of the most representative strategies for

qubit assignment and non-local gate handling. Then, we discuss some open issues.

6.1 Qubit Assignment
An abstract circuit is composed by logical qubits, while a quantum processor is equipped with a

register of physical qubits. An assignment, in its most basic form, is a one-to-one mapping between

logical and physical qubits.
18
Whether it is better to tackle it dynamically – changing the assignment

while computing – or statically – defining the assignment at the beginning and keeping it for the

whole execution of the computation – is an open problem, which also depends on whether the

partition between communication qubits and computing qubits is static or dynamic.

In DQC, qubit assignment is a general-purpose approach to the partitioning problem, introduced

in Section 4.2. Specifically, for a given set of logical qubits, we need choose a partition that maps

sub-sets of logical qubits to processors, while minimizing the number of required interactions

among different sub-sets, as shown in Figure 17.

18
One can also consider fault-tolerant mappings, where more than one physical qubit encode a single logical qubit.

However we consider this as side work, out from the scope of this survey.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 23

𝑞1

𝑞2

𝑞3

𝑞4

𝑄𝑃𝑈1

𝑄𝑃𝑈2

Fig. 17. Toy example of qubit assignment. Once the logical qubits composing the quantum circuit have been
assigned to the different QPUs, the CNOTs between remote qubits – highlighted in violet – becomes non-local.

Several authors investigate this research direction [18, 85–87]. The reader will find in these

works different proposals to address the qubit assignment problem. Not all the papers match in the

minimum assumptions for the technology. Specifically, as described in Section 5, we are at a stage

where one need to make predictions on the most likely DQC architecture that will run in the next

future. If one assumes any connectivity, the resulting model is general-purpose, but it is also hard

to tackle. Restricting the connectivity to one that satisfies some properties makes the model less

general, but a good set of assumptions in this direction may shape future implementations as well.

Currently, the preferred line is to keep connectivity general [87].

Andrés-Martínez and Heunen [85] propose to encode a logical circuit as an hypergraph. An

hyperedge represents one ebit – i.e., one EPR shared between QPUs – which allows for a telegate to

be performed. Qubit assignment works by minimizing the number of cuts, as each cut corresponds

to an ebit. Sundaram et al. [86] present a two-step solution, where the first step is quantum

assignment. Circuits are represented as edge-weighted graphs with qubits as vertices. The edge

weights correspond to an estimation for the number of cat-entanglements11. The problem is then

solved as a minimum k-cut, where partitions have roughly the same size. In [87], the same authors

extend their approach to the case of an arbitrary-topology network of heterogeneous quantum

computers by means of a Tabu search algorithm. In [88], by Daei et al., the circuit becomes an

undirected graph with qubits as vertices, while edge weights correspond to the number of two-qubit

gates between them. In [89], the authors represent circuits as bipartite graphs with two sets of

vertices – one set for the qubits and one for the gates – and edges to encode dependencies of

qubits and gates. Then for the qubit assignment problem, they propose a partitioning algorithm via

dynamic programming to minimize the number of teledata operations.

When qubit assignment is dynamic, new challenges – as well as new possibilities – arise. Nikahd

et al. [90] propose a minimum k-cut partitioning algorithm formulated as an ILP optimization

problem, to minimize the number of remote interactions. They use a moving window and apply

the partitioning algorithm to small sections of the circuit, thus the partition may change with the

moving window by means of teledata operations. In [18], Ferrari et al. consider the worst-case

scenario of QPUs interconnected through an LNN topology
19
. Rather than focusing on the number

of remote interactions, they design a sorting algorithm to reduce the depth overhead induced by

such time consuming operations. The authors show that the overhead is upper-bounded by a factor

that grows linearly with the number of qubits. Cuomo et al. in [91] model the compilation problem

with an Integer Linear Programming formulation. The formulation is inspired to the vast theory on

19
The Linear Nearest Neighbor (LNN) topology [93] consists of processors arranged in a single line – namely, in a

1-dimensional lattice – where each processor is interconnected with two neighbors. In the worst-case scenario – namely,

the most challenging one – each QPU is equipped with a single computational qubit, and only neighboring qubits can

interact each others.

, Vol. 1, No. 1, Article . Publication date: December 2022.

24 Caleffi et al.

dynamic network problems. Authors managed to define the problem as a special case of quickest
multi-commodity flow. Such a result allows to perform optimization by means of techniques coming

from the literature, such as a time-expanded representation of the distributed architecture.

6.2 Non-local Gate Handling
As described in Section 5, assumptions on the architectures not only concern connectivity. Predicting

the best kind of remote interactions is of critical importance as well. In this sense, the general

agreement is that the generation and distribution of entangled states is a fundamental resource to

be used sparingly. Indeed, a common goal in the literature is to minimize the number of consumed

ebits, as it is the main bottleneck to distributed quantum computation. To this aim, qubit assignment

discussed above represents a starting point for further optimization steps, which now concern

circuit manipulation.

As described in Section 5.3, there are two main approaches for implementing non-local gates,

namely teledata and telegate.

The teledata approach is considered, for example, in [64, 65, 88, 89, 92]. Beals et al. [64] prove that

the quantum circuit model, the quantum parallel RAM model, and the DQC model are equivalent

up to polylogarithmic depth overhead. Other than this major result, they provide an algorithm

for emulating circuits on any network graph. Brierley [65] focuses on 𝑛-qubit cyclic butterfly

networks (a special case of hypercubic network) and proves that there is a sequence of local gates

with depth 6 log𝑛 such that the qubit at node 𝑎 is sent to node 𝜋 (𝑎) for all 𝑎 = 1, ..., 𝑛 and any

permutation 𝜋 : [1, 𝑛] → [1, 𝑛]. In other words, the butterfly network can implement any quantum

algorithm with an overhead of 6 log𝑛. Such a network topology is suitable for multi-chip quantum

devices or small controlled networks. In medium-scale or global networks, it is hard to implement

such a constrained architecture. Daei et al. [88] propose a method to minimize the number of

quantum teleportations between DQC partitions. The main idea is to turn the monolithic quantum

circuit into an undirected weighted graph, where the weight of each edge represents the number

of gates involving a specific pair of qubits for execution. Then, the graph is partitioned using the

Kernighan-Lin (K-L) algorithm for VLSI design [94], so that the number of edges between partitions

is minimized. Finally, each graph partition is converted to a quantum circuit. Davarzani et al. [89]

propose an algorithm for minimizing teleportations consisting of two steps: first, the quantum

circuit is converted into a bipartite graph model, and then a dynamic programming approach (DP) is

used to partition the model into low-capacity quantum circuits. Finally, Dadkhah et al. [92] propose

a heuristic approach to replace the equivalent circuits in the initial quantum circuit. Then, they use

a genetic algorithm to partition the placement of qubits so that the number of teleportations could

be optimized for the communications of a DQC.

