Computer Networks 254 (2024) 110672

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

Computer Networks i

ter
rks

Distributed quantum computing: A survey

Marcello Caleffi »b-*, Michele Amoretti ¢, Davide Ferrari ¢, Jessica Illiano ?, Antonio Manzalini 9,

Angela Sara Cacciapuoti ®P

aFLY: Future Communications Laboratory, Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico

II, Naples, 80125, Italy'

b Laboratorio Nazionale di Comunicazioni Multimediali, National Inter-University Consortium for Telecommunications (CNIT), Naples, 80126, Italy
¢ QSLab: Quantum Software Laboratory, Department of Engineering and Architecture (DIA), University of Parma, Parma, 43124, Italy >

4 TIM, Turin, 10148, Italy

ARTICLE INFO ABSTRACT

Keywords:

Quantum internet
Quantum networks
Quantum communications
Quantum computing
Quantum computation
Distributed quantum computing
Quantum algorithms
Quantum compiler
Quantum compiling
Simulator

Nowadays, quantum computing has reached the engineering phase, with fully-functional quantum processors
integrating hundreds of noisy qubits. Yet — to fully unveil the potential of quantum computing out of the labs
into the business reality — the challenge ahead is to substantially scale the qubit number, reaching orders
of magnitude exceeding thousands of fault-tolerant qubits. To this aim, the distributed quantum computing
paradigm is recognized as the key solution for scaling the number of qubits. Indeed, accordingly to such
a paradigm, multiple small-to-moderate-scale quantum processors communicate and cooperate for executing
computational tasks exceeding the computational power of single processing devices. The aim of this survey is
to provide the reader with an overview about the main challenges and open problems arising with distributed
quantum computing from a computer and communications engineering perspective. Furthermore, this survey
provides an easy access and guide towards the relevant literature and the prominent results in the field.

1. Introduction

Quantum computing has finally reached the engineering phase,
with fully-functional quantum processors integrating hundreds of noisy
qubits [1,2]. And it has the potential to completely change markets and
industries, since a quantum computer can, in principle, tackle classes
of problems that choke classical machines [3,4].

However, to fully unlock the potentialities of quantum computing,
thousands of fault-tolerant interconnected qubits are required [1]. And
quantum technologies are still far away from this ambitious goal, since
there still exist hard technological limitations on the number of qubits
that can be embedded in a single quantum chip [5]. Indeed, we are in
the noisy intermediate-scale quantum (NISQ) processors age [6-8].

In this context, the consensus of both academic and industry com-
munities for realizing large-scale quantum processors is to adopt the
distributed quantum computing (DQC) paradigm, which relays on a quan-
tum network infrastructure for clustering together modular and small
quantum chips in order to scale the number of qubits [3,4,9-11].

Indeed, accordingly to the DQC paradigm, individual quantum pro-
cessors, limited in the number of qubits, work together to solve compu-
tational tasks exceeding the computational power of single processing
devices [3,5,12-16]. And, differently from distributed classical com-
puting, a linear increase in the number of interconnected quantum
processors unlocks an exponential increase of the quantum computing
power [3,4,12,16].

DQC architectures are expected to be realized, in a very near future,
in the form of local quantum server farms [4,10] whereas, on a longer
time-horizon, geographically-distributed server farms are envisioned to
be interconnected around the globe [10,16]. Indeed, Rigetti already
developed high fidelity, low-latency quantum interconnects between
modules, providing technological foundations for modular quantum
computers [17]. IBM plans to introduce in 2025 Kookaburra — a 1386
qubit multi-chip processor with communication link support for quan-
tum parallelization — with three Kookaburra chips inter-connected into
a 4158-qubit system [18]. Metropolitan-area and wide-area quantum
networks are also under research and development [19-23], which

* Corresponding author at: FLY: Future Communications Laboratory, Department of Electrical Engineering and Information Technology (DIETI), University of

Naples Federico II, Naples, 80125, Italy.

E-mail addresses: marcello.caleffi@unina.it (M. Caleffi), michele.amoretti@unipr.it (M. Amoretti), davide.ferraril @unipr.it (D. Ferrari),
jessica.illiano@unina.it (J. Illiano), antonio.manzalini@telecomitalia.it (A. Manzalini), angelasara.cacciapuoti@unina.it (A.S. Cacciapuoti).

1 Web: www.quantuminternet.it
2 Web: www.qis.unipr.it/quantumsoftware

https://doi.org/10.1016/j.comnet.2024.110672

Received 14 May 2024; Received in revised form 28 June 2024; Accepted 22 July 2024

Available online 8 August 2024

1389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:marcello.caleffi@unina.it
mailto:michele.amoretti@unipr.it
mailto:davide.ferrari1@unipr.it
mailto:jessica.illiano@unina.it
mailto:antonio.manzalini@telecomitalia.it
mailto:angelasara.cacciapuoti@unina.it
http://www.quantuminternet.it
https://www.qis.unipr.it/quantumsoftware.html
https://doi.org/10.1016/j.comnet.2024.110672
https://doi.org/10.1016/j.comnet.2024.110672
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Caleffi et al.

e NETWORKING -...,

- SIMULATION
ONITIAINOD) “*

. ALGORITHM "

Fig. 1. The Distributed Quantum Computing ecosystem, represented by highlighting
the four different pillars overviewed within the survey: Algorithms, Compiling, Networking
and Simulation.

would enable DQC among geographically-distributed quantum farms
and/or devices.

Unfortunately, the existing literature on DQC is spread among dif-
ferent research communities — ranging from the physics through the
communications/computer engineering to the computer science com-
munity - leading to a fundamental gap. The aim of this survey is
precisely to bridge this gap, by introducing the astonishing and intrigu-
ing properties of distributed quantum computing, with the objective of
allowing the reader:

(i) to own the implications of the novel and distinct characteristics
of quantum information, for understanding the differences be-
tween distributed classical computing and distributed quantum
computing;

(i) to grasp the challenges as well as to appreciate the marvels
arising with the paradigmatic shift from monolithic to distributed
quantum computing.

Due to the fast growth of this research field, such an understand-
ing serves the computer science and the communications engineering
communities to have an easy access and guide towards the relevant
literature and the prominent results, which is of paramount importance
for advancing the state-of-the-art.

The survey provides perspectives — including state-of-the-art and
challenges - on four different area related to DQC, namely: algorithms,
networking, compiling, and simulation, as detailed in Section 1.1.

1.1. Outline

As illustrated in Fig. 1, for each of the aforementioned four pillars,
the most relevant aspects are analyzed and discussed.

A quantum network infrastructure is a fundamental pre-requisite
for any form of DQC. Therefore, through the survey we shed the light
on the communication primitives required for inter-networking differ-
ent quantum processors. We discuss the main challenges arising with
this inter-networking, by introducing the reader to the fundamental
differences between interconnecting remote classical processors versus
interconnecting remote quantum processors. Regarding algorithms, the
focus is on the crucial and specific challenges arising when moving

Computer Networks 254 (2024) 110672

— 1. Introduction

L 1.1 Outline

> 2. Distributed Quantum Computing

2.1. Monolithic Quantum Computing

2.2. Archetypes for Distributed Quantum Computing
— 3. Quantum Networking: Enabling Remote Operation
— 3.1. Communication Primitives

> 3.2. Augmented Coupling Map

'— 3.3. More on Communication Protocols for DQC

— 4. Quantum Algorithms

— 4.1. Description Formats

— 4.2, Partitioning

L+ 4.3. Execution Management

> 5. Quantum Compiling

— 5.1. Hardware Matching

> 5.2. Qubit Assignment

L 5.3. Remote Operations Optimization
— 6. Simulation Tools
— 6.1. Hardware-oriented

—> 6.2. Protocol-oriented

'— 6.3. Application-oriented

> 7. Open Issues and Research Directions
> 7.1. Quantum Networking

— 7.2. Quantum Algorithms

> 7.3. Quantum Compiling

- 7.4. Quantum Simulation

— 8. Conclusions

8.1. Discussion

8.2. Industrial and Standardization Perspective

Fig. 2. Paper Structure.

from monolithic to distributed quantum computing, ranging from ap-
propriate description formats through quantum algorithm partitioning
to execution management. Quantum Compiling, instead, deals with
translating a hardware-agnostic description of the algorithm into a
functionally equivalent description that takes into account the physical
constraints of the underlying computing architecture [13,15]. Indeed,
within the context of DQC, the compiling must account also for the net-
work constraints, which impact on the strategy adopted for splitting the
algorithm into “portions” to be concurrently executed on the individual

M. Caleffi et al.

QuUANTUM PROCESSOR

Fig. 3. Coupling map of a superconducting quantum processor [24,25]. The five
physical qubits stored within the processor are represented by circles. The arrows
denote the possibility to realize a two-qubit CNOT gate between the five qubits. As an
example, a CNOT between qubits g, and ¢, can be directly executed by the quantum
processor, whereas a CNOT between qubits ¢, and ¢, cannot.

quantum processing units (QPUs).®> As a matter of fact, a key goal is to
minimize the number of remote operations, i.e., operations involving
different QPUs. Last but not least, the design of DQC architectures can
be highly facilitated by adequate simulation tools, as discussed and
detailed in the manuscript.

The paper is structured as depicted in Fig. 2. Specifically, in Sec-
tion 2, we introduce some preliminaries by highlighting the differences
between monolithic and distributed computing. Then, in Section 3,
we provide the reader with the networking functionalities required
by the distributed computing paradigm, by detailing the pivotal role
played by communication infrastructure to enable distributed quantum
computing. In Section 4, we focus on quantum algorithms as well as
their execution management in the light of the distributed paradigm.
In Section 5, we describe some relevant approaches to the problem of
compiling quantum algorithms for distributed execution. In Section 6,
we provide an overview of the most advanced simulation tools, by
discussing their suitability for the design and analysis of distributed
quantum computing architectures. In Section 7, we discuss the open
issues and the research directions for each of the four pillars of this sur-
vey. Finally, we conclude our survey in Section 8, by first providing a
discussion about the main differences between distributed classical and
quantum computing, and then by providing an industrial perspective on
DQC.

2. Distributed quantum computing

The purpose of this section is to briefly introduce the main differ-
ences between monolithic and distributed quantum computing. To this
aim, intra-chip connectivity is discussed first, as it plays a key role in
both the two paradigms.

2.1. Monolithic quantum computing

Monolithic Quantum Computing refers to the execution of a quantum
algorithm on a single quantum processor.

As briefly described in the box enclosed in the next page, a quan-
tum algorithm is commonly modeled by a quantum circuit. Quantum
circuits are made of quantum gates and, in general, the set of gates
that can be executed on a certain quantum processor is finite, i.e., con-
stituted by few quantum gates, as a consequence of the constraints
imposed by the underlying qubit technology [26-45]. Thus, any gate

3 Throughout the manuscript, the two terms quantum processor and
quantum processing unit are used as synonyms.

Computer Networks 254 (2024) 110672

outside the aforementioned set must be obtained with a proper combi-
nation of the allowed gates, through a process known as gate synthesis.
As an example, IBM quantum processors are realized exploiting the
superconducting technology, as mentioned before. And any logical gate
that can be run on current IBM quantum platform is built from a gate
set composed by the CNOT gate and four single-qubit gates, namely, I,
R., SX, and X gate.

It must be observed that a discrete set of gates cannot be used
to implement any arbitrary unitary operation exactly, since the set of
unitary operations is continuous [46]. In other words, for any finite set
of gates there exist unitary transformations that cannot be realized as
a combination of these gates. However, there exist finite sets of gates
- referred to as universal gate sets — that can approximate any unitary
transformation to arbitrary accuracy [47]. And indeed, for any level of
accuracy, this approximation can be done efficiently accordingly to the
Solovay—Kitaev theorem [46,47].

From the above, one can safely assume that a quantum algorithm
can be executed on a given quantum processor, either in the form
described by the original quantum circuit or by properly replacing
unavailable gates with equivalent sequences of the available ones. To
do this, in the context of monolithic quantum computing, it is necessary
that the number of physical qubits within the processor is at least equal
to the circuit width, i.e., to the number of logical qubits. In fact, each
logical qubit within the quantum circuit must be assigned to a physical
qubit of the quantum processor.

However, in the NISQ age, a logical qubit has to be usually mapped
onto several physical qubits for implementing proper fault-tolerant
techniques [48]. Hence, the number of physical qubits available in a
single processor may be not sufficient to execute the quantum algo-
rithm. As a consequence, the consensus of both academic and industry
communities for realizing large-scale quantum processors is to adopt
the DQC paradigm, discussed below.

2.2. Archetypes for distributed quantum computing

In Distributed Quantum Computing, quantum processors, limited in
the number of qubits, work together for solving the computation as-
sociated with a quantum algorithm. Hence and as illustrated with
the toy model in Fig. 4, a distributed quantum computation involves
non-local gates, i.e., it involves operations between qubits belonging
to different processors. Also (classical) distributed computing involves
operations between bits stored at different processors. And these non-
local operations are executed through data replications, namely, by
simply copying and sending the bits from one processor to another. So
one might be tempted to believe that the same strategy can be adopted
when it comes to DQC. Unfortunately, this is not true due to the laws of
quantum mechanics, such as quantum measurement postulate and non-
cloning theorem. Hence DQC requires a paradigm shift for dealing with
inter-processor communications, as deeply discussed in the remaining
part of the manuscript.

Regardless of the challenges connected to DQC, one must notice that
DQC can be realized according to different archetypes, related to the
development of the underlying network infrastructure and maturity of
the quantum technologies, as represented in Fig. 5. In the following
we introduce these archetypes, while in Section 7 we describe the
challenges and open problems connected to them.

2.2.1. Multi-core quantum architectures

The first archetype for DQC is the one exploiting the interconnection
of multiple QPUs within a single quantum computer. This results in
an architecture known as multi-chip [49] or multi-core [50,51]. The
quantum hardware underlying the qubits is likely to be homogeneous
among the different processors. Yet, some sort of hardware heterogene-
ity may arise within each processor due to the differences in terms of
requirements between qubits devoted to store quantum states, referred
to as memory qubits, and qubits devoted to computational/processing

M. Caleffi et al.

Computer Networks 254 (2024) 110672

Intra-chip Connectivity

Quantum computing requires quantum states to be manipulated
not only via single-qubit gates, but also through multi-qubit gates,
mainly two-qubit gates such as CNOT or CZ gates®. This implies
that, within a quantum chip, physical qubits must be able to
interact in a controlled fashion. Indeed, the underlying quan-
tum technology influences the interaction features of the physical
qubits. Specifically, there exists a large class of different quantum
computing platforms where two-qubit gates cannot be applied
to any physical qubit pair of a quantum processor, but they
are instead restricted to certain pairs. These limitations arise as
a consequence of both the: (i) noise effects induced by qubit-
interactions, and (ii) physical-space constraints within a single
processor [13]. In this class of quantum computing platform, the
quantum devices are characterized by a coupling graph that specifies
which qubits may interact. More into details, in the coupling
graph®, vertices denote qubits and arrows denote the possibility
of realizing a two-qubit gate between the connected qubits — as
illustrated in Fig. 3. Among the technologies in the aforementioned
category, we can mention superconducting qubits, utilized for
example by Google [26], IBM [27], Rigetti [28], Alice & Bob [29],
Anyon [30], IQ [31], and OQC [32]. But also quantum dots —
utilized for example by Intel [33], C12 [34], and Quobly [35] -
and color-center qubits — such as NV centers in diamonds utilized
by Quantum Brilliance [36] — belong to this category.

From the above, it becomes clear that any quantum computa-
tion executed on a quantum processor belonging to this category
requires that each multi-qubit operation between non-adjacent
(within the coupling graph) physical qubits is mapped into a
sequence of operations between adjacent physical qubits [13]. This
mapping process, known as quantum compilation and described

a widely-adopted terminology.

@ See the box in the following page for a concise description of controlled gates such as CNOT or CZ.
b We highlight that, in literature, coupling graphs are also referred to as coupling maps. And in the remaining part of the manuscript we adopt such

in details in Section 5, must be properly optimized so that the
overhead for satisfying all the constraints imposed by the coupling
graph is minimized.

Quantum compilation must be performed regardless of the adopted
quantum computing paradigm - i.e., monolithic vs distributed
— since in both the paradigms multi-qubit operations are re-
stricted to act only on adjacent physical qubits. However, the
overall optimization process underlying quantum compilation is
more challenging in DQC, since multi-qubit operations can involve
qubits belonging to different chips.

Another category of quantum technologies, instead, does not con-
straint the interactions among qubits, i.e., their coupling graph
is fully connected. It is the case of quantum devices based on
trapped ions — such as the ones developed by AQT [37], IonQ
[38], Quantinuum [39], and Oxford Ionics [40] - or neutral
atoms, such as the ones developed by PASQAL [41], QuEra [42],
Atom Computing [43], and Infleqtion [44]. Complete connectivity
among physical qubits constitutes an advantage over the partially
connected topologies exhibited by the first category of qubit tech-
nologies, since extra gates are not needed for moving quantum
states to nearest-neighbor qubits. Yet, these technologies, although
they can operate at room temperature, exhibit different weaknesses
[2]. Regarding trapped ions, scaling the number of particles to
large numbers is challenging. With neutral atoms, the repetition
rate - i.e., the “computing clock” - is currently lower than other
platforms, mainly limited by the time required for the preparation
of the qubit array and a destructive readout. Furthermore, the
interfacing with classical electronic hardware is generally more
complex when compared with other technologies.

tasks. Indeed, memory qubits likely require coherence times several
order of magnitude larger than computational qubits.

Multi-core quantum architectures are also called Quantum Networks-
on-Chip (QNoC). The rationale for this naming is to highlight that
some sort of chip-scale network is employed for interconnecting dif-
ferent quantum computing modules [52-55]. In a QNoC architecture,
the physical distance between remote qubits — i.e., qubits belonging
to different computing modules - is very short, ranging from same-
rack/same-refrigerator to same-optical table distances. Accordingly, the
degrees of freedom in scaling the number of cores to be interconnected
within such a space are lower than the degrees available in Multi-
Computer architectures, as analyzed in the next subsection. This, in
turn, implies that the number of physical qubits that can be clustered
together in a Multi-Core quantum architecture [48] is limited as well.

We further observe that this DQC archetype is less demanding than
the other two archetypes in terms of maturity of the underlying quan-
tum computing technologies. In fact, several issues characterizing the
other two archetypes — such as quantum transduction and medium-to-
long-range quantum communications — are not present in the multi-core
architecture. This, in turn, implies that multi-core DQC architectures
are also the most investigated in literature, whereas the state-of-the-art
of the other architectures is still at its infancy.

2.2.2. Multi-computer quantum architectures

In the second DQC archetype, the distributed computation is per-
formed collectively by multiple quantum computers located within
the same farm and interconnected via some sort of Quantum LAN

(QLAN) [56]. Thus, some sort of hardware heterogeneity might arise,
given that different quantum computers are involved in the com-
putation. Such a heterogeneity must be taken into consideration by
the distributed quantum computing ecosystem [12,16], as analyzed
in Section 7. As represented in Fig. 5, the physical distance between
remote qubits in a multi-computer quantum architecture increases
with respect to the multi-core architectures, since the qubits that may
interact could belong to different computers. Accordingly, the distances
among remote qubits are between room-wide and building-wide, and
the number of physical qubits that can be clustered together is bounded
by the number of computers that can be interconnected within a server
farm.

From the above, it is evident that, although more demanding in
terms of quantum technologies maturity than QNoC, this type of DQC
archetype provides more degree of freedoms in optimizing the dis-
tributed computation.

2.2.3. Multi-farm quantum architectures

In the third archetype of DQC, the distributed computation ex-
ploits multiple geographically-distributed quantum farms. Hence, the
hardware heterogeneity is significant, given that the different quan-
tum farms are likely operated by different companies. Furthermore,
the interconnection of geographically-distributed quantum farms re-
quires a wide-scale network infrastructure, likely achieved through the
Quantum Internet [4,16,57].

From the above, one can conclude that the main features of this last
DQC archetype are the increasing number of quantum devices to be

M. Caleffi et al.

Computer Networks 254 (2024) 110672

Quantum Circuit Model

The quantum circuit [46] is the most popular model of quantum
computation, where quantum operators are described as quantum
gates. More into details, by sequentially interconnecting differ-
ent quantum gates, a quantum circuit models the processing of
quantum information corresponding to a specific quantum algo-
rithm [13]. Indeed, there exist several equivalent quantum circuits
modeling the same computation with a different arrangement or
different ordering of gates.

A very simple example of quantum circuit is provided in the figure
below, where each horizontal line represents the time evolution of
the state of a single (logical) qubit, with time flowing from left to
right, dictating the order of execution of the different gates.
Quantum gates are described by unitary matrices relative to some
basis, i.e., matrix U such that UTU = I. It follows that ideal (or
noisy-free) quantum computation is reversible: it is always possible
to invert a quantum computation.

10) H

o+ = 10011
%) =17

0)

€

As a matter of fact, every unitary operator U on a single qubit can
be formulated as:

U =R (0,)R,(6)R,(0,), 6, €R 1

with R; denoting the i-axis rotation operator. More precisely, the
possibility of implementing two arbitrary rotation operators is
sufficient, as their combined application can be exploited to obtain
the third type of rotation in 1.

Among two-qubit gates, highly relevant are the controlled ones. The
generic Controlled-U two-qubit gate operates on two qubits,
namely on a control qubit (controlling the operation) and on a
target qubit (subjected to the operation). By denoting with |¢.) and
|@,) the control and target qubits respectively, the effect of the
controlled U gate on the target qubit is the following:

if |,) = 10)

{Iw
Ulg,) if lg.) =11).

with I denoting the identity operation. The CNOT gate is a
Controlled-U gate, where U is the Pauli-X gate. The CNOT
gate can be used to create or destroy entanglement among the
qubits. Specifically, as depicted in the circuit model figure, to
obtain an entangled state we may start from the separable input
|00) and, by applying H to the first qubit, we obtain (|00)+|10))/ \/5
Finally, by applying a CNOT gate (where the first qubit acts as
control qubit), the resulting state is the Bell state |¥*):

(2)

o) = é(loow 1)) ©)

QUANTUM PROCESSOR #1

s
Hm]

QUANTUM PROCESSOR #2

Fig. 4. Toy model for distributed quantum computation. The quantum circuit is
composed by three two-qubit gates, i.e, CNOTs. First and last gates operate locally,
namely, between qubits stored within the same QPU, whereas the intermediate gate
operates remotely, namely, between qubits stored within different QPUs.

wired and the heterogeneity of the environments hosting the quantum
computers.

Regardless of the considered DQC archetype, it is worthwhile to
mention that networking primitives with no counterpart in the classical
world are needed for enabling the data transfer among remote qubits
required by a distributed quantum computation. These primitives are
introduced and overviewed in the following section.

3. Quantum networking: Enabling remote operations

As mentioned in the previous sections — regardless of the specific
DQC archetype — when it comes to distributed quantum computing,

qubits are distributed among multiple devices, interconnected by some
sort of quantum network infrastructure.

Accordingly, whenever a quantum gate must operate on remote
qubits, some sort of communication primitive must be available for per-
forming inter-processor operations. Unfortunately, this communication
primitive cannot be accomplished through classical protocols. Indeed,
the physical phenomena underlying quantum communications with no
classical counterpart impose a paradigm shift.

To better substantiate the above statement, in Section 3.1 we intro-
duce the communication primitives required by DQC, by also discussing
the role played in the DQC by the classical communication infrastruc-
ture. Then, in Section 3.2, we present a key strategy — referred to
as entanglement swapping - for artificially augmenting the connectivity
among different quantum processors, by exploiting entangled states.

3.1. Communication primitives

Here, we discuss the two main strategies — namely, TeleGate and
TeleData - for implementing quantum gates between remote qubits.

3.1.1. Direct qubit transmission

Distributed classical computing extensively relies on the possibility
of freely duplicating information. But this basic assumption does not
hold when it comes to DQC [58,59] accordingly to the no-cloning
theorem. Furthermore, according to the measurement postulate, even
the simple action of measuring a qubit — i.e., reading the quantum
information stored within — irreversibly alters its quantum properties,
such as superposition and entanglement.

The above peculiarities of quantum mechanics have deep implica-
tions on the communication primitives underlying DQC [4]. To further
elaborate on the above statement, let us clarify that it is possible to
map a qubit into a photon degree of freedom by directly transmitting

M. Caleffi et al.

MULTI-CORE
SOALE SINGLE QUANTUM
COMPUTER
INTERCONNECTING MULTIPLE QPU
HARDWARE ABSENT OR
HETEROGENEITY VERY MODERATE

Computer Networks 254 (2024) 110672

MULTI-COMPUTER MULTI-FARM
QUANTUM GLOBAL
FARM

MULTIPLE QUANTUM
COMPUTERS

MULTIPLE QUANTUM
FARMS

POSSIBLE VERY LIKELY

Fig. 5. Archetypes for Distributed Quantum Computing, with three different dimensions - i.e., scale, interconnection and heterogeneity — highlighted for the sake of comparison.

this qubit to a remote processor, e.g., via a fiber link or free space.*
However, if the traveling photon is lost due to attenuation or it is
corrupted by decoherence, the associated quantum information cannot
be recovered via a measuring process or by re-transmitting a copy of
the original information. Specifically, any quantum system inevitably
interacts with the environment and it is afflicted by decoherence, a
phenomenon that irreversibly scrambles the quantum state and there-
fore its inner information [60]. This kind of quantum noise affects
every quantum operation, from qubit processing through qubit storing
to qubit transmission, and it causes an irreversible loss of the quantum
information as time passes. As a consequence of the peculiarities of
quantum decoherence, the techniques for mitigating the imperfections
introduced by qubit transmission cannot be directly borrowed from
classical communications [61], and the direct transmission of qubits
remains, at the time of writing, limited to special cases characterized by
relatively short distances and tolerance to losses and low transmission
success rate, such as Quantum Key Distribution (QKD) networks [4].
Clearly, DQC cannot be considered as an application tolerating losses
or low transmission success rate, since reliable computations need
fault-tolerance to errors.

Thankfully, quantum entanglement [62] can be exploited as the
key communication resource to avoid the issues arising with the direct
transmission of data qubits. Indeed, entanglement enables a communi-
cation technique, known as quantum teleportation [4], for transmitting
an unknown qubit without the physical transfer of the particle storing
the qubit, as described in the following.

3.1.2. TeleData primitive

Whenever two qubits are entangled — as for the Bell state |¥*)
given in 3 — they exist in a shared state, such that any action on a
qubit affects instantaneously the other qubit as well, regardless of the
distance [4,58]. This unconventional correlation is exploited by the
quantum teleportation protocol [61], which enables the possibility of
“transmitting” — namely, teleporting — an unknown qubit without the
physical transfer of the particle storing the qubit, by exploiting a pair
of maximally entangled qubits (such as |¥*)) shared between source
and destination (see Fig. 6).

More into details, the source performs a pre-processing, namely, a
Bell State Measurement (BSM) on both the unknown qubit encoding the

4 If the first DQC archetype, i.e., the multi-core one, is analyzed this
consideration still holds, but a conversion — aka quantum transduction as
analyzed in Section 7 — between quantum states may be un-necessary.

Table 1
Quantum teleportation: post processing operations to be performed at the destination
for recovering the original quantum state, stemming from the measurement output.

Measurement Output Decoding operation

00 I
01 X
10 A
11 X followed by Z

information to be transmitted — say |y) — and the entangled qubit.
As represented in the gray box in the figure, the BSM consists of
a CNOT gate — with |y) acting as control and the entangled qubit
acting as target — followed by an Hadamard gate on |y) and, fi-
nally, a measurement of both the qubits. Then, the source transmits
— though classical communications — two classical bits encoding the
measurement outcomes of the BSM. Remarkably, after the BSM, the
source quantum state has been already teleported at the destination.
Nevertheless, the teleported state may have been undergone a phase
and/or a bit-flip, with each flip event occurring individually with a
probability equal to 0.25. Luckily, the measurement of the two qubits
at the source allows the destination — once the measurement outcomes
have been received through a classical communication channel — to
determine whether these flip events occurred. Hence, the destination
performs a post-processing to reconstruct the original state |y), as
detailed in Table 1.

Briefly, pre-sharing a maximally-entangled pair of qubits,” two
nodes can reliably exchange quantum information through the tele-
portation process [63], by overcoming the limitations of direct data
transmissions. Hence, quantum teleportation constitutes the fundamen-
tal communication protocol underlying the communication paradigms
known as TeleData and TeleGate [64], which generalize the
concept of moving quantum states among remote devices in DQC.

To provide concrete insights on the TeleData and TeleGate
concepts, we must first classify qubits within a QPU either as commu-
nication qubits or as data qubits [12]. Specifically, within each quantum
processor, a subset of qubits is reserved for storing entangled states
enabling inter-processor communications. And we refer to these qubits

5 We may observe that direct transmission of qubits is still needed to
distribute entangled states among the network nodes. However and as deeply
clarified in [58], differently from unknown qubits, entangled states can be
repeatedly prepared for facing with losses and/or noise corruptions.

M. Caleffi et al.

Computer Networks 254 (2024) 110672

SOURCE QPU

DESTINATION QPU

Fig. 6. Circuital representation of the quantum teleportation process. The first two wires belong to the source node, whereas the bottom wire belongs to the destination node. A
generic qubit |y) is initially stored at the source, and a Bell state such as |@*) given in 3 must be distributed through a quantum link so that one entangled particle is stored
at the source and the other at the destination. Once the Bell state is available, the teleportation is obtained with some processing on |y) and on the entangled qubit at the
source, followed by two conditional gates on the entangled qubit at the destination, depending on the measurement of the two qubits at the source. Each double line denotes
the transmission of one classical bit - i.e., the measurement output — between the remote processors. The two classical bits are thus used, as detailed in Table 1, for determining
whether the two conditional gates X and Z must be applied to recover the original state |y) from the entangled qubit available at the destination.

as communication qubits [57], to distinguish them from the remaining
qubits within the device devoted to processing/storage, which we refer
either as data or memory qubits as pointed out in Section 2.2. Specif-
ically, at least one qubit at each processor must be a communication
qubit, i.e., a qubit reserved for the generation and distribution of the
entangled state [57]. The more communication qubits are available
within a quantum processor, the more entanglement resources are
available at that processor, with an obvious positive effect on the
achievable entanglement rate [58]. But the more communication qubits
are available, the less data qubits are available for quantum computing.

As instance, let us consider two quantum processors interconnected
via a quantum network as depicted in Fig. 7. Qubits ¢; and g; are
communication qubits and any interaction between the two remote
processors is carried out by exploiting them via either a TeleData
or a TeleGate process.

With a TeleData, quantum information stored within a data qubit
at the first processor - say g, in Fig. 7(a) - is teleported into a commu-
nication qubit - say q(/) in the same figure — of the second processor.
Once the quantum state is teleported in gj, any remote operation —
originally involving ¢, and some data qubits at the second processor
— can be now implemented through local operations as shown with
the last CNQOT in Fig. 7(b). It must be noted, though, that whether the
teleported quantum state should subsequently interact with data qubits
at the first processor, a new teleportation process must be performed
for teleporting the quantum state back to the first processor.

3.1.3. TeleGate primitive

TeleData is not the only available option for implementing re-
mote quantum operations in DQC. Indeed, TeleGate represents an-
other option, which exploits a variation of the teleportation process
to overcome the limitations of direct data transmissions. Specifically,
TeleGate enables a direct gate between remote physical qubits stored
at different processors without the need of moving the data qubits be-
tween the processors, as long as a Bell state such as |@*) is distributed
between the two processors. For the sake of exemplification, let us
assume that a remote CNOT between data qubit ¢, and ¢/ in Fig. 7(a),
with g, acting as control and ¢; as target, must be performed. According
to the TeleGate primitive, this remote CNOT can be implemented
with two local CNOTs between the data and the communication qubit
at each processor, followed by a conditional gate on the data qubit
depending on the measurement of the remote communication qubit,
as shown with the quantum circuit in Fig. 7(c). As a consequence,
TeleGate performs the remote operation mimicking a direct gate —
i.e., as the involved qubits are directly connected on the same processor
- by avoiding to “move” data qubits between the processors.

From a communication resource perspective, TeleData and Tel-
eGate consume the same amount of quantum and classical resources,
namely one EPR pair and the transmission of two classical bits. Yet

the overall performance of the two strategies depends on a range of
factors, including (i) the pattern of remote operations to be executed,
(ii) the characteristics of the network interconnecting the remote quan-
tum processors, and (iii) the ratio between data and communication
qubits [13,58,64].

With reference to the latter factor, a fundamental trade-off arises
[13]. Specifically, each remote operation — regardless whether it is
implemented with a TeleData or a TeleGate - consumes the en-
tangled resource. Consequently, a new Bell state must be distributed
between the remote processors before another remote operation could
be executed. Hence, the more communication qubits are available
within each processor, the more remote operations can be executed
in parallel, reducing the communication overhead induced by the
distributed computation. But the more are the communication qubits,
the less data qubits are available for computing in each processor.

Accordingly to the above reasoning, the selection of the set of
communication qubits is a crucial task for DQC, with profound effects
on the overall performance of the distributed computation as analyzed
in the next sections.