The telegate direction is pursued, for example, in [85, 86, 91]. Andrés-Martinez et al. [85] use

cat-entanglement
11
to implement non-local quantum gates. The chosen gate set contains every

one-qubit gate and a single two-qubit gate, namely the CZ gate (i.e., the controlled version of

the Z gate). The authors consider no restriction on the ebit connectivity between QPUs. Then,

they reduce the problem of distributing a circuit across multiple QPUs to hypergraph partitioning.

The proposed approach is evaluated against five quantum circuits, including QFT. The proposed

solution has some drawbacks, in particular that there is no way to customize the number of

communication qubits of each QPU. As previously mentioned, in Sundaram’s et al. paper [86],

a two-step quantum compiling approach is introduced. The first step is qubit assignment, while

the second step is finding the smallest set of cat-entanglement operations that will enable the

execution of all telegates. The authors state that, in a special setting, this problem can be reduced

to a vertex-cover problem, allowing for a polynomial-time optimal solution based on integer linear

programming. They also provide a 𝑂 (log𝑛)-approximate solution, where 𝑛 is the total number of

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 25

global gates, for a generalized setting by means of greedy search algorithm. Also the aforementioned

work by Cuomo et al. [91] adopts the telegate approach.

6.3 Open Issues and Research Directions
The most advanced quantum compilers for execution on single quantum processors are noise-aware,

i.e., they take the noise statistics of the device into account, for some or all steps [45, 95–98]. A

noise-aware quantum compiler for DQC is still missing. Indeed, it is still an open question what

kind of noise-awareness such a compiler should have. The different options range from a compiler

that has complete knowledge of the target execution platform (quantum processors, quantum links,

etc.) to a compiler that only knows generic features of the target quantum processors and network

– as the execution manager will decide the actual execution platform assigned to the computation.

Further work could be done regarding the integration of quantum compilers with simulation

tools – in line with the preliminary attempt that was made by Ferrari et al. [99] – allowing for

automated workflows that would allow for faster comparative evaluation of compiling strategies.

So far, testing the quality of compiled circuits on real execution platforms has not been possible

for the majority of researchers. Once a quantum network will be available to the public – much like

current IBM Q, Rigetti, etc. single quantum devices – it will be possible to evaluate DQC compilers

more effectively , with key performance indicators including the resulting computation quality,

state fidelity, and other performance metrics [100].

7 SIMULATION TOOLS
To support the research community in the design and evaluation of quantum computing and

quantum network technologies, including hardware, protocols and applications, many simulation

tools have been developed recently.

Simulations are very important for several reasons. First of all, they allow for defining hardware

requirements using a top-down approach, i.e., starting from applications and protocols. In this way,

hardware design is driven by high-level KPIs (key performance indicators), rather than proceeding

by trial and error. Another advantage of simulations is related to network sizing. Given the number

of potential users and the number of available quantum processors, simulation allows for devising

and evaluating different network topologies and entanglement routing schemes, which results

in saving time and money. Regarding DQC, simulation plays a crucial role for establishing the

correctness of the compiled distributed quantum programs, and evaluating the quality of their

execution against different hardware platforms, network configurations and scheduling algorithms.

In Table 4, we compare some prominent simulation tools that, in our view, can be used for

designing and evaluating DQC systems. We propose to classify each tool as belonging to one of

three possible classes: i) hardware-oriented (HW), ii) protocol-oriented (PR), and iii) application-

oriented (AP). In the remainder of the section, we first present each class with some of the most

representative simulation tools. Then, we discuss some open issues.

7.1 Hardware-oriented
We denote as HW simulation tools those that allow the user to model the physical entities with the

desired degree of detail, including noise models. Prominent examples are SQUANCH [101] and

NetSquid [102], discussed in the following. Regarding DQC, we note that HW simulation tools are

useful for evaluating the impact of different hardware technologies (including noise models) on the

quality of the distributed program execution.

The Simulator for Quantum Networks and Channels (SQUANCH) [101] is an open-source Python

framework for creating parallelized simulations of distributed quantum information processing.

Despite the framework includs many features of a general-purpose quantum computing simulator,

, Vol. 1, No. 1, Article . Publication date: December 2022.

26 Caleffi et al.

Simulation Tool Language Multiprocessing Multithreading Noise Models Open Source Class

SQUANCH [101] Python NO NO YES YES HW

NetSquid [102] Python NO NO YES NO HW

SimulaQron [103] Python YES NO NO YES PR

SeQUeNCe [104] C++/Python YES NO YES YES PR

QuiSP [105] C++ NO NO YES YES PR

QuNetSim [106] Python NO YES NO YES PR

NetQASM SDK [107] C++/Python NO YES YES YES AP

QNE-ADK [108] C++/Python NO NO YES NO AP

Table 4. Comparison of simulation tools that can be used for designing and evaluating DQC systems.

it is optimized specifically for simulating quantum networks. It includes functionality to allow users

to design complex multi-party quantum networks, extensible classes for modeling noisy quantum

channels, and a multiprocessed NumPy backend for performant simulations. The core modules are

QSystem, representing a multi-body quantum system as a density matrix in the computational

basis, and QStream, which is an iterable ensemble of separable 𝑁 -qubit QSystems optimized for

cache locality. By default QStream state is stored in a shared memory as a C-type array of doubles,

which is type-casted as a 3D array of np.complex64 values. During simulations, Agents run in

parallel from separate processes, synchronizing clocks and passing information between each

other through Channels. There is no explicit concurrency safety when a QSystem is modified by

multiple agents, as sending and receivingQubits are blocking operations that allow for naturally

safe parallelism. However, the scalability of this simulation tool is hindered by the lack of support

for distributed multiprocessing, as all the processes must run on the same machine. The source

code is not maintained since 2018.