3.1.4. Classical control and communications

It is worthwhile to mention that other communication primitives
required by DQC are the ones provided by the classical network. Specif-
ically, as highlighted above and regardless of the technology and the
qubit archetype, DQC depends on the availability of classical communi-
cation and network functionalities for managing the classical signaling.
As a matter of fact, classical signaling is required by both TeleData
and TeleGate. However, classical signaling is not limited to the 2-bits
required by quantum teleportation: it rather constitutes a requirement
widespread within different DQC tasks, ranging from entanglement
generation through distillation to swapping (discussed in the next
section). And, indeed, it is fairly reasonable to assume these classical
services as provided by existing classical network infrastructures [59,
65].

3.2. Augmented coupling map

From Fig. 7, it may seem that DQC requires a fully-connected
network topology, where each quantum processor must be directly
inter-connected with all the other processors. This would, in turn, imply
that the communication primitives would heavily depend on the avail-
ability of a direct (one-hop) entanglement generation and distribution
architecture. However, the reality is quite the opposite. Specifically,
DQC can exploit a strategy known as entanglement swapping [45], as
summarized in Fig. 8, to implement a remote CNOT between qubits
stored at remote processors, even if the processors are not directly
connected through a quantum link.

M. Caleffi et al.

QuaNTUM NETWORK

QUANTUM PROCESSOR #1

QUANTUM LINK

CrassicaL LINK

Computer Networks 254 (2024) 110672

COMMUNICATION

,_______
N e e e e e e e e e - = = -

QUANTUM PROCESSOR #2

(a) Two quantum processors given in Figure 3 interconnected through a quantum network, composed by a classical and a quantum link.
The classical link is used to transmit classical information, whereas the quantum link is needed for distributing entangled states between
the two remote processors to enable communication functionalities. Indeed, at least one physical qubit at each processor must be reserved
for entanglement generation. This kind of qubits — purple-colored in the figure — are the communication qubits to distinguish them from

the data qubits — white-colored in the figure.

QUANTUM PROCESSOR #1

DATA QUBIT (CONTROL)

COMMUNICATION QUBIT

COMMUNICATION QUBIT

DATA QUBIT (TARGET)

QUANTUM PROCESSOR #2

(b) TeleData. To perform a TeleData between remote processors
— say to move the quantum state |@) stored by data qubit g, in
Figure 7a to communication qubit q(/) —a Bell state such as |®") must
be distributed through the quantum link so that each pair member
is stored within the communication qubit at each processor. Once
|@) is teleported at q(,) (with local quantum operations and classical
transmission), the remote operation — for instance, a CNOT with |¢)
as control and the state stored by qubit q; as target as represented by
the last CNOT in the figure — can be executed through local operations.

QUANTUM PROCESSOR #1

é ‘A @— i DATA QUBIT (CONTROL)
I I
i 95 G E’: i COMMUNICATION QUBIT
)
o I
é a5 E E i COMMUNICATION QUBIT
I !
i q; b E i DATA QUBIT (TARGET)

QUANTUM PROCESSOR #2

(c) TeleGate. A TeleGate enables a direct gate between remote physi-
cal qubits stored at different processors without the need of quantum
state teleportation, as long as a Bell state such as |®") is distributed
through the quantum link. As instance, a remote CNOT between g, and
q; in Figure 7a can be implemented with two local cNoTs between the
data and the communication qubit at each processor, followed by a
conditional gate on the data qubit depending on the measurement of
the remote communication qubit.

Fig. 7. Remote quantum operations through either TeleData or TeleGate. Fig. 7(a) shows the network topology along with the processors coupling maps, whereas Figs. 7(b)
and 7(c) illustrate the quantum circuit detailing the classical (2 bits) and the quantum (the Bell state) resources needed to execute a TeleData and a TeleGate, respectively.

Source: Figure reproduced from [13].

For the sake of exemplification, to distribute a Bell state between
remote processors — say quantum processor #1 and #3 in Fig. 8(a)
— two Bell states must be first distributed so that one Bell state is
shared between the first processor and an intermediate processor/node
— usually referred as quantum repeater [66] — and another Bell state is
shared by the same intermediate node and the second processor. Then,
by performing a BSM on the communication qubits at the intermediate
node - i.e., qubits q(’) and q; in Fig. 8(b) — a Bell state is obtained at the
remote communication qubits ¢; and ¢ in Fig. 8(b) - by applying some
local processing at the remote processors depending on the (classical)
output of the Bell state measurement.

Once remote processors share Bell states, they may operate as they
were neighbors in the physical topology [67], since remote operations
can be promptly performed. In other words, entanglement enables
half-duplex unicast links between any pairs of processors sharing it,
regardless of their relative positions within the underlying physical
network topology, by redefining so the very same concept of topolog-
ical neighborhood, with no counterpart in the classical world [67,68].
As a consequence, the entanglement-enabled connectivity allows to
augment the neighbor set, by creating “additional” links, referred as
artificial quantum links [56,69], toward remote processors.

From the above, it becomes clear that entanglement swapping sig-
nificantly increases the degrees of freedom in performing remote quan-
tum operations, through the artificial quantum links, by enabling a
dynamic coupling map, which includes the physical links as well, as
represented in Fig. 8. The higher is the number of available quantum
processors, the higher is the number of possible artificial links. Indeed,
this number scales linearly with the number of available processors,
when only two communication qubits are available at each intermedi-
ate processor. If this constraint is relaxed, the number of artificial links
via entanglement swapping scales more than linearly.

It must be acknowledged that such an augmented connectivity does
not come for free. Entanglement swapping consumes Bell states at
each intermediate processor. And the longer is the path between the
two processors involved in the remote operation, the higher is the
number of consumed Bell states. The more Bell states are devoted to
entanglement swapping, the less Bell states are available for implement-
ing remote operations between neighbor quantum processors. Hence,
a trade-off between “augmented connectivity” and “EPR cost” arises
with entanglement swapping [13], and the impact of this trade-off on
the overall performance of distributed quantum computing must be
carefully accounted for.

M. Caleffi et al.

QuaNTUM LINK

QUANTUM PROCESSOR #1

QUANTUM PROCESSOR #2

Computer Networks 254 (2024) 110672

QuaNTUM LINK

QUANTUM PROCESSOR #3

VIRTUAL QUANTUM LINK

(a) By swapping the entanglement at an intermediate node — namely, quantum processor #2 — it is possible to distribute a Bell state between
remote processors — namely, processors #1 and #3 — even if they are not directly connected through a quantum link. Hence, entanglement
swapping enhances the quantum processors connectivity through virtual quantum links.

QUANTUM PROCESSOR #1

i 3 @ a3 E
\d?t')‘ _______________________________________ _'
Lo A |
! . |@")
o N—
o {7 -
iq[! [x] al

QUANTUM PROCESSOR #3

(b) Entanglement swapping circuit. A Bell state
can be distributed between remote processors by
swapping the entanglement at an intermediate
node — as instance, processors #2 in Figure 8a —
through local processing and classical communi-
cation.

swapping.

LOCAL CNOT

TIME-CONSTRAINED REMOTE CNOT
< 7
TIME-CONSTRAINED REMOTE CNOT
P N

VIA ENTANGLEMENT SWAPPING'

VIRTUAL QUANTUM PROCESSOR

(c) Dynamic coupling map for the network topology shown in Figure 8a. The solid
purple lines denote remote CNOTs between adjacent processors, whereas the dotted purple
lines denote remote CNOTs between distant processors achievable via entanglement

Fig. 8. Augmented connectivity. Entanglement swapping increases the connectivity between physical qubits, with a number of possible remote CNOTSs that scales at least linearly

with the number of processors.
Source: Figure reproduced from [13].

3.3. More on communication protocols for DQC

From the above subsections, the key role played in DQC by maximally-
entangled qubit pairs is evident. However, entanglement is affected by
decoherence as well. This, in turn, affects the fidelity of the remote
operations. In [70] an extensively review of entanglement purification
protocols and quantum error correction is carried out. Indeed, entangle-
ment purification protocols process entangled states in order to improve
their fidelity. Among these protocols, recurrence entanglement purifi-
cation protocols, process N disjoint entangled pairs through iterative
purification steps, for extracting M < N entangled pairs characterized
by higher fidelity [70]. From a communication perspective such proto-
cols exhibit the advantage of being iterative and they easily adapt to
different input states. However, they introduce additional delay arising
from the need of processing multiple entangled pairs.

Additional communication protocols in DQC concern the entangle-
ment generation and distribution functionalities. In [71] these func-
tionalities are achieved by leveraging two main protocols referred to
as Midpoint Heralding Protocol (MHP) and Quantum Entanglement
Generation Protocol (QEGP). Specifically, the MHP protocol acts in
a time-slotted environment and is responsible of the generation of
entangled pairs at a given time-slot through the activation of dedicated
entanglement generation devices. Furthermore, such protocol is able to
perform different operations on the generated entangled pairs, such as
measurement or storing. Differently, the QEGP protocol is responsible

for managing the entanglement requests through a scheduler. Besides,
it is in charge of carefully addressing some key needs of the entity
exploiting the entanglement such as the quality of the generated states,
the number of the entangled pairs and some specifics of the operations
to be performed, such as the measurement basis. The inter-operation
of the two protocols is achieved through the definition of dedicated
messages to be exchanged between the network entities.

Differently, the so-called entanglement routing protocols aim at the
distribution of entangled pairs between network nodes interconnected
by a multi-hop path of physical links. In this regard several contri-
butions have been provided in literature, each aiming at engineering
the swapping operations, described in the previous subsection, to be
performed at the intermediate nodes in order to optimize some network
metrics such as the entanglement throughput or the fidelity of the
distributed pairs [72-74].

We refer the reader with insights on the challenges related to the
design of network protocols and architecture for DQC in Section 7.

4. Quantum algorithms

There exist several quantum algorithms known or expected to out-
perform classical algorithms for problems spanning different areas,
including cryptography, search and optimization, simulation of quan-
tum systems and learning [75]. Remarkably, most known quantum
algorithms use a combination of algorithmic paradigms - actually,

M. Caleffi et al.

Computer Networks 254 (2024) 110672

lyy) R, R,
lys) H R, R,
ly3)
[Woe1)
[w,,)

(a) Monolithic QFT circuit. The i-th qubit is obtained through an Hadamard gate followed by m—i controlled r,, operations — withR; =P, ;
denoting the phase gate mapping |1) — ¢/27/' |1) while leaving |0) unchanged — with the controlled operations controlled by the m — i

higher-order qubits.

[Wner)

(b) Part of a distributed QFT as shown in [92]. Here, n non-local operations on # qubits are performed using a single shared entangled state.
The control is |,), the targets are |y,), ..., |y,). With respect to Figure 9, a subset of the m qubits is considered (i.e., n + k < m).

Fig. 9. Quantum Fourier Transform (QFT) circuit compilation for DQC.

sub-routines - specific to quantum computing [76]. These paradigms
include the Quantum Fourier Transform (QFT) [77], the Grover Opera-
tor (GO) [78], the Harrow/Hassidim/Lloyd (HHL) method for linear
systems [79], Variational Quantum Algorithms (VQA) [80], and di-
rect Hamiltonian simulation (SIM). A prominent example is Shor’s
algorithm for integer factorization [77], which is based on the QFT,
illustrated by the quantum circuit in Fig. 9.

For most practical applications, quantum algorithms require large
quantum computing resources — in terms of qubit number — much larger
than those available with current noisy intermediate-scale quantum
(NISQ) processors. For example, the IBM Quantum Osprey device has
433 qubits, which is an impressive progress with respect to state-of-
the-art quantum processors, but not yet sufficient, as an example, for
running practical implementations of Shor’s algorithm.®

In the following, we discuss three topics that concern quantum
algorithms in a DQC context. First, we review the state of the art
of description formats for quantum circuits. Second, we discuss the
suitability of certain quantum algorithm to be partitioned. Third, we
focus on execution management.

4.1. Description formats

As illustrated in the box titled Quantum Circuit Model, in the quan-
tum circuit model of computation, quantum states are manipulated by

6 Factoring L = 2048 bit primes — for breaking current RSA implementations
- requires about 3L = 6144 noise-free qubits [46]. It is worth noting that
merely increasing the number of physical qubits is not sufficient, as some sort
of quantum error correction [81] is also required to guarantee high-quality —
namely, noise-free — computations.

10

means of quantum gates. Therefore, quantum algorithms correspond
to sequential layers of quantum operators applied to the quantum
states. Each layer comprises operators that can be executed simulta-
neously. Long time ago, Knill [82] introduced a few conventions for
thinking about and writing quantum pseudocode. Subsequently, several
languages have been proposed to describe quantum algorithms in a
user-friendly and high-level fashion.

Nowadays, the vast majority of Software Development Kits (SDKs)
for quantum algorithm implementation and testing refers to the classi-
cal Python language. Major examples are Qiskit [83] by IBM, Cirq [84]
by Google, and PennyLane [85] by Xanadu.

Python is very convenient to write software that includes not only
quantum circuit descriptions, but also instructions for executing the
quantum programs on simulated or real quantum hardware. Sticking
to circuit description, a few quantum assembly (QASM) languages
have emerged, such as OpenQASM [86,87] and NetQASM [88]. These
languages are characterized by a simple, hardware-agnostic but still
precise syntax for describing atomic gate-level operations. To facilitate
the compilation process, intermediate representations between QASM
and hardware-specific control instructions have been designed, such as
QSSA [89], QIRO [90] and InQuIR [91].

OpenQASM [86] was proposed as an imperative programming lan-
guage for quantum circuits based on earlier QASM dialects. Current
version 3 encompasses a broader set of circuits beyond the language
of qubits and gates, focusing on real-time classical computations that
must be performed within the coherence times of the qubits.

With respect to other QASM languages, NetQASM provides elements
for remote entanglement generation. On the other hand, NetQASM
contains no provision for classical communication with remote nodes.
Synchronization between the NetQASM programs (through classical

M. Caleffi et al.

send/recv primitives) of multiple nodes is the responsibility of the
application programmer.

QSSA [89] is based on static single assignment (SSA), and it models
quantum operations as being side-effect-free. The inputs and outputs
of the operation are in one-to-one correspondence; qubits cannot be
created or destroyed. As a result, QSSA supports a static analysis pass
that verifies no-cloning at compile-time. The quantum circuit is fully
encoded within the def-use chain of the intermediate representation, al-
lowing the compiler developer to leverage existing optimization passes
on SSA representations such as redundancy elimination and dead-code
elimination. In practice, QSSA enables decades of research in compiler
optimizations to be applied to quantum compilation.

QIRO [90] is an intermediate representation for quantum comput-
ing that directly exposes quantum and classical data dependencies for
the purpose of optimization. QIRO consists of two dialects, one input
dialect and one that is specifically tailored to enable quantum—classical
co-optimization. The first dialect employs memory-semantics (quantum
operations act on qubits via side-effects), while the second one uses
value-semantics (operations consume and produce states) to integrate
quantum dataflow in the intermediate representation’s SSA graph. This
allows for a number of optimizations that leverage dataflow analysis.

Last but not least, InQuIR [91] is a DQC-specialized intermediate
representation, allowing the use of classical and quantum communica-
tion instructions between different QPUs. InQulR is provided with a
formal semantics that has enough instructions to describe complicated
behaviors of distributed quantum programs. In particular, it is able
to cope with runtime errors such as qubit memory exhaustion and
deadlock in intercommunication between QPUs.

4.2. Partitioning

A first issue that arises with quantum algorithms is whether a given
algorithm — equivalently, a given quantum circuit - is natively suitable
for distributed execution. More specifically, a perfectly distributable
quantum algorithm is a quantum algorithm that can be split into
autonomous parts that do not interact — or, at least, weakly interact —
with each others. If this is the case, each part can be assigned to some
quantum processor, and each processor can contribute autonomously to
the overall computation without introducing communication overhead
for interacting with other processors.

Unfortunately, many relevant quantum algorithms are characterized
by intricate structures and multi-qubit gates, which move them away
from perfect distributability. As an example, let us consider the QFT
algorithm, whose circuit is given in Fig. 9(a), notably used as sub-
routine in many quantum algorithms - e.g., Shor’s algorithm and the
quantum phase estimation algorithm - as mentioned above. From
Fig. 9(a), it is easy to assess that QFT requires each qubit to strongly
interact with all the other qubits through controlled R,, gates [92].
Hence, QFT cannot be considered as perfectly distributable. A portion
of the compiled QFT circuit, encompassing two QPUs, is illustrated in
Fig. 9(b).

To distribute a monolithic quantum algorithm, a quantum compiler
must be used to find the best breakdown, i.e., the one that minimizes
the number of gates that are applied to qubits stored at different
devices. Quantum compilation is reviewed in Section 5. Here we discuss
some literature that addresses the partitioning of relevant quantum
algorithms, using techniques that are tailored to the specific considered
algorithms rather than general-purpose. These works may represent a
good reference for a comparative evaluation of quantum compilers.