NetSquid [102] is one of the most advanced platforms for simulating quantum networking

and modular computing systems subject to physical non-idealities. It ranges from the physical

layer and its control plane up to the application level. This is achieved by integrating several

key technologies: a discrete-event simulation engine, a specialized quantum computing library, a

modular framework for modeling quantum hardware devices, and an asynchronous programming

framework for describing quantum protocols. NetSquid has been used for different purposes, such

as the evaluation of a benchmarking procedure for quantum protocols [109], the evaluation of end-

to-end entanglement generation strategies in terms of capacity bounds and impact on Quantum Key

Distribution (QKD) [110, 111], and the performance evaluation of request scheduling algorithms

for quantum networks [112].

7.2 Protocol-oriented
In the proposed classification, PR simulation tools are mostly devoted to the design and evaluation of

general-purpose quantum protocols, – such as quantum state teleportation, quantum leader election,

etc. [113] – with the possibility to model hardware-agnostic networked quantum processors, with

very limited (if not missing) support for noise modeling. Relevant examples are SimulaQron [103],

SeQUeNCe [104], QuiSP [105] and QuNetSim [106]. Regarding DQC, PR simulation tools are useful

for evaluating the impact of different compiling and execution management strategies on the quality

of the distributed program execution, in (almost) ideal conditions.

SimulaQron [103] is a tool for developing distributed software that runs on real or simulated

classical and quantum end-nodes, connected by classical and quantum links. SimulaQron spawns

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 27

three stacked processes per network node: the lowest one for wrapping a simulated quantum

registry, based on an hardware-specific third-party simulator; the intermediate process exposing

simulated qubits that map 1-to-1 to those of the quantum registry; the upper process providing

virtual qubits that are manipulated within a platform-independent application. For example, if

two virtual qubits belonging to different processes, running on physically-separated servers, are

manipulated in order to share an entangled state (let say, a Bell state), the corresponding simulated

qubits (and quantum register ones) are both stored in the memory of one server, in order to make it

possible to simulate measurements in a consistent fashion. This process-oriented approach makes

SimulaQron quite scalable and able to leverage multicore server architecture in order to speed up

the execution of the simulations. However, SimulaQron does not come with noise model support,

thus preventing the simulation of quantum protocols over non-ideal networks.

SeQUeNCe [104] is an open-source discrete-event quantum network simulator, whose latest

release fully supports parallel simulation. The authors designed and developed a quantum state

manager (QSM) that maintains shared quantum information distributed across multiple processes,

and also optimized their parallel code by minimizing the overhead of the QSM and by decreasing

the amount of synchronization among processes.

QuiSP [105] is an event-driven Quantum Internet simulation package. QuiSP is built on top of

the OMNeT++ discrete event simulation framework. Compared to the simulators discussed so far,

many of which focus on physically realistic simulation of a single small network, QuiSP is oriented

to protocol design for complex, heterogeneous networks at large scale while keeping the physical

layer as realistic as possible. Emphasis has been placed on realistic noise models. The declared

long-term goal for the simulator is to be able to handle an internetwork with 100 networks of

100 nodes each. To simulate quantum networks at the cost of only a few classical bits per qubit,

QuiSP works in the error basis, i.e., tracking only errors, not states. The premise is that the desired

quantum state is known and only deviations from this ideal state must be tracked. This is a novel

approach for simulating quantum networks, adapted from quantum error correction [114]. The

performance of QuISP was investigated in terms of events processed per second and the duration

of CPU time taken to generate one end-to-end Bell pair, using the Docker environment that QuISP

provides. It was shown in [105] that the average CPU time (in seconds) per end-to-end Bell pair

generated grows no worse than polynomially in the number of quantum repeaters. Increasing the

number of repeaters results in longer simulation time in the scaling, as expected. It also emerged

that that QuISP might have some kind of unintended overhead which scales linearly on the number

of buffer qubits, which the authors expect to fix in a near-term release [105].

QuNetSim [106] implements a layered model of network component objects inspired by the

OSI model. In particular, application, transport, and network layers are considered. QuNetSim

does not explicitly incorporate features of the link and physical layers. Indeed, QuNetSim relies on

open-source qubit simulators that are used to simulate the physical qubits in the network, namely

SimulaQron [103], ProjectQ [115] and EQSN [116] (the latter one being the default backend, as it

was developed by the QuNetSim team). In QuNetSim, network nodes can run both classical and

quantum applications. The transport layer component prepares classical packets, encodes qubits for

superdense message transmission, handles the generation of the two correction bits for quantum

state teleportation, etc. The network layer component can route classical and quantum information

using two internal network graphs and two different routing algorithms. The network component

objects are implemented using threading and observing queues. Extensive use of threading allows

each task to wait without blocking the main program thread, which simulates the behavior of

sending information and waiting for an acknowledgment, or expecting information to arrive for

some period of time from another host. QuNetSim works well for small scale simulations using five

, Vol. 1, No. 1, Article . Publication date: December 2022.

28 Caleffi et al.

to ten hosts that are separated by a small number of hops, while it tends to reach its limits when

many entangled qubits are being generated across the network with many parallel operations.

7.3 Application-oriented
The third class is devoted to AP simulation tools, which are tailored to the design and implementation

of quantum network applications. Usually, these tools rely on simulated backends offered by other

packages that are not directly accessible to the user – for example, NetQASM SDK [107] relying on

NetSquid [102]. Regarding DQC, AP simulation tools are useful for quickly assessing the quality

of quantum circuit splits produced by quantum compilers. The execution management scheme

(i.e., job scheduling, entanglement routing, etc.) is hidden to the user, which is at most allowed to

specify the network topology (from a short list of preconfigured networks) and the values of a few

parameters characterizing the hardware of the quantum processors.

The process of setting up a simulation requires strong expertise in the simulator itself, thus being

inconvenient for those who are only interested in quantum protocol evaluation or in the design of

supporting tools such as quantum compilers. Recently, Ferrari et al. [99] presented a software tool,

denoted as DQC Executor, that accepts as input the description of the network and the code of the

algorithm, and then executes the simulation by automatically constructing the network topology

and mapping the computation onto it, in a framework-agnostic way and transparently to the user.

The tool is in its early stages and currently supports automatic deployment of distributed quantum

algorithms to the NetSquid [102] simulator. The description of the network is provided by the user

in a specific YAML format. The distributed algorithm, instead, is defined with the OpenQASM [117]

language.