In [93], the authors present two distribution schemes for the quan-
tum phase estimation algorithm, they give the resource requirements for
both and they show that using less noisy shared entangled states results
in a higher overall fidelity. Introduced by Kitaev [94], the quantum
phase estimation algorithm returns an approximation of an eigenvalue
of a given unitary U and a corresponding eigenvector. It has numerous
applications, including Shor’s algorithm [77]. The solution proposed

11

Computer Networks 254 (2024) 110672

in [93] is based on the distributed version of the QFT circuit, obtained
by means of non-local controlled U-gates.”

Another example of distributable quantum algorithm is the Varia-
tional Quantum Eigensolver (VQE), a VQA that can be used to estimate
ground state energies of molecular chemical Hamiltonians. In [65], the
authors provide a Local to Distributed Circuit algorithm that, given a
circuit representation as a series of layers and a mapping of qubits,
searches for any control gates where the control and target are physi-
cally separated between two QPUs. When found, the algorithm inserts,
between the current layer and next layer in the circuit, the neces-
sary steps to perform the control gate in a nonlocal way.® The size
(maximum number of qubits) of the achievable Ansatz state for the
VQE algorithm grows linearly with the number of QPUs, with slope
linearly increasing with the number of qubits per QPU. The depth of
the resulting quantum circuit is £2(n), meaning it has a tight upper and
lower bound proportional to the number n of qubits. An example of a
portion of distributed three-qubits VQA over two QPUs is depicted in
Fig. 10.

In [97], the authors present a distributed adder and a distributed
distance-based classification algorithm. Both applications are framed in
a way where a quantum server and K other quantum nodes interact,
with specific behaviors. In particular, the server is responsible for
orchestrating the computation by means of non-local CNOT gates, while
the K parties provide inputs. It is possible to reframe these applications,
such that the proposed quantum circuits are considered as monolithic
and subsequently split in K + 1 parts to be submitted for execution to
a quantum network.

4.3. Execution management

Another relevant aspect is the execution management of distributed
quantum computations. In general, given a collection P of quantum
circuit instances to be executed, this collection should be partitioned
into non-overlapping subsets P;, such that 7 = u;P;,. One after the
other, each subset will be assigned to the available QPUs. In other
words, for each execution round i, there exists a schedule S(i) that maps
some quantum circuit instances to the quantum network. If DQC is
supported, some quantum circuit instances may be split into sub-circuit
instances, each one to be assigned to a different QPU, as illustrated in
Fig. 11. A QPU scheduling algorithm that partially address this service
was proposed in [11]. Such an algorithm is based on a greedy approach,
trying to fill all available QPUs while minimizing the number of dis-
tributed quantum circuit instances. Here the partitioning of quantum
circuit instances is arbitrary, not taking into account the features of
the programs. Recalling Section 4.1, we stress that partitioning should
be an orthogonal service with respect to QPU scheduling.

It is reasonable to assume that the QPU scheduling plane should be
separated from the networking plane, because of the separation of con-
cerns principle. This means that entanglement routing must be provided
by the network infrastructure to support the execution of the DQC jobs,
whose allocation to the QPUs is decided previously. We demand that
any subset of the available QPUs can be the target of any quantum
computation, provided that the total number of physical qubits fits the
circuit width. This means that the underlying network should allow to
create entangled quantum states across any two QPUs. Technical details
on entanglement distribution were discussed in Section 3. Here we
recall a recent work [98], which investigates the requirements and ob-
jectives of DQC from the perspective of quantum network provisioning.
In particular, the authors elaborate on two different classes of traffic,
namely constant-rate flows and DQC applications. More recently, the

7 Non-local controlled U-gate generalizes the TeleGate operation discussed
in Section 3.1 to arbitrary unitary U [95].

8 By using the cat-entangling method by Yimsiriwattana et al. [96], which
is substantially equivalent to TeleGate introduced in Section 3.1.

M. Caleffi et al.

Computer Networks 254 (2024) 110672

&)

(b) 3-qubit variational form distributed across two devices.

Fig. 10. Variational Quantum Algorithm (VQA) circuit compilation for DQC.

k7

QPUy

+1

~.

%PUI] [%PUZ o

0.1

i

Fig. 11. Execution of multiple quantum circuit instances with k QPUs. For each
execution round i, a schedule S(i) maps some quantum circuit instances to the quantum
network, with each QPU receiving a quantum circuit P,’ that is either a monolithic
one or a sub-circuit of a monolithic one. The classical outputs are accumulated into an
output vector O.

same authors investigated the issue of service differentiation in the DQC
environment [99]. They defined the problem of how to select which
computation nodes should participate in each pool, so as to achieve a
fair share of the quantum network resources available.

Recently, two frameworks with similar names have been proposed
almost at the same time, namely Quantum Network Utility Maxi-
mization (QNUM) [100] and Quantum Network Utility (UQN) [101].
While QNUM is specifically tailored to the evaluation of entanglement
routing schemes in quantum networks (see Section 3 for details about
entanglement), U,y is more abstract, aiming to capture the social
and economic value of quantum networks, for a variety of applica-
tions (from secure communications to distributed sensing). Incidentally,
in [101] the example of DQC is studied in detail, through the lens of
Ugn - More specifically, a quantum network utility metric is presented,
which applies the Quantum Volume® proposed in [102] to the Uyy

9 Quantum Volume (QV) is a single-number metric that can be measured
using a concrete protocol on near-term quantum computers of modest size. The
QV method quantifies the largest random circuit of equal width and depth that
the quantum processor successfully executes.

12

framework. Such a metric quantifies the value derived from performing
QC tasks, and it is viewed as a “quantum volume throughput”. It
differs from the quantum volume in two ways: (i) it explicitly considers
the rate at which non-local operations can be performed, and (ii) it
accounts for the utility derived simultaneously from tasks executed on
different parts of the network.

In a recent work [16], the authors observed that DQC execution
management deals with the parallel job scheduling problem, a widely
investigated optimization problem in which a set of jobs of varying
processing times need to be scheduled on multiple machines while
trying to minimize the makespan, i.e., the length of the schedule. Each
job has a processing time (in the DQC domain, it can be approximated
with the number of layers of computations of the distributed circuit),
and requires the simultaneous use of multiple machines. In general, the
problem is NP-hard. In [16], two novel metrics are introduced, to the
purpose of evaluating QPU utilization and quantum network utilization
with different parallel job scheduling strategies. Using two well-known
parallel job scheduling algorithms — namely, FIFO and List-Scheduling
— it is demonstrated that high QPU utilization may involve also high
quantum network utilization. In a classical computing setting, optimal
makespan and full resource utilization would be highly appreciated. In
DQC, the story is quite different. Indeed, makespan optimality needs
highly effective and efficient entanglement routing between QPUs, in
order to guarantee timely execution of non-local gates that are all
concentrated in a short time frame. The conclusion is that searching for
a reasonable tradeoff between QPU utilization and quantum network
utilization is crucial.

5. Quantum compiling

For quantum devices characterized by constrained connectivity
among qubits, the monolithic execution of a quantum algorithm on a
single quantum processor requires a circuit pre-processing known as
quantum compiling [13,15,103-105]. Specifically, compiling a quantum
circuit is a two-step'® process where:

(i) each logical qubit of the quantum circuit must be mapped onto
one (or more, when adopting fault-tolerant techniques [106])
physical qubit of the quantum processor, and

10 With the two steps being inter-dependent, affecting each others.

M. Caleffi et al.

) 4@ 9 I
9 — 9 4 —D :I:
23 —q > Gig —4
a5 Y q, ' q . N oY
R Z 1 3 R Z
s b— qy "4y D—

Fig. 12. Pictorial representation of quantum compiling. The circuit on the left is
translated into the circuit on the right, in order to cope with the coupling map provided
in Fig. 3. Within the rightest figure, the g, with purple font denotes the physical qubits
assigned to the logical qubits ¢; with black font. The SWAP gate — represented by two
% symbols interconnected by a vertical line — introduced between logical qubits ¢, and
g, swaps their quantum states, so that the last CNOT gate can be applied between two
neighbor physical qubits.

(ii) each two-qubit gate — as instance, a CNOT - between physical
qubits non-adjacent within the coupling map must be mapped
into a computational-equivalent sequence of gates between ad-
jacent physical qubits, as exemplified in Fig. 12.

The overall process must be optimized to account for the key perfor-
mance metrics affecting quantum computation [107-109]. Typically,
this consists in minimizing the depth of the compiled circuit, namely,
the equivalent quantum circuit satisfying all the constraints imposed
by the quantum processor coupling map.

An example of quantum compilation is provided with Fig. 12,
where the original quantum circuit is translated into the compiled one
to account for the coupling characteristics of the quantum processor
shown in Fig. 3. Indeed, as long as the hardware provides a universal
set of operations, there exists a feasible transformation.

Compilers are well-established in NISQ architectures, because of
their role as intermediary between the user and the hardware. Specif-
ically, in designing a quantum algorithm using the quantum circuit
formalism, the designer is generally focused on expressing the com-
putation required by the algorithm with a circuit that minimizes the
number of utilized qubits and gates, regardless from the particulars
of the quantum hardware that will execute the circuit. This abstract
circuit is then mapped to a circuit to be executed on a specific quantum
hardware by means of a suitable compiler. Introducing such an abstract
circuit has two main advantages: (i) the user can focus on the logic of
the circuit, namely, on the essence of the quantum algorithm, without
caring too much about the hardware constraints, and (ii) the designed
quantum circuit is portable, in theory, to any quantum back-end.

Intuitively, a circuit transformation may introduce some overhead,
in terms of number of operations and noise. In DQC architectures, there
is also a non-negligible communication cost, as discussed in Section 3.
Therefore, the compiler faces an optimization problem, i.e., finding a
feasible transformation while minimizing the overhead. In general, this
problem is known to be NP-hard [103,110], even for the case of a single
processor.

A fundamental issue in quantum compiling is related to qubit con-
nectivity. From the perspective of the quantum algorithm designer, any
qubit is assumed to be directly connected with any other qubit. i.e., any
two-qubit gate can be placed across any qubit pair. However, even on
a single quantum processor as introduced in the Intra-chip connectivity
box, the actual connectivity degree is usually low, to mitigate the noise
caused by cross-talking phenomena [111]. Qubit routing refers to the
task of modifying quantum circuits so that they satisfy the connectivity
constraints of a target quantum computer. This involves inserting SWAP
gates into the circuit so that the logical gates only ever occur between
adjacent physical qubits. Of course, the number of SWAP gates should
be minimized, in order keep the circuit depth reasonably small. The
problem gets harder when considering distributed quantum processors,
where the connectivity degree of the physical qubits can be even lower.

13

Computer Networks 254 (2024) 110672

For DQC to be effective and efficient, the quantum compiler must
perform some preliminary ebit optimization (such as the one illustrated
in Fig. 13), then find the best split for the abstract circuit, i.e., the split
that minimizes the overall communication cost required to execute the
distributed circuit. At the same time, the quantum compiler must find
the best local transformation for each piece of computation.

From the above, it should be clear that designing an efficient
compiler is a tough task. Because of this, a plethora of proposals to
tackle the problem emerges from the literature. In future work, some
of them may be combined to more sophisticated compilers. This already
happened for local computing. For example, the quantum compiler
from the IBM Q framework [112] has several layers of optimization,
each tackling the problem from different perspectives.

Most quantum compilers for DQC are characterized by two funda-
mental steps, namely qubit assignment and non-local gate handling. In the
following, we present these two compilation steps, with reference to the
most relevant literature. In Table 2, we compare some prominent DQC-
oriented quantum compiling strategies. To this purpose, we consider
the programming language, the supported network topologies, the
qubit assignment strategy, the non-local gate handling strategy, and the
availability of an open source release of the software.

In the remainder of the section, we first present some of the most
representative strategies for qubit assignment and non-local gate han-
dling. Then, we discuss some open issues.

5.1. Hardware matching

A fundamental step in every quantum compiler is translating general-
purpose quantum gates instructions into instructions specific to the
underlying quantum hardware. This translation can go down to the
level of analog signals for the control hardware [125-127] or remain
at the same abstraction level of the input instructions albeit using the
specific gate set supported by the target quantum computer. In this
section, we focus on the latter compilation case, which is commonly
denoted as transpiling.

Depending on the technology used to manufacture a quantum com-
puter, the set of natively supported gates that can be executed varies.
Even inside the same “family” of quantum devices, the native gate set
may vary. This is the case, for example, of superconducting qubits.
Among IBM quantum computers, there are three types of superconduct-
ing devices, each supporting a different flavor of single-qubit rotations
and two-qubit gates. Furthermore, Google’s superconducting devices
have a different gate set. Regarding ions trap devices, the native two-
qubit gate is the RXX gate, meaning that a CNOT must be decomposed
into multiple single qubit rotations and an RXX gate [128]. Finally, in
NV centers [88], the only two-qubit gate available is the CNOT, and it
can only be applied between the central electron and the surrounding
carbon atoms.

To support different flavors of native gate sets, the compiler usually
employs a collection of decomposition rules to translate each non native
gate into a sequence of native gates. This procedure usually produces
a more complex circuit than the input one. Therefore, other circuit
optimization techniques may be adopted to reduce the number of native
gates used and the depth of the circuit.

5.2. Qubit assignment

An abstract circuit is composed by logical qubits, while a quantum
processor is equipped with a register of physical qubits. An assign-
ment, in its most basic form, is a one-to-one mapping between logical
and physical qubits.!! Whether it is better to tackle it dynamically —

11 One can also consider fault-tolerant mappings, where more than one
physical qubit encode a single logical qubit. However,we consider this as side
work, out from the scope of this survey for the sake of simplicity.

M. Caleffi et al.

Computer Networks 254 (2024) 110672

A
U
N
N
N N
N N>
TR\
N~

A
N
V)
= N
fan
N
Fan
V%

Fig. 13. Example of ebit optimization: the left part of the equivalence can be optimized to the right one, which reduces the number of non-local gates.

Table 2

Comparison of DQC-oriented quantum compiling strategies. Some strategies find the best partition of the input monolithic quantum circuit in
a completely network-agnostic fashion. Some strategies are purely theoretical, not supported by a software implementation.

Compiler Language Network Topologies Qubit Assignment Non-local Gate Handling Open Source
[113] Haskell hypergraph minimum k-cut TeleGate and TeleData YES
[114] unknown hypergraph minimum k-cut TeleGate NO
[115] unknown any Tabu search TeleGate and TeleData NO
[116] MATLAB / heuristic TeleData NO
[117] MATLAB / dynamic programming TeleData NO
[15] Python any minimum k-cut TeleGate and TeleData NO
[118] C++ and CPLEX n.a. minimum k-cut TeleGate and TeleData NO
[13] Python LLN sorting TeleGate and TeleData NO
[119] pseudo-code any integer linear programming TeleGate /
[120] MATLAB n.a. genetic alg. TeleData NO
[121] / any sorting TeleData /
[122] / hypercube sorting TeleData /
[123] Python any minimum k-cut TeleGate YES
[124] Python any reinforcement learning TeleGate and TeleData YES
(C D where the first step is quantum assignment. Circuits are represented
a / as edge-weighted graphs with qubits as vertices. The edge weights
- A /v correspond to an estimation for the number of cat-entanglements®. The
U 2 problem is then solved as a minimum k-cut, where partitions have
C > C } x roughly the same size. In [115], the same authors extend their ap-
\ roach to the case of an arbitrary-topology network of heterogeneous
Yy P ry-topology g
a4 .
\ quantum computers by means of a Tabu search algorithm. In [116], the

-

Fig. 14. Toy example of qubit assignment. Once the logical qubits composing the
quantum circuit have been assigned to the different QPUs, the CNOTs between remote
qubits — highlighted in violet — becomes non-local.

changing the assignment while computing — or statically — defining the
assignment at the beginning and keeping it for the whole execution of
the computation — is an open problem, which also depends on whether
the partition between communication qubits and computing qubits is
static or dynamic.

In DQC, qubit assignment is a general-purpose approach to the
partitioning problem, introduced in Section 4.2. Specifically, for a
given set of logical qubits, we need choose a partition that maps sub-
sets of logical qubits to processors, while minimizing the number of
required interactions among different sub-sets, as shown in Fig. 14.Sev-
eral authors investigate this research direction [13,15,113-115]. The
reader will find in these works different proposals to address the
qubit assignment problem. Not all the papers match in the minimum
assumptions for the technology. Specifically, as described in Section 5,
we are at a stage where one need to make predictions on the most
likely DQC architecture that will run in the next future. If one assumes
any connectivity, the resulting model is general-purpose, but it is also
hard to tackle. Restricting the connectivity to one that satisfies some
properties makes the model less general, but a good set of assumptions
in this direction may shape future implementations as well. Currently,
the preferred line is to keep connectivity general [115].

The authors in [113] propose to encode a logical circuit as an
hypergraph. An hyperedge represents one ebit — i.e., one EPR shared
between QPUs — which allows for a TeleGate to be performed. Qubit
assignment works by minimizing the number of cuts, as each cut cor-
responds to an ebit. In [114], the authors present a two-step solution,

14

circuit becomes an undirected graph with qubits as vertices, while edge
weights correspond to the number of two-qubit gates between them.
In [117], the authors represent circuits as bipartite graphs with two
sets of vertices — one set for the qubits and one for the gates — and
edges to encode dependencies of qubits and gates. Then for the qubit
assignment problem, they propose a partitioning algorithm via dynamic
programming to minimize the number of TeleData operations. In [15],
the authors devise a two step process for the qubit assignment. First,
the circuit is translated into a weighted graph and partitioned, using
an efficient k-way graph partitioning algorithm, into k (where k equals
the number of available QPUs) partitions of roughly equal size. Finally,
the authors employ an heuristic algorithm to improve over this initial
solution, as equal partitions may not be optimal.

When qubit assignment is dynamic, new challenges — as well as
new possibilities — arise. In [118] the authors propose a minimum k-
cut partitioning algorithm formulated as an ILP optimization problem,
to minimize the number of remote interactions. They use a moving
window and apply the partitioning algorithm to small sections of the
circuit, thus the partition may change with the moving window by
means of TeleData operations. In [13], the authors consider the worst-
case scenario of QPUs interconnected through an LNN topology.'?
Rather than focusing on the number of remote interactions, they design
a sorting algorithm to reduce the depth overhead induced by such
time consuming operations. The authors show that the overhead is
upper-bounded by a factor that grows linearly with the number of

12 The Linear Nearest Neighbor (LNN) topology [129] consists of processors
arranged in a single line — namely, in a 1-dimensional lattice — where each
processor is interconnected with two neighbors. In the worst-case scenario
— namely, the most challenging one - each QPU is equipped with a single
computational qubit, and only neighboring qubits can interact each others.

M. Caleffi et al.

qubits. In [119], the authors model the compilation problem with an
Integer Linear Programming formulation. The formulation is inspired
to the vast theory on dynamic network problems. Authors managed to
define the problem as a special case of quickest multi-commodity flow.
Such a result allows to perform optimization by means of techniques
coming from the literature, such as a time-expanded representation of
the distributed architecture.

5.3. Remote operations optimization

As described in Section 3, assumptions on the architectures not only
concern connectivity. Predicting the best kind of remote interactions
is of critical importance as well. In this sense, the general agreement
is that the generation and distribution of entangled states is a fun-
damental resource to be used sparingly. Indeed, a common goal in
the literature is to minimize the number of consumed ebits, as it is
the main bottleneck to distributed quantum computation. To this aim,
qubit assignment discussed above represents a starting point for further
optimization steps, which now concern circuit manipulation.

As described in Section 3, there are two main approaches for
implementing non-local gates, namely TeleData and TeleGate.

The TeleData approach is considered, for example, in [116,117,120—
122]. In [121], the authors prove that the quantum circuit model, the
quantum parallel RAM model, and the DQC model are equivalent up
to polylogarithmic depth overhead. Other than this major result, they
provide an algorithm for emulating circuits on any network graph.
In [122], the authors focuses on n-qubit cyclic butterfly networks (a
special case of hypercubic network) and proves that there is a sequence
of local gates with depth 61logn such that the qubit at node « is sent to
node z(a) for all @ = 1,...,n and any permutation = : [1,n] — [l,n].
In other words, the butterfly network can implement any quantum
algorithm with an overhead of 6logn. Such a network topology is
suitable for multi-chip quantum devices or small controlled networks.
In medium-scale or global networks, it is hard to implement such a
constrained architecture. In [116], the authors propose a method to
minimize the number of quantum teleportations between DQC parti-
tions. The main idea is to turn the monolithic quantum circuit into an
undirected weighted graph, where the weight of each edge represents
the number of gates involving a specific pair of qubits for execution.
Then, the graph is partitioned using the Kernighan-Lin (K-L) algorithm
for VLSI design [130], so that the number of edges between partitions
is minimized. Finally, each graph partition is converted to a quantum
circuit. In [117], the authors propose an algorithm for minimizing
teleportations consisting of two steps: first, the quantum circuit is con-
verted into a bipartite graph model, and then a dynamic programming
approach (DP) is used to partition the model into low-capacity quantum
circuits. Finally, in [120], the authors propose a heuristic approach to
replace the equivalent circuits in the initial quantum circuit. Then, they
use a genetic algorithm to partition the placement of qubits so that the
number of teleportations could be optimized for the communications
of a DQC.

Conversely, the TeleGate direction is pursued, for example, in [15,
113,114,119,123]. In [113], the authors use cat-entanglement® to im-
plement non-local quantum gates. The chosen gate set contains every
one-qubit gate and a single two-qubit gate, namely the CZ gate (i.e., the
controlled version of the Z gate). The authors consider no restriction on
the ebit connectivity between QPUs. Then, they reduce the problem of
distributing a circuit across multiple QPUs to hypergraph partitioning.
The proposed approach is evaluated against five quantum circuits, in-
cluding QFT. The proposed solution has some drawbacks, in particular
that there is no way to customize the number of communication qubits
of each QPU. As previously mentioned, in [114], a two-step quantum
compiling approach is introduced. The first step is qubit assignment,
while the second step is finding the smallest set of cat-entanglement
operations that will enable the execution of all TeleGates. The authors
state that, in a special setting, this problem can be reduced to a

15

Computer Networks 254 (2024) 110672

vertex-cover problem, allowing for a polynomial-time optimal solution
based on integer linear programming. They also provide a O(log n)-
approximate solution, where n is the total number of global gates,
for a generalized setting by means of greedy search algorithm. Also
the aforementioned work in [119] adopts the TeleGate approach. The
authors of [15] use an heuristic approach where the compiler can
be set to use only TeleGates or TeleGates and TeleDatas. The results
show that the best choice is highly dependent on the type of circuit.
The authors in [123] focus on the concept of gate embedding, which
make it possible to use the same EPR pair for multiple TeleGates.
The authors combine this embedding techniques with different qubit
assignment and non-local gate handling techniques from the literature
to provide a flexible compilation workflow for heterogeneous quantum
networks. Finally, in [124] the authors proposes an MDP formulation
that models non-local gate optimization and local compilation on each
QPU. Given the prohibitive complexity of such a model, they propose
a relaxation of the MDP formulation and tackle the problem with
a reinforcement learning approach. The authors show that the RL
approach performs well with small random circuits and could be scaled
up to bigger circuits by sacrificing some degree of optimality for the
solution. Besides [15], this is the only other work considering local
compilation.

6. Simulation tools

To support the research community in the design and evaluation
of quantum computing and quantum network technologies — including
hardware, protocols and applications — many simulation tools have
been developed recently.

Simulations are very important for several reasons. First of all, they
allow for defining hardware requirements using a top-down approach,
i.e., starting from applications and protocols. In this way, hardware
design is driven by high-level KPIs (key performance indicators), rather
than proceeding by trial and error. Another advantage of simulations
is related to network sizing. Given the number of potential users and
the number of available quantum processors, simulation allows for
devising and evaluating different network topologies and entanglement
routing schemes, which results in saving time and money. Regarding
DQC, simulation plays a crucial role for establishing the correctness of
the compiled distributed quantum programs, and evaluating the qual-
ity of their execution against different hardware platforms, network
configurations and scheduling algorithms.

In Table 3, we compare some prominent simulation tools that, in
our view, can be used for designing and evaluating DQC systems. We
propose to classify each tool as belonging to one of three possible
classes: (i) hardware-oriented (HW), (ii) protocol-oriented (PR), and
(iii) application-oriented (AP). In the remainder of the section, we first
present each class with some of the most representative simulation
tools.

6.1. Hardware-oriented

We denote as HW simulation tools those that allow the user to
model the physical entities with the desired degree of detail, in-
cluding noise models. Prominent examples are SQUANCH [131] and
NetSquid [132], discussed in the following. Regarding DQC, we note
that HW simulation tools are useful for evaluating the impact of
different hardware technologies (including noise models) on the quality
of the distributed program execution.

The Simulator for Quantum Networks and Channels (SQUANCH) [131]
is an open-source Python framework for creating parallelized sim-
ulations of distributed quantum information processing. Despite the
framework includes many features of a general-purpose quantum com-
puting simulator, it is optimized specifically for simulating quantum
networks. It includes functionality to allow users to design complex
multi-party quantum networks, extensible classes for modeling noisy

M. Caleffi et al.

Computer Networks 254 (2024) 110672

Table 3

Comparison of simulation tools that can be used for designing and evaluating DQC systems.

Simulation Tool Language Multiprocessing Multithreading Noise Models Open Source Class
SQUANCH [131] Python NO NO YES YES HW
NetSquid [132] Python NO NO YES NO HW
SimulaQron [133] Python YES NO NO YES PR
SeQUeNCe [134] C++/Python YES NO YES YES PR
QuiSP [135] C++ NO NO YES YES PR
QuNetSim [136] Python NO YES NO YES PR
NetQASM SDK [88] C++/Python NO YES YES YES AP
QNE-ADK [137] C++/Python NO NO YES NO AP

quantum channels, and a multiprocessed NumPy backend for perfor-
mant simulations. The core modules are QSystem, representing a
multi-body quantum system as a density matrix in the computational
basis, and QStream, which is an iterable ensemble of separable N-
qubit QSystems optimized for cache locality. By default QStream state
is stored in a shared memory as a C-type array of doubles, which is
type-casted as a 3D array of np.complex64 values. During simulations,
Agents run in parallel from separate processes, synchronizing clocks
and passing information between each other through Channels. There
is no explicit concurrency safety when a QSystem is modified by mul-
tiple agents, as sending and receiving Qubits are blocking operations
that allow for naturally safe parallelism. However, the scalability of
this simulation tool is hindered by the lack of support for distributed
multiprocessing, as all the processes must run on the same machine.
The source code is not maintained since 2018.

NetSquid [132] is one of the most advanced platforms for simulating
quantum networking and modular computing systems subject to physi-
cal non-idealities. It ranges from the physical layer and its control plane
up to the application level. This is achieved by integrating several key
technologies: a discrete-event simulation engine, a specialized quan-
tum computing library, a modular framework for modeling quantum
hardware devices, and an asynchronous programming framework for
describing quantum protocols. NetSquid has been used for different
purposes, such as the evaluation of a benchmarking procedure for
quantum protocols [138], the evaluation of end-to-end entanglement
generation strategies in terms of capacity bounds and impact on Quan-
tum Key Distribution (QKD) [139,140], and the performance evaluation
of request scheduling algorithms for quantum networks [141].

6.2. Protocol-oriented

In the proposed classification, PR simulation tools are mostly de-
voted to the design and evaluation of general-purpose quantum pro-
tocols, — such as quantum state teleportation, quantum leader election,
etc. [142] — with the possibility to model hardware-agnostic networked
quantum processors, with very limited (if not missing) support for noise
modeling. Relevant examples are SimulaQron [133], SeQUeNCe [134],
QuiSP [135] and QuNetSim [136]. Regarding DQC, PR simulation tools
are useful for evaluating the impact of different compiling and execu-
tion management strategies on the quality of the distributed program
execution, in (almost) ideal conditions.

SimulaQron [133] is a tool for developing distributed software that
runs on real or simulated classical and quantum end-nodes, connected
by classical and quantum links. SimulaQron spawns three stacked
processes per network node: the lowest one for wrapping a simulated
quantum registry, based on an hardware-specific third-party simulator;
the intermediate process exposing simulated qubits that map 1-to —1
to those of the quantum registry; the upper process providing virtual
qubits that are manipulated within a platform-independent application.
For example, if two virtual qubits belonging to different processes, run-
ning on physically-separated servers, are manipulated in order to share
an entangled state (let say, a Bell state), the corresponding simulated
qubits (and quantum register ones) are both stored in the memory of

one server, in order to make it possible to simulate measurements in a
consistent fashion. This process-oriented approach makes SimulaQron
quite scalable and able to leverage multicore server architecture in
order to speed up the execution of the simulations. However, Simu-
laQron does not come with noise model support, thus preventing the
simulation of quantum protocols over non-ideal networks.

SeQUeNCe [134] is an open-source discrete-event quantum net-
work simulator, whose latest release fully supports parallel simulation.
The authors designed and developed a quantum state manager (QSM)
that maintains shared quantum information distributed across multiple
processes, and also optimized their parallel code by minimizing the
overhead of the QSM and by decreasing the amount of synchronization
among processes.

QuiSP [135] is an event-driven Quantum Internet simulation pack-
age. QuiSP is built on top of the OMNeT++ discrete event simulation
framework. Compared to the simulators discussed so far, many of which
focus on physically realistic simulation of a single small network, QuiSP
is oriented to protocol design for complex, heterogeneous networks at
large scale while keeping the physical layer as realistic as possible.
Emphasis has been placed on realistic noise models. The declared long-
term goal for the simulator is to be able to handle an internetwork
with 100 networks of 100 nodes each. To simulate quantum networks
at the cost of only a few classical bits per qubit, QuiSP works in the
error basis, i.e., tracking only errors, not states. The premise is that
the desired quantum state is known and only deviations from this
ideal state must be tracked. This is a novel approach for simulating
quantum networks, adapted from quantum error correction [143]. The
performance of QuISP was investigated in terms of events processed per
second and the duration of CPU time taken to generate one end-to-end
Bell pair, using the Docker environment that QuISP provides. It was
shown in [135] that the average CPU time (in seconds) per end-to-end
Bell pair generated grows no worse than polynomially in the number of
quantum repeaters. Increasing the number of repeaters results in longer
simulation time in the scaling, as expected. It also emerged that QuISP
might have some kind of unintended overhead which scales linearly
on the number of buffer qubits, which the authors expect to fix in a
near-term release [135].

QuNetSim [136] implements a layered model of network compo-
nent objects inspired by the OSI model. In particular, application,
transport, and network layers are considered. QuNetSim does not ex-
plicitly incorporate features of the link and physical layers. Indeed,
QuNetSim relies on open-source qubit simulators that are used to
simulate the physical qubits in the network, namely SimulaQron [133],
ProjectQ [144] and EQSN [145] (the latter one being the default
backend, as it was developed by the QuNetSim team). In QuNetSim,
network nodes can run both classical and quantum applications. The
transport layer component prepares classical packets, encodes qubits
for superdense message transmission, handles the generation of the
two correction bits for quantum state teleportation, etc. The network
layer component can route classical and quantum information using
two internal network graphs and two different routing algorithms.
The network component objects are implemented using threading and
observing queues. Extensive use of threading allows each task to wait

16

M. Caleffi et al.

without blocking the main program thread, which simulates the be-
havior of sending information and waiting for an acknowledgment, or
expecting information to arrive for some period of time from another
host. QuNetSim works well for small scale simulations using five to ten
hosts that are separated by a small number of hops, while it tends to
reach its limits when many entangled qubits are being generated across
the network with many parallel operations.

6.3. Application-oriented

The third class is devoted to AP simulation tools, which are tailored
to the design and implementation of quantum network applications.
Usually, these tools rely on simulated backends offered by other pack-
ages that are not directly accessible to the user — for example, NetQASM
SDK [88] relying on NetSquid [132]. Regarding DQC, AP simulation
tools are useful for quickly assessing the quality of quantum circuit
splits produced by quantum compilers. The execution management
scheme (i.e., job scheduling, entanglement routing, etc.) is hidden to
the user, which is at most allowed to specify the network topology
(from a short list of preconfigured networks) and the values of a few
parameters characterizing the hardware of the quantum processors.

The process of setting up a simulation requires strong expertise in
the simulator itself, thus being inconvenient for those who are only
interested in quantum protocol evaluation or in the design of support-
ing tools such as quantum compilers. Recently, Ferrari et al. [146]
presented a software tool, denoted as DQC Executor, that accepts as
input the description of the network and the code of the algorithm,
and then executes the simulation by automatically constructing the net-
work topology and mapping the computation onto it, in a framework-
agnostic way and transparently to the user. The tool is in its early
stages and currently supports automatic deployment of distributed
quantum algorithms to the NetSquid [132] simulator. The description
of the network is provided by the user in a specific YAML format. The
distributed algorithm, instead, is defined with the OpenQASM [147]
language.

NetQASM SDK [88] is a high-level software development kit, in
Python, whose purpose is to make easier to write quantum network
applications, to simulate them through NetSquid [132] or SimulaQron
[133], and (expected in the near future) to execute them on real
hardware. Indeed, the quantum programs developed with NetQASM
SDK are translated into low-level programs based on the NetQASM
language.