NetQASM SDK [107] is a high-level software development kit, in Python, whose purpose is to

make easier to write quantum network applications, to simulate them through NetSquid [102] or

SimulaQron [103], and (expected in the near future) to execute them on real hardware. Indeed,

the quantum programs developed with NetQASM SDK are translated into low-level programs

based on the NetQASM language, similar in nature to classical assembly languages. With respect

to other QASM languages, NetQASM provides elements for remote entanglement generation.

On the other hand, NetQASM contains no provision for classical communication with remote

nodes. Synchronization between the NetQASM programs (through classical send/recv primitives)

of multiple nodes is the responsibility of the application programmer.

The Quantum Network Explorer Application Development Kit (QNE-ADK) [108] allows the

user to create applications and experiments and run them on a simulator. When configuring an

application, the user specifies the different roles and what types of inputs the application uses.

In addition, the user writes the functionality of the application using the NetQASM SDK [107].

When configuring an experiment, the user can give values to the inputs that were specified when

creating the application. The user also chooses which channels and nodes are used in the network

and which role is linked to which node. Once configured, the experiment is parsed and sent to the

NetSquid simulator [102]. QNE-ADK is particularly useful when the application code developedwith

NetQASM SDK is provided to the user, whose only duty is to configure and perform experiments.

Indeed, using the execution environment is straightforward. There is also a visual interface that

further simplifies the experiment configuration.

Both NetQASM SDK [107] and QNE-ADK [108] are very useful tools. Without them, configuring

DQC simulations is quite a complex task.

7.4 Open Issues and Research Directions
There is a sufficiently variegated choice of simulation tools for quantum networks and backends to

support DQC research, with specialization on hardware, protocols, or applications. On the other

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 29

Fig. 18. Possible stages for the development of distributed quantum computing. It is reasonable to assume
that the underlying hardware complexity scales proportional with three dimensions: i) the extension of the
communication infrastructure, ii) the number of interconnected quantum devices, iii) and the hardware
heterogeneity among the quantum devices.

hand, a simulation tool allowing for full-stack simulation of large networks is still missing. Such

a tool should be support multiprocessing and multithreading, and simple deployment of DQC

simulations on high performance computing facilities.

Another possible direction is the development of tools for orchestrating DQC simulations,

with automated instantiation of simulation objects representing QPUs and quantum network

components. Having quantum compilers for DQC in the loop would be also very useful. Last but

not least, it would be great to have the possibility to seamlessly replace simulated hardware with

real devices.

8 CONCLUSIONS AND FUTURE PERSPECTIVES
Here we conclude the survey by first providing an industrial perspective on distributed quan-

tum computing, and then by discussing the possible stages of distributing quantum computing

development.

8.1 Industrial and Standardization Perspective
Afirst quantum revolution has already exploited quantum technologies in our everyday life, creating

a deep techno-economic and social impact. Today, a second revolution is underway, and it is safe

to predict it will have a major impact in many markets, ranging from Telecom and ICT, through

Medicine, to Finance and Transportation, and so on.

Clearly, significant work is still needed to develop enabling components and systems for DQC.

Yet, considering the foreseen industrial opportunities, significant investments are being made

worldwide across public and private organizations.

One major obstacle on the way of industrial exploitation of distributed quantum computing

is that, nowadays, the industry has not yet consolidated around one type of quantum hardware

technology. In this scenario, a quantum hardware abstraction layer (Quantum-HAL) – embracing

the two killer domains of quantum technologies for ICT, namely, quantum computing and quantum

, Vol. 1, No. 1, Article . Publication date: December 2022.

30 Caleffi et al.

networking – would allow applications and services developers to start using the abstractions

of the underneath quantum hardware, even if still under consolidation. This would definitely

simplify and speed-up the development of quantum platforms, services, and applications. Indeed, a

Quantum-HAL for distributed quantum computing would provide unified northbound quantum

application programming interfaces (APIs) for the higher layers, decoupling from the different types

of quantum hardware technologies (e.g., trapped ions, superconducting qubits, silicon photonic

qubits).

Another key aspect for increasing the TRL (Technology Readiness Level) of distributed quantum

computing concerns its integration with current Telecom and ICT infrastructures. This implies the

definition and standardization of a management and control approach (architectures and APIs) able

of interworking with current solutions. All these activities require coordinated and joint efforts

including – where appropriate – existing projects, industry bodies and standard (ITU-T, ETSI, IETF

and IEEE just to mention a few) active in the area of quantum technologies.

Overall, the final goal is to bridge the gap between DQC and the established cloud and edge

computing platforms, tools and methods, and to focus in on the inter-related constraints between

the different aspects of the architectural design, so to enable the development of practical DQC

solutions. To achieve this goal, research and innovation activities are required in diverse and

complementary fields, ranging from computational complexity and networked systems through

quantum information and optics to communications and computer science engineering.

8.2 The Journey Ahead
Paving a journey towards distributed quantum computing is a challenging task, as hard as any

other prediction about technological developments. Yet, we can sketch roughly three stages, as

discussed in the following and summarized with Figure 18.

The first step involves distributed quantum computing exploiting multiple quantum processors

within a single quantum computer. The quantum hardware underlying the qubits is likely to be

homogeneous among the different processors. Yet, some sort of hardware heterogeneity may arise

within each processor due to the differences in terms of requirements
20
between memory qubits

and computational qubits. The physical distance between remote qubits is clearly very short. Hence,

it is reasonable to assume, as communication infrastructure, short-range microwave links. The

network topology is likely static, so that only simple quantum network functionalities are required.

Clearly, quantum decoherence must be carefully accounted for, so that the decoherence time can

be used as overall key metric. Local operations between qubits within a single processor must be

complemented by remote operations between qubits placed at different processors. The trade-off

between qubits devoted to computation and entangled qubits devoted to communication represents

a fundamental issue with no counterpart in classical distributed computing. The very challenging

task of designing distributed quantum algorithms must explicitly take such trade-off – as well as

the delay induced by remote operations – into consideration.