The Quantum Network Explorer Application Development Kit (QNE-
ADK) [137] allows the user to create applications and experiments and
run them on a simulator. When configuring an application, the user
specifies the different roles and what types of inputs the application
uses. In addition, the user writes the functionality of the application
using the NetQASM SDK [88]. When configuring an experiment, the
user can give values to the inputs that were specified when creating
the application. The user also chooses which channels and nodes are
used in the network and which role is linked to which node. Once
configured, the experiment is parsed and sent to the NetSquid simu-
lator [132]. QNE-ADK is particularly useful when the application code
developed with NetQASM SDK is provided to the user, whose only duty
is to configure and perform experiments. Indeed, using the execution
environment is straightforward. There is also a visual interface that
further simplifies the experiment configuration.

7. Open issues and research directions

In this section we discuss the open issues and research directions
related to DQC, by focusing on the four pillars around which this survey
is organized on.

17

Computer Networks 254 (2024) 110672
7.1. Quantum networking

The open issues and research direction for the quantum networking
pillar are first discussed around the three DQC archetypes presented in
Section 2, as depicted in Fig. 15. Then, issues and directions crossing a
single archetype are gathered at the end of the subsection.

7.1.1. Multi-core quantum architectures

In this type of DQC architecture, the physical distance between
remote qubits is very short. Hence, it is reasonable to assume that the
underlying communication infrastructure exploits short-range commu-
nication links, such as micro-wave links in case of superconducting
computing technology. The network topology is likely static, so that
only simple quantum network functionalities are required. Quantum
decoherence must be carefully accounted for, so that the decoherence
time can be used as overall key metric. Local operations between
qubits within a single processor must be complemented by remote
operations between qubits placed at different processors. The trade-off
between qubits devoted to computation and entangled qubits devoted
to communication represents a fundamental issue with no counterpart
in classical distributed computing. The very challenging task of design-
ing distributed quantum algorithms must explicitly take such trade-off —
as well as the delay induced by remote operations — into consideration.

7.1.2. Multi-computer quantum architectures

In this type of DQC architecture, as said, the computation is per-
formed collectively by multiple quantum computers located within
the same farm. Hence, entanglement distribution still benefits from a
tightly controlled environment — reasonable to assume available within
a single quantum farm - and the relatively short distances. For the
sake of exemplification, the communication infrastructure can still be
composed by cold microwave links [148] for superconducting-based
qubit technology, although optical links would greatly simplify the
hardware requirements albeit at the price of significant technological
advances in the microwave-optical conversion.

More into details, an interface — aka quantum transducer — between
the processing unit and the inter-computer communication infrastruc-
ture is eventually needed, but it represents still an open problem.
For instance, super-conducting technologies demand for the so-called
matter-flying interface [4,149], namely, a device able to convert a qubit
belonging to the QPU to a qubit suitable for the transmission over a
quantum physical channel [149-151]. In multi-computer architectures,
such an interface represents a technology challenge which comprises
the major complexity source from a networking perspective.

Delay imposed by classical and quantum communication times is
slightly longer, when compared to Multi-Core architectures. Hence,
more sophisticated timing and synchronization functionalities are re-
quired. The network topology becomes more complex, and it may
present some sort of temporal dynamics as the number of intercon-
nected quantum computers might change in time. This, in turn, induces
network functionalities dynamics that must be carefully taken into
account. The problem of remote operations compiling — and, hence, the
trade-off between computational and communication qubits — becomes
even more intricate. Finally, in this type of architecture, the execution
management problem discussed in Section 4.3, arises, with multiple
users performing concurrent access to the resources.

7.1.3. Multi-farm quantum architectures

This last archetype for DQC architectures involves interconnecting
multiple geographically-distributed quantum farms. Two are the key
challenges here. First, as mentioned in Section 2, there exists a likely
spread heterogeneity, which requires significant efforts in terms of stan-
dardization and interoperability [57]. Furthermore, the heterogeneity
among quantum links — e.g., optical vs terrestrial free-space vs satellite
free-space — will arise. And efficient quantum transducers are now
mandatory [4,149,151].

M. Caleffi et al.

Archetype 1

Computer Networks 254 (2024) 110672

DQC ARCHETYPES
Archetype 3

Archetype 2

Scale computer

Interconnecti ng processors
Hardware absent or

o derat

Heterogeneity Y

Communication
Infrastructure

single quantum

multiple quantum

quantum

farm global

multiple
quantum computers

multiple
quantum farms

possible

Fig. 15. Networking challenges for distributed quantum computing. It is reasonable to assume that the underlying hardware complexity scales proportional with the three DQC
archetypes in terms of: (i) extension of the communication infrastructure, (ii) number of interconnected quantum devices, (iii) and hardware heterogeneity among the quantum

devices.

The delays induced by the distances introduce severe challenges
on the entanglement generation and distribution. And effective routing
techniques are required.

The increasing number of quantum devices to be wired and the
heterogeneity of the environments hosting the quantum computers
must be taken into account as well. At this stage, the compiling and
execution management problems are even more complex, demanding
for specific network services to be integrated with those of the classical
Internet (such as DNS, DHCP, etc.).

We emphasize that, although each type of architecture is charac-
terized by an increasing amount of interconnected quantum resources,
the actual deployment evolution of DQC towards the multi-farm ar-
chitecture is strongly dependent on the technological advances and
the experimental implementations of the different entities composing
a distributed quantum computing ecosystem [4,12].

7.1.4. Cross-architecture challenges

Another fundamental issue arising with networking remote quan-
tum processors, regardless the specific DQC archetype, is represented
by noise and imperfections affecting the quality of the distributed
entangled states. The noisier is the distributed entangled state, the
noisier is the overall distributed quantum computation. Luckily, a well-
known technique for counteracting the noise impairments affecting the
entanglement generation/distribution process is constituted by entan-
glement distillation (also known as entanglement purification) [70,152—
157]. Accordingly, as long as the “quality” of the noisy entanglement
exceeds a certain threshold, it is possible to purify multiple imperfect
Bell states into a single “almost-maximally entangled” pair, albeit at
the price of consuming multiple noisy entangled states within the
process. From the above, it follows that one of two orthogonal resources
must be exploited for implementing the distillation process, namely,
time or space. More into details, time-expensive distillation requires
multiple rounds of entanglement generation and distribution, with each
round requiring at least two communication qubits at each processor.
Conversely, space-expensive distillation can be completed with few
rounds, but with each round involving several communication qubits.
Hence, there exists a fundamental trade-off between (i) quality of the
overall computation, (ii) delay induced by entanglement distillation,
and (iii) communication qubits reserved for distilling a high-quality Bell
state.

18

Furthermore, entanglement does not limit to Bell pairs. In fact,
multipartite entanglement — i.e., entanglement shared between more
than two parties — has the potentiality to be a powerful resource for
DQC [69,158-160]. More into details, multipartite entangled states
are exploited in the so-called measurement-based quantum computing,
which gives rise to a computational model referred to as “one-way
computing” [161,162]. The one-way computing is different from the
circuit model, as it relays on sequences of Pauli measurements on a
multipartite entangled state to perform the computation. Remarkably,
in such a computing model, the process of generating entanglement is
decoupled from the process of consuming it for computation. This, in
principle, could be exploited for the design of the network functional-
ities. Indeed, one can proactively distribute the multipartite resource
for one-way computing among the remote processors, and then re-
actively proceed with the computation, i.e., the Pauli measurements.
In this context, from a network perspective, it becomes crucial to
efficiently distribute the multipartite entangled resource. Even more
importantly, this approach demands for a tight coordination among the
networked processors, for the local corrections to be made after the
measurements [69,163].

However, multipartite entanglement is still a widely unexplored
research area and it is an open research direction to fully unleash its
potentiality in DQC.

7.2. Quantum algorithms

Future directions are both theoretical and practical. Despite a con-
siderable amount of work on the fundamentals of distributed quantum
computing [121,122,154], an ultimate theory of distributable quantum
algorithms is still missing. It is known that the quantum circuit model
and the DQC model are equivalent up to polylogarithmic depth over-
head [121], but a general framework for ranking quantum algorithms
in terms of distributability has not been defined. To this purpose, it
is necessary to provide a quantitative definition of quantum circuit
distributability.

Regarding execution management, the broad literature on parallel
job scheduling for may be a starting point, but it is clear that the
peculiarities of quantum computing — quantum parallelism, no-cloning,
entanglement, etc. — demand for novel and specific strategies for the
efficient execution of concurrent distributed quantum computations. A

M. Caleffi et al.

trade-off between the complexity of the distributed quantum circuit
and the physical distance between quantum processors is also envis-
aged. Furthermore, to compare different deployments and schedules,
DQC-specific key performance indicators must be defined [100,101].

7.3. Quantum compiling

As described in Section 3, the entanglement generation and distri-
bution functionality plays a key role in quantum compiling. Although
there exists no standard model conferring to specific entities the re-
sponsibility of entanglement generation, distribution and managing,
we can identify two possible approaches, namely, network-centric and
computing-centric.

In the network-centric approach, the communication infrastructure
and its protocols are responsible for the entanglement generation distri-
bution and managing, (seen as both functionality and actuation), while
the compiler exploits the entanglement information gathered by the
network to perform distributed algorithms. The other approach can be
identified as computing-centric. Specifically, the compiler uses as input
the physical topology and instructs the quantum communication infras-
tructure, through requests about the entangled states to be generated
and distributed for performing a distributed algorithm.

Although these two approaches are yet to be completely investi-
gated, some general considerations can be made.

In multi-computer and multi-core architectures, it is likely that
network operations, such as entanglement generation and distribution,
can be engineered and optimized according to the specific algorithm
to be performed. In such a case, ad-hoc augmented coupling map can
be likely generated in advance (proactively) — prior to the algorithm
execution and at compilation time — and the compiler can issue requests
to the quantum network before performing the algorithm. This ap-
proach entails an additional set-up time to be added to the time interval
required for compiling a distributed algorithm. Differently, in large-
scale networks as in multi-farm architectures, this can be an hard task
due to the large number of computer involved and remote operations.

As a consequence, there exist a deep bi-directional impact between
network and compiler design for DQC, which, in turn, is affected by
the considered variant of DQC.

The most advanced quantum compilers for execution on single
quantum processors are noise-aware, i.e., they take the noise statistics
of the device into account, for some or all steps [105,164-167]. A noise-
aware quantum compiler for DQC is still missing. Indeed, it is still an
open question what kind of noise-awareness such a compiler should
have. The different options range from a compiler that has complete
knowledge of the target execution platform (quantum processors, quan-
tum links, etc.) to a compiler that only knows generic features of the
target quantum processors and network — as the execution manager will
decide the actual execution platform assigned to the computation.

Further work could be done regarding the integration of quantum
compilers with simulation tools — in line with the preliminary attempt
that was made by Ferrari et al. [146] — allowing for automated work-
flows that would allow for faster comparative evaluation of compiling
strategies. Finally, the problem of combining compilation for DQC,
i.e., partitioning and non-local gates optimization, with the local com-
pilation of each circuit partition on the QPUs is rarely studied in the
literature.

So far, testing the quality of compiled circuits on real execution
platforms has not been possible for the majority of researchers. Once
a quantum network will be available to the public — much like current
IBM, Rigetti, etc. single quantum devices — it will be possible to eval-
uate DQC compilers more effectively, with key performance indicators
including the resulting computation quality, state fidelity, and other
performance metrics [168].

19

Computer Networks 254 (2024) 110672
7.4. Quantum simulation

There is a sufficiently variegated choice of simulation tools for
quantum networks and backends to support DQC research, with special-
ization on hardware, protocols, or applications. Yet, on the other hand,
a simulation tool allowing for full-stack simulation of large networks
is still missing. Such a tool should be support multiprocessing and
multithreading, and simple deployment of DQC simulations on high
performance computing facilities.

Another possible direction is the development of tools for orches-
trating DQC simulations, with automated instantiation of simulation
objects representing QPUs and quantum network components. Having
quantum compilers for DQC in the loop would be also very useful. Last
but not least, it would be great to have the possibility to seamlessly
replace simulated hardware with real devices.

8. Discussion and future perspective
8.1. Discussion

In order to further highlight the peculiarities of DQC, we summa-
rized in Table 4 the main differences between distributed classical and
quantum computing, by focusing on the different archetypes analyzed
in Section 2. To this aim, we start from single-core computation.

From an architectural perspective and by oversimplifying, we can
identify the classical computing unit as the system comprising: (i)
an Arithmetic and Logic Unit (ALU), responsible of performing logic
operations; (ii) a hierarchy of memories, L1 cache L2 cache at least;
(iii) and a Control Unit (CU). Accordingly, a single-core is identified as a
computing system composed by the CU, the ALU and a L1 cache and the
single-core paradigm uses such computing unit to process information.
Differently, the architectural definition for quantum computing unit
is not well-established due to the differences among the underlying
technologies. Indeed, there exist no single hardware unit responsible
for logic operations on qubits. As instance, superconducting technology
requires the physical qubits to be confined within a cryostat and logic
operations are implemented through pulses properly shaped to change
the electrodynamics and the energy levels of the qubit archetype.
Differently, the photonic technology requires an optical table as support
and the logic operations are performed through optical components
acting on a single photon, which acts as physical qubit archetype [169].

Nevertheless, by performing a strong abstraction effort, in a way
resembling of a single-core classical computing unit, a single QPU can
be identified as the system comprising: (i) one entity responsible for
the quantum information processing; (ii) another entity responsible for
storing such information — a quantum memory; (iii) one or more devices
in charge of measurement (accessing the information), (iv) and finally a
control system which mainly comprises classical ad-hoc resources, both
software and hardware, in charge of the management of such entities.
It is worthwhile to clarify that a unified architectural model that can
be commonly identified as “quantum single-core” is still missing.

The step from single-core to multi-core in the classical domain was
simple and effective. More into details, a distributed classical multi-
core computing architecture comprises a single control unit in charge
of multiple cores, which, in turn, share an L2 cache. The cores are
usually interconnected via a BUS and placed within the same chip.
Hence, for classical multi-core architectures we can clearly identify the
shared resources, namely, L2 cache and control unit, alongside with the
BUS for accessing the shared cache.

Differently, the evolution from single-core to multi-core architecture
is complex in the quantum domain and it appears as deeply technology-
dependant. By accounting for the early-stage technology readiness
and for the high abstraction used in the concept of QPU, the key
observation here lies within the additional hardware and software re-
sources required for the interconnection of multiple QPUs. Specifically,

M. Caleffi et al.

Table 4

A schematic summary of the differences arising with quantum and classical distributed computing paradigms.

Computer Networks 254 (2024) 110672

Quantum Domain

Feature Multi-farm Computing Multi-computer Computing Multi-core Computing Single-core Computing
multiple quantum farms multiple quantum computers multiple refrigerators or
Architecture peq ple d P . P &
optical tables
interconnected via Quantum interconnected via interconnected via single quantum computing
Internet unit
medium-range communication dedicated or short-range
links communication links
Geographical global/ same room (QLAN)/ same refrigerator /
Distribution wide area (QWAN) same building (QLANSs) same optical table

Physical Qubit

Scalability

yes: exponential scaling of the
computing power with linear
increasing of interconnected
entities

limited: number of physical
qubits

limited due to crosstalk effects
or
complex optical setting

Shared Resources

entangled states
communication infrastructure

classical control system
entanglement generation
device

measurement and readout
system

Resource Sharing

communication infrastructure

dedicated

Programming model

quantum circuit partitioning +

monolithic execution

TeleData/TeleGate
Entangled topology mandatory Not applicable
coherence delegated to classical

communications

Hardware Cost

increased as network hardware
and infrastructure are required

limited increase as some
hardware resources are shared

fixed by technology

Hardware Heterogeneity

very likely

possible and required for some
computing unit technologies

absent or very moderate

Interoperability

mandatory

highly suggested

discretional

Standards

mandatory and to be defined

to be defined

Classical Domain

Feature Distributed Computing Multi-processor Computing Multi-core Computing Single-core Computing
. multiple computer multiple processors multiple processing cores Single processing core
Architecture . : :
connected via network connected via network or BUS connected via BUS
Geographical Global/WLAN LAN limit?d to single physical
location
Distribution same rack (chip)

Bit Scalability

horizontally scalable
by connecting computers to
the network

bounded by the number of
processors

bounded by the number of
cores

Not applicable

Shared Resources

network resources

BUS,level 3 cache

BUS,level 2 cache, CU

level 1 cache, CU

Resource Sharing

network

system

dedicated

Programming model

message passing

shared memory

shared memory

Cache Coherence

Not applicable as no shared
cache

fundamental for data
consistency and coherence
among nodes

Not applicable

Hardware Cost

increased, network requires
additional hardware

definitely improved,
cost-effective solution

can be improved only at
design stage

Hardware Heterogeneity

can be both homogeneous and
heterogeneous
likely and easily managed

typically no but allowed

no

Interoperability required limited Not applicable
Standards network standards and specific parallel programming

protocols models and libraries
Examples TCP/IP, HTTP- REST, SOAP OpenMP,MPI,CUDA

20

M. Caleffi et al.

differently from the classical domain, a multi-core quantum architec-
ture requires some specificity, which at least includes: (i) dedicated
hardware for the entanglement generation and distribution unit; (ii) a
classical control unit enabling classical communications between the
cores needed by the quantum communication primitives and by the
entanglement generation and distribution unit. So, while in the classical
domain parallel processing is enabled by a shared memory, in the
quantum domain parallelism is enabled by shared entangled states.