The second step involves inter-rack distributed quantum computing, where the computation

is performed collectively by multiple quantum computers located within the same farm. At this

stage, some sort of hardware heterogeneity might arise, given that different quantum computers are

involved in the computation. Clearly, such heterogeneity must be taken into consideration at each

layer of a distributed quantum computing ecosystem. Yet, entanglement distribution still benefits

from a tightly controlled environment – reasonable to assume available within a single quantum

farm – and the relatively short distances. As a matter of fact, the communication infrastructure can

still be composed by cold microwave links [118] although optical links would greatly simplify the

20
Quantum memory requires coherence times several order of magnitude larger than computational qubits.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 31

hardware requirements albeit at the price of significant technological advances in the microwave-

optical conversion. Delay imposed by classical and quantum communication times is slightly

longer – when compared to stage one – hence more sophisticated timing and synchronization

functionalities are required. The network topology becomes more complex, and it may present

some sort of temporal dynamics as the number of interconnected quantum computers might

change in time. This, in turn, induces network functionalities dynamics that must be carefully taken

into account. The problem of remote operations compiling – and, hence, the trade-off between

computational and communication qubits – becomes even more intricate. Finally, at this stage, the

execution management problem (previously discussed in Section 4.2) will arise, with multiple users

performing concurrent access to the resources.

The third step involves interconnecting multiple geographically-distributed quantum farms.

Two are the key challenges here. First, there exists a likely spread heterogeneity – given that the

different quantum farms will be likely operated by different companies –, which requires significant

efforts in terms of standardization and interoperability. Furthermore, the heterogeneity among

quantum links, e.g., optical, free-space or satellite, will arise. The delays induced by the distances

will introduce severe challenges on the entanglement generation and distribution. The increasing

number of quantum devices to be wired and the heterogeneity of the environments hosting the

quantum computers must be taken into account as well. At this stage, the compiling and execution

management problems would be even more complex, demanding for specific network services to

be integrated with those of the classical Internet (such as DNS, DHCP, etc.).

We underline that, although each successive stage is distinguished by an increasing amount of

interconnected quantum resources, the actual deployment evolution will strongly depend on the

technological advances and the experimental implementations of the different entities composing a

distributed quantum computing ecosystem [12].

One of the judicious questions raised from this discussion is: when will we see the distributed

quantum computing? There is no definite answer to this question. However, we firmly believe this is

a goal that requires a collaborative effort and a multi-disciplinary approach between academics and

industries. The required competences and skills are many and diverse and each is interconnected

with and vital to the others.

REFERENCES
[1] Angela Sara Cacciapuoti, Marcello Caleffi, Francesco Tafuri, Francesco Saverio Cataliotti, Stefano Gherardini, and

Giuseppe Bianchi. Quantum internet: Networking challenges in distributed quantum computing. IEEE Network, 34(1):
137–143, 2020. doi: 10.1109/MNET.001.1900092.

[2] P. P. Rohde. The Quantum Internet – The Second Quantum Revolution. Cambridge University Press, 2021.

[3] EU Quantum Flagship. The Future is Quantum. URL https://qt.eu/.

[4] QIA Team. Quantum Internet Alliance. URL https://quantum-internet.team/.

[5] EuropeanCommission and European SpaceAgency. The EuropeanQuantumCommunication Infrastructure (EuroQCI)

Initiative. URL https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-

euroqci.

[6] Will Finigan. Quantum network research centers in the US. URL https://www.aliroquantum.com/blog/quantum-

network-research-centers-in-the-us.

[7] Q-NEXT. Q-NEXT website. URL https://q-next.org/.

[8] HQAN. HQAN website. URL https://hqan.illinois.edu/.

[9] CQN. CQN website. URL http://cqn-erc.org/.

[10] Juan Yin, Yuan Cao, Yu-Huai Li, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356
(6343):1140–1144, 2017.

[11] Amara Graps. How Much Money Has China Already Invested into Quantum Technology? - Part 2. URL https:

//quantumcomputingreport.com/how-much-money-has-china-already-invested-into-quantum-technology/.

[12] Daniele Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. Towards a distributed quantum computing ecosystem.

IET Quantum Communication, 1:3–8(5), July 2020. doi: 10.1049/iet-qtc.2020.0002.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://qt.eu/
https://quantum-internet.team/
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://www.aliroquantum.com/blog/quantum-network-research-centers-in-the-us
https://www.aliroquantum.com/blog/quantum-network-research-centers-in-the-us
https://q-next.org/
https://hqan.illinois.edu/
http://cqn-erc.org/
https://quantumcomputingreport.com/how-much-money-has-china-already-invested-into-quantum-technology/
https://quantumcomputingreport.com/how-much-money-has-china-already-invested-into-quantum-technology/

32 Caleffi et al.

[13] QCommHub. QCommHub website. URL https://www.quantumcommshub.net/.

[14] Amazon. Announcing the AWS Center for Quantum Networking. URL https://aws.amazon.com/blogs/quantum-

computing/announcing-the-aws-center-for-quantum-networking/.

[15] Chonggang Wang, Akbar Rahman, Ruidong Li, Melchior Aelmans, and Kaushik Chakraborty. Application scenarios

for the quantum internet. Internet-Draft draft-irtf-qirg-quantum-internet-use-cases-12, Internet Engineering Task

Force, 2022. Work in Progress.

[16] Rodney Van Meter and Simon J. Devitt. The Path to Scalable Distributed Quantum Computing. Computer, 49(9):
31–42, September 2016. ISSN 0018-9162. doi: 10.1109/MC.2016.291.

[17] Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. Quantum internet: From communication to

distributed computing! In Proc. of ACM NANOCOM ’18, pages 1–4. Association for Computing Machinery, 2018. ISBN

9781450357111. doi: 10.1145/3233188.3233224.

[18] Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti, and Marcello Caleffi. Compiler design for distributed

quantum computing. IEEE Transactions on Quantum Engineering, 2:1–20, 2021. doi: 10.1109/TQE.2021.3053921.
[19] J. Avron, Ofer Casper, and Ilan Rozen. Quantum advantage and noise reduction in distributed quantum computing.

Phys. Rev. A, 104:052404, Nov 2021. doi: 10.1103/PhysRevA.104.052404.
[20] Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum Internet: a Vision for the Road Ahead. Science, 362

(6412), 2018.

[21] Marcello Caleffi, Daryus Chandra, Daniele Cuomo, Shima Hasaanpour, and Angela Sara Cacciapuoti. The Rise of the

Quantum Internet. IEEE Computer, 2020.
[22] IBM. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing. URL

https://research.ibm.com/blog/ibm-quantum-roadmap-2025.

[23] R. Parekh, A. Ricciardi, A. Darwish, and S. DiAdamo. Quantum algorithms and simulation for parallel and distributed

quantum computing. In 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS),
pages 9–19, Los Alamitos, CA, USA, nov 2021. IEEE Computer Society. doi: 10.1109/QCS54837.2021.00005. URL

https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005.