Despite this increase in the realization complexity, the interconnec-
tion of quantum multi-cores is worthwhile to be pursued. Indeed, while
in classical multi-core architectures a linear increase of the number of
cores roughly corresponds to a linear increase of the computational
power, in the quantum domain the increasing of the computational
power is, in principle, exponential.

The differences between classical and quantum multi-core archi-
tectures are not limited to architectural aspects. Indeed, while in the
classical domain we have the issue of cache coherence, which concerns
the consistency of data stored and processed by multiple entities, in
the quantum domain, we have entanglement coherence, concerning the
consistency of entangled states shared among the quantum computers
plays a fundamental role [170]. This, in turn, changes the design
principles. Indeed, any action on one entangled qubit affects the overall
augmented coupling map. Hence it impacts the remote operation that
can be performed [58]. Additionally, differently from the classically
stored data, entanglement changes its state over time.

As mentioned in Section 2, in this type of DQC architectures,
the physical distance between remote qubits is very short. And the
number of cores that can be interconnected within a limited space
cannot scale boundless. As a consequence, also the number of physical
qubits that can be clustered together is limited. The physical qubit
scalability can be enhanced by moving to multi-computer quantum
architectures. However, we cannot adopt the reasoning adopted in
the classical domain for moving from multi-core to multi-computer
architectures. Indeed the specificity analyzed above for the multi-core
quantum architectures, become even more peculiar. As instance, the
dedicated hardware for the entanglement generation and distribution
unit(s) must be more effective and efficient for covering the longer
distances involved in this type of architecture. Additional hardware
with no-counterpart in the classical architectures, such as the quantum
transducer described in Section 7, may arise.

Similar considerations hold for the step from multi-computer to
multi-farm architectures, with a clear worsening of the challenges due
to the scale (both in terms of distances and nodes) of the distributed
quantum computing architecture.

8.2. Industrial and standardization perspective

A first quantum revolution has already exploited quantum technolo-
gies in our everyday life, creating a deep techno-economic and social
impact. Today, a second revolution is underway, and it is safe to predict
it will have a major impact in many markets, ranging from Telecom and
ICT, through Medicine, to Finance and Transportation, and so on.

Significant work is still needed to develop enabling components and
systems for DQC. Yet, considering the foreseen industrial opportunities,
significant investments are being made worldwide across public and
private organizations.

One major obstacle on the way of industrial exploitation of dis-
tributed quantum computing is that, nowadays, the industry has not
yet consolidated around one type of quantum hardware technology.
In this scenario, a quantum hardware abstraction layer (Quantum-HAL)
- embracing the two killer domains of quantum technologies for ICT,
namely, quantum computing and quantum networking — would allow
applications and services developers to start using the abstractions
of the underneath quantum hardware, even if still under consolida-
tion. This would definitely simplify and speed-up the development of
quantum platforms, services, and applications. Indeed, a Quantum-HAL

21

Computer Networks 254 (2024) 110672

for distributed quantum computing would provide unified northbound
quantum application programming interfaces (APIs) for the higher
layers, decoupling from the different types of quantum hardware tech-
nologies (e.g., trapped ions, superconducting qubits, silicon photonic
qubits).

Another key aspect for increasing the TRL (Technology Readiness
Level) of distributed quantum computing concerns its integration with
current Telecom and ICT infrastructures. This implies the definition and
standardization of a management and control approach (architectures
and APIs) able of interworking with current solutions. All these activi-
ties require coordinated and joint efforts including — where appropriate
— existing projects, industry bodies and standard (ITU-T, ETSI, IETF,
CEN/CENELEC [171] and IEEE just to mention a few) active in the area
of quantum technologies.

Overall, the final goal is to bridge the gap between DQC and the
established cloud and edge computing platforms, tools and methods,
and to focus in on the inter-related constraints between the different
aspects of the architectural design, so to enable the development of
practical DQC solutions. To achieve this goal, research and innovation
activities are required in diverse and complementary fields, ranging
from computational complexity and networked systems through quan-
tum information and optics to communications and computer science
engineering.

CRediT authorship contribution statement

Marcello Caleffi: Writing — review & editing, Writing — original
draft, Supervision. Michele Amoretti: Writing — review & editing, Writ-
ing — original draft. Davide Ferrari: Writing — review & editing, Writing
- original draft. Jessica Illiano: Writing — review & editing, Writing —
original draft. Antonio Manzalini: Writing — review & editing, Writing
- original draft. Angela Sara Cacciapuoti: Writing — review & editing,
Writing — original draft, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgment

Angela Sara Cacciapuoti and Michele Amoretti acknowledge finan-
cial support from the European Union — NextGenerationEU, PNRR MUR
project PEO000023-NQSTI.

References
[1] K. Nemoto, Our future with quantum computers, JSAP Rev. 2023 (2023)

230212.

CSA QUCATS, Strategic Reasearch and Industry Agenda, European Commission,

2024.

M. Caleffi, A.S. Cacciapuoti, G. Bianchi, Quantum internet: From communica-

tion to distributed computing!, in: Proc. of ACM NANOCOM ’18, Association

for Computing Machinery, 2018, pp. 1-4, http://dx.doi.org/10.1145/3233188.

3233224,

A.S. Cacciapuoti, M. Caleffi, F. Tafuri, F.S. Cataliotti, S. Gherardini, G. Bianchi,

Quantum internet: Networking challenges in distributed quantum computing,

IEEE Netw. 34 (1) (2020) 137-143, http://dx.doi.org/10.1109/MNET.001.

1900092.

R. Van Meter, S.J. Devitt, The Path to Scalable Distributed Quantum Computing,

Computer 49 (9) (2016) 31-42, http://dx.doi.org/10.1109/MC.2016.291.

J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (79)

(2018).

[2]

[3]

[4]

[5]

[6]

http://refhub.elsevier.com/S1389-1286(24)00504-8/sb1
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb1
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb1
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb2
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb2
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb2
http://dx.doi.org/10.1145/3233188.3233224
http://dx.doi.org/10.1145/3233188.3233224
http://dx.doi.org/10.1145/3233188.3233224
http://dx.doi.org/10.1109/MNET.001.1900092
http://dx.doi.org/10.1109/MNET.001.1900092
http://dx.doi.org/10.1109/MNET.001.1900092
http://dx.doi.org/10.1109/MC.2016.291
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb6
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb6
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb6

M. Caleffi et al.

[71

[8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

Y. Kim, A. Eddins, S. Anand, K.X. Wei, E. van den Berg, S. Rosenblatt, H.
Nayfeh, Y. Wu, M. Zaletel, K. Temme, A. Kandala, Evidence for the utility of
quantum computing before fault tolerance, Nature 618 (7965) (2023) 500-505.
Y. Kim, C.J. Wood, T.J. Yoder, S.T. Merkel, J.M. Gambetta, K. Temme,
A. Kandala, Scalable error mitigation for noisy quantum circuits produces
competitive expectation values, Nat. Phys. 19 (5) (2023) 752-759.

S. Wehner, D. Elkouss, R. Hanson, Quantum Internet: a Vision for the Road
Ahead, Science 362 (6412) (2018).

M. Caleffi, D. Chandra, D. Cuomo, S. Hasaanpour, A.S. Cacciapuoti, The Rise
of the Quantum Internet., IEEE Comput. (2020).

R. Parekh, A. Ricciardi, A. Darwish, S. DiAdamo, Quantum algorithms and
simulation for parallel and distributed quantum computing, in: 2021 IEEE/ACM
Second International Workshop on Quantum Computing Software, QCS, IEEE
Computer Society, Los Alamitos, CA, USA, 2021, pp. 9-19, http://dx.doi.org/
10.1109/QCS54837.2021.00005, URL https://doi.ieeecomputersociety.org/10.
1109/QCS54837.2021.00005.

D. Cuomo, M. Caleffi, A.S. Cacciapuoti, Towards a distributed quantum com-
puting ecosystem, IET Quantum Commun. 1 (2020) 3-8(5), http://dx.doi.org/
10.1049/iet-qtc.2020.0002.

D. Ferrari, A.S. Cacciapuoti, M. Amoretti, M. Caleffi, Compiler design for
distributed quantum computing, IEEE Trans. Quantum Eng. 2 (2021) 1-20,
http://dx.doi.org/10.1109/TQE.2021.3053921.

J. Avron, O. Casper, I. Rozen, Quantum advantage and noise reduction in
distributed quantum computing, Phys. Rev. A 104 (2021) 052404, http://dx.
doi.org/10.1103/PhysRevA.104.052404.

D. Ferrari, S. Carretta, M. Amoretti, A Modular Quantum Compilation Frame-
work for Distributed Quantum Computing, IEEE Trans. Quantum Eng. 4 (2023)
1-13.

D. Ferrari, M. Amoretti, A design framework for the simulation of distributed
quantum computing, in: HPQCI Workshop in Conjunction with the 33rd
ACM International Symposium on High-Performance Parallel and Distributed
Computing, 2024.

A. Gold, J.P. Paquette, A. Stockklauser, M.J. Reagor, M.S. Alam, A. Bestwick,
N. Didier, A. Nersisyan, F. Oruc, A. Razavi, B. Scharmann, E.A. Sete, B. Sur, D.
Venturelli, C.J. Winkleblack, F. Wudarski, M. Harburn, C. Rigetti, Entanglement
across separate silicon dies in a modular superconducting qubit device, npj
Quantum Inf. 7 (1) (2021) 142.

IBM, Expanding the IBM Quantum roadmap to anticipate the future
of quantum-centric supercomputing, URL https://research.ibm.com/blog/ibm-
quantum-roadmap-2025.

Y. Zhong, H.-S. Chang, A. Bienfait, et al., Deterministic multi-qubit
entanglement in a quantum network, Nature 590 (7847) (2021) 571-575.

M. Pompili, S.L.N. Hermans, S. Baier, et al., Realization of a multinode quantum
network of remote solid-state qubits, Science 372 (6539) (2021) 259-264.
S.L.N. Hermans, M. Pompili, H.K.C. Beukers, et al., Qubit teleportation between
non-neighbouring nodes in a quantum network, Nature 605 (7911) (2022)
663-668.

J.V. Rakonjac, S. Grandi, S. Wengerowsky, D. Lago-Rivera, F. Appas, H. de
Riedmatten, Transmission of light-matter entanglement over a metropolitan
network, Optica Quantum 1 (2) (2023) 94-102.

V. Krutyanskiy, M. Canteri, M. Meraner, V. Krcmarsky, B. Lanyon, Multi-
mode ion-photon entanglement over 101 kilometers, PRX Quantum 5 (2024)
020308, http://dx.doi.org/10.1103/PRXQuantum.5.020308, URL https://link.
aps.org/doi/10.1103/PRXQuantum.5.020308.

N.M. Linke, D. Maslov, M. Roetteler, et al., Experimental comparison of two
quantum computing architectures, Proc. Natl. Acad. Sci. 114 (13) (2017)
3305-3310.

A. Kandala, K. Temme, A.D. Corcoles, et al., Error mitigation extends the
computational reach of a noisy quantum processor, Nature 567 (7749) (2019)
491-495.

Google Quantum Al, Official web site, https://quantumai.google/.

IBM Quantum, Official web site, https://www.ibm.com/quantum.

Rigetti, Official web site, https://www.rigetti.com/.

Alice, Bob, Official web site, https://www.alice-bob.com/.

Anyon, Official web site, https://anyonsys.com/.

1QM, Official web site, https://www.meetigm.com/.

0QC, Official web site, https://oxfordquantumcircuits.com/.

Intel, Intel-s New Chip to Advance Silicon Spin Qubit Research for Quantum
Computing, https://rb.gy/3kz9ih.

C12, Official web site, https://www.c12ge.com/.

Quobly, Official web site, https://www.quobly.io/.

Quantum Brilliance, Official web site, https://quantumbrilliance.com/.

Alpine Quantum Computing, Official web site, https://www.aqt.eu/.

IonQ, Official web site, https://ionq.com/.

Quantinuum, Official web site, https://www.quantinuum.com/.

Oxford Ionics, Official web site, https://www.oxionics.com/.

PASQAL, Official web site, https://www.pasqal.com/.

Quera, Official web site, https://www.quera.com/.

Atom Computing, Official web site, https://atom-computing.com/.

Infleqtion, Official web site, https://www.infleqtion.com/.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Computer Networks 254 (2024) 110672

R. Van Meter, S. Devitt, The path to scalable distributed quantum computing.,
Computer 49 (9) (2016) 31-42, http://dx.doi.org/10.1109/MC.2016.291.
M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information,
Cambridge University Press, 2011.

E. Rieffel, W. Polak, Quantum Computing: A Gentle Introduction, The MIT
Press, 2011.

J. Kim, D. Min, J. Cho, H. Jeong, 1. Byun, J. Choi, J. Hong, J. Kim, A
fault-tolerant million qubit-scale distributed quantum computer, in: Proceed-
ings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024, pp. 1-19.
J. Gambetta, Expanding the IBM Quantum roadmap to anticipate the fu-
ture of quantum-centric supercomputing, https://www.ibm.com/quantum/blog/
ibm-quantum-roadmap-2025.

A. Ovide, S. Rodrigo, M. Bandic, H. Van Someren, S. Feld, S. Abadal, E.
Alarcon, C.G. Almudever, Mapping quantum algorithms to multi-core quantum
computing architectures, in: 2023 IEEE International Symposium on Circuits
and Systems, ISCAS, IEEE, 2023, pp. 1-5.

P. Escofet, S.B. Rached, S. Rodrigo, C.G. Almudever, E. Alarcén, S. Abadal,
Interconnect fabrics for multi-core quantum processors: A context analysis,
in: Proceedings of the 16th International Workshop on Network on Chip
Architectures, NoCArc ’23, ACM, 2023, pp. 34-39.

S. Rodrigo, S. Abadal, E. Alarcon, M. Bandic, H. Van Someren, C.G.
Almudéver, On double full-stack communication-enabled architectures for
multicore quantum computers, IEEE Micro 41 (5) (2021) 48-56.

H. Jnane, B. Undseth, Z. Cai, S.C. Benjamin, B. Koczor, Multicore quan-
tum computing, Phys. Rev. Appl. 18 (2022) 044064, http://dx.doi.org/
10.1103/PhysRevApplied.18.044064, URL https://link.aps.org/doi/10.1103/
PhysRevApplied.18.044064.

P. Escofet, S.B. Rached, S. Rodrigo, C.G. Almudever, E. Alarcén, S. Abadal,
Interconnect fabrics for multi-core quantum processors: A context analysis,
in: Proceedings of the 16th International Workshop on Network on Chip
Architectures, 2023, pp. 34-39.

P. Escofet, A. Ovide, M. Bandic, L. Prielinger, H. van Someren, S. Feld,
E. Alarcén, S. Abadal, C.G. Almudéver, Revisiting the mapping of quantum
circuits: Entering the multi-core era, ACM Trans. Quantum Comput. (2024).
F. Mazza, M. Caleffi, A.S. Cacciapuoti, Intra-QLAN connectivity: beyond the
physical topology, 2024, arXiv preprint arXiv:2406.09963.

W. Kozlowski, S. Wehner, R. Van Meter, B. Rijsman, A.S. Cacciapuoti, M.
Caleffi, S. Nagayama, Architectural principles for a quantum internet, 2023,
http://dx.doi.org/10.17487/RFC9340, RFC 9340, URL https://www.rfc-editor.
org/info/rfc9340.

J. Illiano, M. Caleffi, A. Manzalini, A.S. Cacciapuoti, Quantum internet protocol
stack: a comprehensive survey, Comput. Netw. 213 (2022) 109092.

A.S. Cacciapuoti, J. Illiano, S. Koudia, K. Simonov, M. Caleffi, The quantum
internet: Enhancing classical services one qubit at a time, IEEE Netw. 36 (5)
(2022) 6-12.

A.S. Cacciapuoti, M. Caleffi, Toward the quantum internet: A directional-
dependent noise model for quantum signal processing, in: IEEE ICASSP ’19,
2019, pp. 7978-7982, http://dx.doi.org/10.1109/ICASSP.2019.8683195.

A.S. Cacciapuoti, M. Caleffi, R. Van Meter, L. Hanzo, When entanglement meets
classical communications: Quantum teleportation for the quantum internet,
IEEE Trans. Commun. 68 (6) (2020) 3808-3833, invited paper.