[24] Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, et al. Deterministic multi-qubit entanglement in a quantum

network. Nature, 590(7847):571–575, 2021.
[25] M. Pompili, S. L. N. Hermans, S. Baier, et al. Realization of a multinode quantum network of remote solid-state qubits.

Science, 372(6539):259–264, 2021.
[26] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, et al. Qubit teleportation between non-neighbouring nodes in a

quantum network. Nature, 605(7911):663–668, 2022.
[27] Angela Sara Cacciapuoti, Marcello Caleffi, Rodney Van Meter, and Lajos Hanzo. When entanglement meets classical

communications: Quantum teleportation for the quantum internet. IEEE Transactions on Communications, 68(6):
3808–3833, 2020. invited paper.

[28] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum computing for non-physicists. ACM Computing
Survey, 32(3):300–335, sep 2000.

[29] Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A Gentle Introduction. The MIT Press, 2011.

[30] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University

Press, 2011.

[31] P. A. M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings of the Cambridge Philosophical
Society, 35(3):416–418, 1939.

[32] Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational speed-up. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2036):2011–2032, 2003. doi:
10.1098/rspa.2002.1097.

[33] Damian Markham and Barry C. Sanders. Graph states for quantum secret sharing. Phys. Rev. A, 78:042309, 2008.
[34] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1:195–200, Nov 1964.
[35] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of physical reality be

considered complete? Physical review, 47(10):777, 1935.
[36] Daniel Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127–137, Jan 1998.

[37] Abhijith J., Adetokunbo Adedoyin, John Ambrosiano, et al. Quantum algorithm implementations for beginners. ACM
Transactions on Quantum Computing, 3(4), jul 2022. ISSN 2643-6809.

[38] Seid Koudia, Angela Sara Cacciapuoti, Kyrylo Simonov, and Marcello Caleffi. How deep the theory of quantum

communications goes: Superadditivity, superactivation and causal activation. IEEE Communications Surveys &
Tutorials, 2022. In press.

[39] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, et al. Experimental comparison of two quantum computing

architectures. Proceedings of the National Academy of Sciences, 114(13):3305–3310, 2017.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://www.quantumcommshub.net/
https://aws.amazon.com/blogs/quantum-computing/announcing-the-aws-center-for-quantum-networking/
https://aws.amazon.com/blogs/quantum-computing/announcing-the-aws-center-for-quantum-networking/
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005

DistributedQuantum Computing: a Survey 33

[40] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, et al. Error mitigation extends the computational reach of a

noisy quantum processor. Nature, 567(7749):491–495, 2019.
[41] Ziang Yu and Yingzhou Li. Analysis of error propagation in quantum computers. arXiv e-prints, 2022. arXiv:2209.01699.
[42] R. Van Meter and S. J. Devitt. The path to scalable distributed quantum computing. Computer, 49(9):31–42, Sept 2016.

ISSN 0018-9162. doi: 10.1109/MC.2016.291.

[43] A. Botea, A. Kishimoto, and R. Marinescu. On the Complexity of Quantum Circuit Compilation. In The Eleventh
International Symposium on Combinatorial Search (SOCS 2018), 2018.

[44] Janusz Kusyk, Samah M. Saeed, and Muharrem Umit Uyar. Survey on quantum circuit compilation for noisy

intermediate-scale quantum computers: Artificial intelligence to heuristics. IEEE Transactions on Quantum Engineering,
2:1–16, 2021. doi: 10.1109/TQE.2021.3068355.

[45] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, et al. t|ket〉: a retargetable compiler for nisq devices. Quantum
Science and Technology, 6(1):014003, nov 2020.

[46] A. D. Carcoles, A. Kandala, A. Javadi-Abhari, et al. Challenges and opportunities of near-term quantum computing

systems. Proc. of the IEEE, pages 1–15, 2020. in press.

[47] Davide Ferrari and Michele Amoretti. Efficient and effective quantum compiling for entanglement-based machine

learning on ibm q devices. International Journal of Quantum Information, 16(08):1840006, 2018.
[48] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, and Patrick J Coles. Learning the quantum algorithm for state

overlap. New Journal of Physics, 20(11):113022, Nov. 2018.
[49] A. Zulehner, A. Paler, and R.Wille. An efficient methodology for mapping quantum circuits to the ibm qx architectures.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–1236, 2019.
[50] Ashley Montanaro. Quantum algorithms: An overview. npj Quantum Information, 2(1):15023, January 2016. ISSN

2056-6387. doi: 10.1038/npjqi.2015.23.

[51] Peter W. Shor. Polynomial time algorithms for discrete logarithms and factoring on a quantum computer. In

Algorithmic Number Theory, pages 289–289. Springer Berlin Heidelberg, 1994. ISBN 978-3-540-49044-9.

[52] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’96, page 212–219, 1996. ISBN 0897917855.

[53] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev.
Lett., 103:150502, Oct 2009.

[54] M. Cerezo, Andrew Arrasmith, Ryan Babbush, et al. Variational quantum algorithms. Nature Reviews Physics, 3(9):
625–644, September 2021.

[55] Barbara M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307–346, Apr 2015.
[56] Niels M. P. Neumann, Roy van Houte, and Thomas Attema. Imperfect Distributed Quantum Phase Estimation.

In Computational Science – ICCS 2020, Lecture Notes in Computer Science, pages 605–615. Springer International

Publishing, 2020.

[57] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191–1249,
dec 1997.

[58] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio. Optimal local implementation of nonlocal quantum gates. Phys.
Rev. A, 62:052317, Oct 2000.

[59] Stephen DiAdamo, Marco Ghibaudi, and James Cruise. Distributed Quantum Computing and Network Control for

Accelerated VQE. IEEE Transactions on Quantum Engineering, 2:1–21, 2021. ISSN 2689-1808. doi: 10.1109/TQE.2021.

3057908.

[60] Anocha Yimsiriwattana and Samuel J. Jr. Lomonaco. Generalized GHZ states and distributed quantum computing.

Contemp. Math., 381, 2005. doi: 10.1090/conm/381.

[61] Niels M. P. Neumann and Robert S. Wezeman. Distributed quantum machine learning. In Innovations for Community
Services, pages 281–293. Springer International Publishing, 2022.

[62] Claudio Cicconetti, Marco Conti, and Andrea Passarella. Resource allocation in quantum networks for distributed

quantum computing. In 2022 IEEE International Conference on Smart Computing (SMARTCOMP), pages 124–132, 2022.
[63] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello. Distributed quantum computation over noisy channels.

Phys. Rev. A, 59:4249–4254, Jun 1999.

[64] Robert Beals, Stephen Brierley, Oliver Gray, et al. Efficient distributed quantum computing. Proc. of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 469(2153):20120686, 2013.

[65] Stephen Brierley. Efficient implementation of quantum circuits with limited qubit interactions. Quantum Info.
Comput., 17(13–14):1096–1104, November 2017. ISSN 1533-7146.

[66] Gayane Vardoyan and Stephanie Wehner. Quantum Network Utility Maximization. arXiv e-prints, 2022.
arXiv:2210.08135v1.

[67] Yuan Lee, Wenhen Dai, Dan Towsley, and Dirk Englund. Quantum Network Utility: A Framework for Benchmarking

Quantum Networks. arXiv e-prints, 2022. arXiv:2210.10752v1.

, Vol. 1, No. 1, Article . Publication date: December 2022.

34 Caleffi et al.

[68] AndrewW. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. Validating quantum computers

using randomized model circuits. Phys. Rev. A, 100:032328, Sep 2019. doi: 10.1103/PhysRevA.100.032328.

[69] Wojciech Kozlowski, Stephanie Wehner, Rodney Van Meter, Bruno Rijsman, Angela Sara Cacciapuoti, Marcello

Caleffi, and S. Nagayama. Architectural principles for a quantum internet. Internet-Draft draft-irtf-qirg-principles-10,

Internet Engineering Task Force, 2022. Work in Progress.

[70] Jessica Illiano, Marcello Caleffi, Antonio Manzalini, and Angela Sara Cacciapuoti. Quantum internet protocol stack: a

comprehensive survey. Computer Networks, 213, 2022.
[71] Angela Sara Cacciapuoti, Seid Illiano, Jessica Koudia, and Marcello Caleffi. The quantum internet: Enhancing classical

services one qubit at a time. IEEE Networks, 2022.
[72] Angela Sara Cacciapuoti and Marcello Caleffi. Toward the quantum internet: A directional-dependent noise model

for quantum signal processing. In IEEE ICASSP ’19, pages 7978–7982, 2019. doi: 10.1109/ICASSP.2019.8683195.
[73] R. Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Reviews of modern

physics, 81(2):865, 2009.
[74] Anupama Unnikrishnan and Damian Markham. Authenticated teleportation and verification in a noisy network.

Phys. Rev. A, 102:042401, 2020.
[75] R. Van Meter, K. Nemoto, W.J. Munro, and K.M. Itoh. Distributed arithmetic on a quantum multicomputer. In 33rd

International Symposium on Computer Architecture (ISCA’06), pages 354–365, 2006.
[76] Charles H Bennett, Gilles Brassard, Sandu Popescu, et al. Purification of noisy entanglement and faithful teleportation

via noisy channels. Phys. Rev. Lett., 76(5):722, 1996.
[77] C. H. Bennett, David P DiVincenzo, John A Smolin, and William K Wootters. Mixed-state entanglement and quantum

error correction. Physical Review A, 54(5):3824, 1996.
[78] Wolfgang Dür and Hans J Briegel. Entanglement purification and quantum error correction. Reports on Progress in

Physics, 70(8):1381, 2007.
[79] L. Ruan, Wenhan Dai, and Moe ZWin. Adaptive recurrence quantum entanglement distillation for two-kraus-operator

channels. Physical Review A, 97(5):052332, 2018.
[80] Filip Rozpędek, Thomas Schiet, David Elkouss, et al. Optimizing practical entanglement distillation. Physical Review

A, 97(6):062333, 2018.
[81] L. Ruan, Brian T Kirby, Michael Brodsky, and Moe Z Win. Efficient entanglement distillation for quantum channels

with polarization mode dispersion. Physical Review A, 103(3):032425, 2021.
[82] M. Soeken, G. Meuli, B. Schmitt, et al. Boolean satisfiability in quantum compilation. Phil. Trans. Royal Soc. A, 378

(2164):1–16, 2019. doi: 10.1098/rsta.2019.0161.

[83] C. Chamberland, G. Zhu, T. J. Yoder, et al. Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits.

Physical Review X, 10(011022), 2020.
[84] IBM Q. Transpiler.

https://qiskit.org/documentation/apidoc/transpiler.html, 2022.

[85] Pablo Andrés-Martínez and Chris Heunen. Automated distribution of quantum circuits via hypergraph partitioning.

Phys. Rev. A, 100:032308, Sep 2019. doi: 10.1103/PhysRevA.100.032308.

[86] Ranjani G. Sundaram, Himanshu Gupta, and C. R. Ramakrishnan. Efficient Distribution of Quantum Circuits. In 35th
International Symposium on Distributed Computing (DISC 2021), 2021.

[87] R. G. Sundaram, H. Gupta, and C. R. Ramakrishnan. Distribution of Quantum Circuits Over General Quantum

Networks. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 415–425, 2022.
[88] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. Optimized quantum circuit partitioning. Int J Theor

Phys, 59(12):3804–3820, December 2020. ISSN 1572-9575. doi: 10.1007/s10773-020-04633-8.

[89] Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, and M. Nouri-baygi. A dynamic programming approach for

distributing quantum circuits by bipartite graphs. Quantum Information Processing, 19, 2020. doi: 10.1007/s11128-020-
02871-7.

[90] Eesa Nikahd, Naser Mohammadzadeh, Mehdi Sedighi, and Morteza Saheb Zamani. Automated window-based

partitioning of quantum circuits. Phys. Scr., 96(3):035102, January 2021. ISSN 1402-4896. doi: 10.1088/1402-4896/abd57c.

[91] Daniele Cuomo, Marcello Caleffi, Kevin Krsulich, Filippo Tramonto, Gabriele Agliardi, Enrico Prati, and Angela Sara

Cacciapuoti. Optimized compiler for distributed quantum computing, 2021.

[92] Davood Dadkhah, Mariam Zomorodi, and Seyed Ebrahim Hosseini. A New Approach for Optimization of Distributed

Quantum Circuits. International Journal of Theoretical Physics, 60(9):3271–3285, September 2021. ISSN 0020-7748,

1572-9575. doi: 10.1007/s10773-021-04904-y.

[93] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg. Implementation of Shor’s algorithm on a linear nearest neighbor

qubit array. Quantum Information and Computation, 4:237–251, 2004. doi: 10.26421/QIC4.4.
[94] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal,

49(2):291–307, 1970. doi: 10.1002/j.1538-7305.1970.tb01770.x.

, Vol. 1, No. 1, Article . Publication date: December 2022.

DistributedQuantum Computing: a Survey 35

[95] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, et al. Noise-adaptive compiler mappings for noisy intermediate-

scale quantum computers. arXiv e-prints, 2019. arXiv:1901.11054.
[96] Shin Nishio, Yulu Pan, Takahiko Satoh, et al. Extracting success from ibm’s 20-qubit machines using error-aware

compilation. J. Emerg. Technol. Comput. Syst., 16(3), may 2020.

[97] Siyuan Niu, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial. A hardware-aware heuristic for the qubit

mapping problem in the nisq era. IEEE Transactions on Quantum Engineering, 1:1–14, 2020.
[98] Davide Ferrari and Michele Amoretti. Noise-adaptive quantum compilation strategies evaluated with application-

motivated benchmarks. In Proceedings of the 19th ACM International Conference on Computing Frontiers, CF ’22, page
237–243, 2022. doi: 10.1145/3528416.3530250.

[99] Davide Ferrari, Saverio Nasturzio, and Michele Amoretti. A software tool for mapping and executing distributed

quantum computations on a network simulator, 2021. URL https://2021.qcrypt.net/speakers/#list-of-accepted-posters.

[100] Junchao Wang, Guoping Guo, and Zheng Shan. Sok: Benchmarking the performance of a quantum computer. Entropy,
24(10), 2022. doi: 10.3390/e24101467.

[101] Ben Bartlett. A distributed simulation framework for quantum networks and channels. arXiv e-prints, 2018.
arXiv:1808.07047.

[102] Tim Coopmans, Robert Knegjens, Axel Dahlberg, et al. NetSquid, a NETwork Simulator for QUantum Information

using Discrete events. Communications Physics, 4(1):164, December 2021.

[103] Axel Dahlberg and Stephanie Wehner. SimulaQron - a simulator for developing quantum internet software. Quantum
Science and Technology, 4(1):015001, Sep 2018.

[104] Xiaoliang Wu, Alexander Kolar, Joaquin Chung, et al. Sequence: a customizable discrete-event simulator of quantum

networks. Quantum Science and Technology, 6(4):045027, 2021.
[105] T. Matsuo. Simulation of a Dynamic, RuleSet-based Quantum Network. arXiv e-prints, 2021. arXiv:1908.10758.
[106] Stephen Diadamo, Janis Notzel, Benjamin Zanger, and Mehmet Mert Bese. QuNetSim: A Software Framework for

Quantum Networks. IEEE Transactions on Quantum Engineering, 2:1–12, 2021.
[107] Axel Dahlberg, Bart van der Vecht, Carlo Delle Donne, et al. Netqasm - a low-level instruction set architecture for

hybrid quantum–classical programs in a quantum internet. Quantum Science and Technology, 7(3):035023, jun 2022.

[108] QuTech. Quantum Network Explorer ADK, 2022. URL https://github.com/QuTech-Delft/qne-adk.

[109] Chin-Te Liao, Sima Bahrani, Francisco Ferreira da Silva, and Elham Kashefi. Benchmarking of quantum protocols.

Scientific Reports, 12(1):5298, March 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-08901-x.

[110] Miralem Mehic, Marcin Niemiec, Stefan Rass, et al. Quantum key distribution: A networking perspective. ACM
Comput. Surv., 53(5), sep 2020.

[111] Antonio Manzalini and Michele Amoretti. End-to-end entanglement generation strategies: Capacity bounds and

impact on quantum key distribution. Quantum Reports, 4(3):251–263, 2022.
[112] Claudio Cicconetti, Marco Conti, and Andrea Passarella. Request scheduling in quantum networks. IEEE Transactions

on Quantum Engineering, 2:2–17, 2021.
[113] Various Authors. Quantum Protocol Zoo, 2022. URL https://wiki.veriqloud.fr/index.php.

[114] S.J. Devitt, W.J. Munro, and K. Nemoto. Quantum error correction for beginners. Reports on Progress in Physics, 76(7),
2013.

[115] Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: An Open Source Software Framework for Quantum

Computing. Quantum, 2:49, January 2018. ISSN 2521-327X. doi: 10.22331/q-2018-01-31-49.

[116] S. Zanger, B. andd DiAdamo. EQSN: Effective Quantum Simulator for Networks, 2020. URL https://github.com/tqsd/

EQSN_python.

[117] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum assembly language. arXiv
e-prints, July 2017. arXiv:1707.03429.

[118] P. Magnard, S. Storz, P. Kurpiers, et al. Microwave quantum link between superconducting circuits housed in spatially

separated cryogenic systems. Phys. Rev. Lett., 125:260502, Dec 2020.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://2021.qcrypt.net/speakers/#list-of-accepted-posters
https://github.com/QuTech-Delft/qne-adk
https://wiki.veriqloud.fr/index.php
https://github.com/tqsd/EQSN_python
https://github.com/tqsd/EQSN_python

	Abstract
	1 Introduction
	2 DQC: Distributed Quantum Computing
	3 Quantum Preliminaries
	3.1 Qubits in a Nutshell
	3.2 Quantum Circuits
	3.3 Monolithic Execution: Gate Synthesis and Circuit Compilation
	3.4 Distributed Execution

	4 Quantum Algorithms
	4.1 Partitioning of Quantum Algorithms
	4.2 Execution Management
	4.3 Open Issues and Research Directions

	5 Quantum Networking
	5.1 Quantum Internet
	5.2 Quantum Teleportation
	5.3 Teledata vs Telegate
	5.4 Physical vs Virtual Quantum Links
	5.5 Open Issues and Research Directions

	6 Quantum Compiling
	6.1 Qubit Assignment
	6.2 Non-local Gate Handling
	6.3 Open Issues and Research Directions

	7 Simulation Tools
	7.1 Hardware-oriented
	7.2 Protocol-oriented
	7.3 Application-oriented
	7.4 Open Issues and Research Directions

	8 Conclusions and Future Perspectives
	8.1 Industrial and Standardization Perspective
	8.2 The Journey Ahead

	References