R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki,
entanglement, Rev. Modern Phys. 81 (2) (2009) 865.

A. Unnikrishnan, D. Markham, Authenticated teleportation and verification in
a noisy network, Phys. Rev. A 102 (2020) 042401.

R. Van Meter, K. Nemoto, W. Munro, K. Itoh, Distributed arithmetic on
a quantum multicomputer, in: 33rd International Symposium on Computer
Architecture, ISCA’06, 2006, pp. 354-365.

S. DiAdamo, M. Ghibaudi, J. Cruise, Distributed Quantum Computing and
Network Control for Accelerated VQE, IEEE Trans. Quantum Eng. 2 (2021)
1-21, http://dx.doi.org/10.1109/TQE.2021.3057908.

K. Azuma, S.E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, L. Tzitrin,
Quantum repeaters: From quantum networks to the quantum internet, Rev.
Modern Phys. 95 (2023) 045006.

J. llliano, A.S. Cacciapuoti, A. Manzalini, M. Caleffi, The impact of the quantum
data plane overhead on the throughput, in: Proc. of ACM NANOCOM ’21, 2021,
pp. 1-6, http://dx.doi.org/10.1145/3477206.3477448.

A.S. Cacciapuoti, J. Illiano, M. Caleffi, Quantum internet addressing, IEEE Netw.
38 (1) (2024) 104-111, http://dx.doi.org/10.1109/MNET.2023.3328393.

S.-Y. Chen, J. Illiano, A.S. Cacciapuoti, M. Caleffi, Entanglement-based artificial
topology: Neighboring remote network nodes, 2024, arXiv preprint arXiv:2404.
16204.

W. Diir, H.J. Briegel, Entanglement purification and quantum error correction,
Rep. Progr. Phys. 70 (8) (2007) 1381.

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili,
A. Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, et al., A link layer
protocol for quantum networks, in: Proceedings of the ACM Special Interest
Group on Data Communication, 2019, pp. 159-173.

Quantum

http://refhub.elsevier.com/S1389-1286(24)00504-8/sb7
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb7
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb7
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb7
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb7
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb8
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb8
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb8
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb8
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb8
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb9
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb9
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb9
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb10
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb10
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb10
http://dx.doi.org/10.1109/QCS54837.2021.00005
http://dx.doi.org/10.1109/QCS54837.2021.00005
http://dx.doi.org/10.1109/QCS54837.2021.00005
https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005
https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005
https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005
http://dx.doi.org/10.1049/iet-qtc.2020.0002
http://dx.doi.org/10.1049/iet-qtc.2020.0002
http://dx.doi.org/10.1049/iet-qtc.2020.0002
http://dx.doi.org/10.1109/TQE.2021.3053921
http://dx.doi.org/10.1103/PhysRevA.104.052404
http://dx.doi.org/10.1103/PhysRevA.104.052404
http://dx.doi.org/10.1103/PhysRevA.104.052404
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb15
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb15
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb15
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb15
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb15
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb16
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb17
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb19
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb19
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb19
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb20
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb20
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb20
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb21
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb21
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb21
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb21
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb21
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb22
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb22
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb22
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb22
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb22
http://dx.doi.org/10.1103/PRXQuantum.5.020308
https://link.aps.org/doi/10.1103/PRXQuantum.5.020308
https://link.aps.org/doi/10.1103/PRXQuantum.5.020308
https://link.aps.org/doi/10.1103/PRXQuantum.5.020308
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb24
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb24
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb24
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb24
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb24
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb25
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb25
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb25
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb25
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb25
https://quantumai.google/
https://www.ibm.com/quantum
https://www.rigetti.com/
https://www.alice-bob.com/
https://anyonsys.com/
https://www.meetiqm.com/
https://oxfordquantumcircuits.com/
https://rb.gy/3kz9ih
https://www.c12qe.com/
https://www.quobly.io/
https://quantumbrilliance.com/
https://www.aqt.eu/
https://ionq.com/
https://www.quantinuum.com/
https://www.oxionics.com/
https://www.pasqal.com/
https://www.quera.com/
https://atom-computing.com/
https://www.infleqtion.com/
http://dx.doi.org/10.1109/MC.2016.291
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb46
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb46
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb46
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb47
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb47
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb47
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb48
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025
https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb50
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb51
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb52
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb52
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb52
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb52
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb52
http://dx.doi.org/10.1103/PhysRevApplied.18.044064
http://dx.doi.org/10.1103/PhysRevApplied.18.044064
http://dx.doi.org/10.1103/PhysRevApplied.18.044064
https://link.aps.org/doi/10.1103/PhysRevApplied.18.044064
https://link.aps.org/doi/10.1103/PhysRevApplied.18.044064
https://link.aps.org/doi/10.1103/PhysRevApplied.18.044064
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb54
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb55
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb55
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb55
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb55
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb55
http://arxiv.org/abs/2406.09963
http://dx.doi.org/10.17487/RFC9340
https://www.rfc-editor.org/info/rfc9340
https://www.rfc-editor.org/info/rfc9340
https://www.rfc-editor.org/info/rfc9340
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb58
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb58
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb58
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb59
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb59
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb59
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb59
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb59
http://dx.doi.org/10.1109/ICASSP.2019.8683195
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb61
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb61
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb61
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb61
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb61
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb62
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb62
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb62
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb63
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb63
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb63
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb64
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb64
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb64
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb64
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb64
http://dx.doi.org/10.1109/TQE.2021.3057908
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb66
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb66
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb66
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb66
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb66
http://dx.doi.org/10.1145/3477206.3477448
http://dx.doi.org/10.1109/MNET.2023.3328393
http://arxiv.org/abs/2404.16204
http://arxiv.org/abs/2404.16204
http://arxiv.org/abs/2404.16204
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb70
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb70
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb70
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb71

M. Caleffi et al.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]
[81]
[82]
[83]
[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

R. Van Meter, Distributed digital computation and communication, in: Quantum
Networking, John Wiley & Sons, Ltd, 2014, pp. 113-130.

S. Shi, C. Qian, Concurrent entanglement routing for quantum networks: Model
and designs, in: Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, 2020, pp. 62-75.
F. Dupuy, C. Goursaud, F. Guillemin, A survey of quantum entanglement routing
protocols—challenges for wide-area networks, Adv. Quantum Technol. 6 (5)
(2023) 2200180.

A. Montanaro, Quantum algorithms: An overview, npj Quantum Inf. 2 (1)
(2016) 15023, http://dx.doi.org/10.1038/npjqi.2015.23.

A. J., A. Adedoyin, J. Ambrosiano, et al., Quantum algorithm implementations
for beginners, ACM Trans. Quantum Comput. 3 (4) (2022).

P.W. Shor, Polynomial time algorithms for discrete logarithms and factoring
on a quantum computer, in: Algorithmic Number Theory, Springer Berlin
Heidelberg, 1994, p. 289.

L.K. Grover, A fast quantum mechanical algorithm for database search, in:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC 96, 1996, pp. 212-219.

A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of
equations, Phys. Rev. Lett. 103 (2009) 150502.

M. Cerezo, A. Arrasmith, R. Babbush, et al., Variational quantum algorithms,
Nat. Rev. Phys. 3 (9) (2021) 625-644.

B.M. Terhal, Quantum error correction for quantum memories, Rev. Modern
Phys. 87 (2015) 307-346.

E. Knill, Conventions for quantum pseudocode, in: Tech. rep, Los Alamos
National Lab, United States, 1996, URL https://www.osti.gov/biblio/366453.
H. Abraham, 1.Y. Akhalwaya, G. Aleksandrowicz, et al., Qiskit: An open-source
framework for quantum computing, 2019.

Google Quantum Al, Cirq, myehosthttps://quantumai.google/cirq.

Xanadu, PennyLane, myehosthttps://pennylane.ai/.

AW. Cross, L.S. Bishop, J.A. Smolin, J.M. Gambetta, Open quantum assembly
language, 2017, arXiv:1707.03429.

A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L.S. Bishop, S. Heidel,
C.A. Ryan, P. Sivarajah, J. Smolin, J.M. Gambetta, B.R. Johnson, Openqasm
3: A broader and deeper quantum assembly language, ACM Trans. Quantum
Comput. 3 (3) (2022) 1-50.

A. Dahlberg, B. van der Vecht, C.D. Donne, et al., NetQASM - a low-level
instruction set architecture for hybrid quantum-—classical programs in a quantum
internet, Quantum Sci. Technol. 7 (3) (2022) 035023.

A. Peduri, S. Bhat, T. Grosser, QSSA: an SSA-based IR for Quantum computing,
in: Proceedings of the 31st ACM SIGPLAN International Conference on Compiler
Construction, 2022, pp. 2-14.

D. Ittah, T. Héner, V. Kliuchnikov, T. Hoefler, QIRO: A static single assignment-
based quantum program representation for optimization, ACM Trans. Quantum
Comput. 3 (3) (2022).

S. Nishio, R. Wakizaka, Inquir: Intermediate representation for interconnected
quantum computers, 2023, arXiv:2302.00267.

R. Cleve, J. Watrous, Fast parallel circuits for the quantum Fourier transform,
in: Proceedings 41st Annual Symposium on Foundations of Computer Science,
2000, pp. 526-536.

N.M.P. Neumann, R. van Houte, T. Attema, Imperfect Distributed Quantum
Phase Estimation, in: Computational Science — ICCS 2020, in: Lecture Notes in
Computer Science, Springer International Publishing, 2020, pp. 605-615.

A. Kitaev, Quantum computations: algorithms and error correction, Russian
Math. Surveys 52 (6) (1997) 1191-1249.

J. Eisert, K. Jacobs, P. Papadopoulos, M.B. Plenio, Optimal local implementation
of nonlocal quantum gates, Phys. Rev. A 62 (2000) 052317.

A. Yimsiriwattana, S. Lomonaco, Generalized GHZ states and distributed quan-
tum computing, Contemp. Math. 381 (2005) http://dx.doi.org/10.1090/conm/
381.

N.M.P. Neumann, R.S. Wezeman, Distributed quantum machine learning, in:
Innovations for Community Services, Springer International Publishing, 2022,
pp. 281-293.

C. Cicconetti, M. Conti, A. Passarella, Resource allocation in quantum networks
for distributed quantum computing, in: 2022 IEEE International Conference on
Smart Computing, SMARTCOMP, 2022, pp. 124-132.

C. Cicconetti, M. Conti, A. Passarella, Service differentiation and fair sharing in
distributed quantum computing, Pervasive Mob. Comput. 90 (2023) 101758.
G. Vardoyan, S. Wehner, Quantum Network Utility Maximization, 2022, arXiv
e-prints, arXiv:2210.08135v1.

Y. Lee, W. Dai, D. Towsley, D. Englund, Quantum Network Utility: A Frame-
work for Benchmarking Quantum Networks, 2022, arXiv e-prints, arXiv:2210.
10752v1.

AW. Cross, L.S. Bishop, S. Sheldon, P.D. Nation, J.M. Gambetta, Validating
quantum computers using randomized model circuits, Phys. Rev. A 100 (2019)
032328, http://dx.doi.org/10.1103/PhysRevA.100.032328.

A. Botea, A. Kishimoto, R. Marinescu, On the Complexity of Quantum Circuit
Compilation, in: The Eleventh International Symposium on Combinatorial
Search (SOCS 2018), 2018.

23

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Computer Networks 254 (2024) 110672

J. Kusyk, S.M. Saeed, M.U. Uyar, Survey on quantum circuit compilation for
noisy intermediate-scale quantum computers: Artificial intelligence to heuristics,
IEEE Trans. Quantum Eng. 2 (2021) 1-16, http://dx.doi.org/10.1109/TQE.
2021.3068355.

S. Sivarajah, S. Dilkes, A. Cowtan, et al., T|ket—: a retargetable compiler for
NISQ devices, Quantum Sci. Technol. 6 (1) (2020) 014003.

A.D. Carcoles, A. Kandala, A. Javadi-Abhari, et al., Challenges and opportunities
of near-term quantum computing systems, Proc. of the IEEE (2020) 1-15, in
press.

D. Ferrari, M. Amoretti, Efficient and effective quantum compiling for
entanglement-based machine learning on IBM Q devices, Int. J. Quantum Inf.
16 (08) (2018) 1840006.

L. Cincio, Y. Subasi, A.T. Sornborger, P.J. Coles, Learning the quantum
algorithm for state overlap, New J. Phys. 20 (11) (2018) 113022.

A. Zulehner, A. Paler, R. Wille, An efficient methodology for mapping quantum
circuits to the IBM gx architectures, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 38 (7) (2019) 1226-1236.

M. Soeken, G. Meuli, B. Schmitt, et al., Boolean satisfiability in quantum
compilation, Phil. Trans. Royal Soc. A 378 (2164) (2019) 1-16, http://dx.doi.
org/10.1098/rsta.2019.0161.

C. Chamberland, G. Zhu, T.J. Yoder, et al., Topological and Subsystem Codes
on Low-Degree Graphs with Flag Qubits, Phys. Rev. X 10 (011022) (2020).
IBM Q, Transpiler, https://qiskit.org/documentation/apidoc/transpiler.html.

P. Andrés-Martinez, C. Heunen, Automated distribution of quantum circuits via
hypergraph partitioning, Phys. Rev. A 100 (2019) 032308, http://dx.doi.org/
10.1103/PhysRevA.100.032308.

R. G. Sundaram, H. Gupta, C.R. Ramakrishnan, Efficient Distribution of Quan-
tum Circuits, in: 35th International Symposium on Distributed Computing (DISC
2021), 2021.

R.G. Sundaram, H. Gupta, C.R. Ramakrishnan, Distribution of Quantum Circuits
Over General Quantum Networks, in: 2022 IEEE International Conference on
Quantum Computing and Engineering, QCE, 2022, pp. 415-425.

O. Daei, K. Navi, M. Zomorodi-Moghadam, Optimized quantum circuit parti-
tioning, Internat. J. Theoret. Phys. 59 (12) (2020) 3804-3820, http://dx.doi.
org/10.1007/s10773-020-04633-8.

Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, M. Nouri-baygi, A
dynamic programming approach for distributing quantum circuits by bipartite
graphs, Quantum Inf. Process. 19 (2020) http://dx.doi.org/10.1007/s11128-
020-02871-7.

E. Nikahd, N. Mohammadzadeh, M. Sedighi, M.S. Zamani, Automated window-
based partitioning of quantum circuits, Phys. Scr. 96 (3) (2021) 035102,
http://dx.doi.org/10.1088/1402-4896/abd57c.

D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati, A.S.
Cacciapuoti, Optimized compiler for distributed quantum computing, ACM
Trans. Quantum Comput. 4 (2) (2023) 1-29.

D. Dadkhah, M. Zomorodi, S.E. Hosseini, A New Approach for Optimization
of Distributed Quantum Circuits, Internat. J. Theoret. Phys. 60 (9) (2021)
3271-3285, http://dx.doi.org/10.1007/510773-021-04904-y.

R. Beals, S. Brierley, O. Gray, et al., Efficient distributed quantum computing,
Proc. R. Soc. A Math. Phys. Eng. Sci. 469 (2153) (2013) 20120686.

S. Brierley, Efficient implementation of quantum circuits with limited qubit
interactions, Quantum Info. Comput. 17 (13-14) (2017) 1096-1104.

P. Andres-Martinez, T. Forrer, D. Mills, J. Wu, L. Henaut, K. Yamamoto, M.
Murao, R. Duncan, Distributing circuits over heterogeneous, modular quantum
computing network architectures, Quantum Science and Technology (2024)
http://dx.doi.org/10.1088/2058-9565/ad6734.

P. Promponas, A. Mudvari, L. Della Chiesa, P. Polakos, L. Samuel, L. Tassi-
ulas, Compiler for distributed quantum computing: a reinforcement learning
approach, 2024, arXiv preprint arXiv:2404.17077.

Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D.I. Schuster, H. Hoffmann, F.T.
Chong, Optimized compilation of aggregated instructions for realistic quantum
computers, in: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 1031-1044, http://dx.doi.org/10.1145/3297858.3304018, URL https://doi.
org/10.1145/3297858.3304018.

P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, F.T. Chong, Optimized
quantum compilation for near-term algorithms with OpenPulse, in: 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO,
2020, pp. 186-200, http://dx.doi.org/10.1109/MICR0O50266.2020.00027.

J. Cheng, H. Deng, X. Qia, Accqoc: Accelerating quantum optimal control based
pulse generation, in: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ISCA, 2020, pp. 543-555, http://dx.doi.org/10.1109/
1SCA45697.2020.00052.

S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe,
Demonstration of a small programmable quantum computer with atomic qubits,
Nature 536 (7614) (2016) 63-66, http://dx.doi.org/10.1038/nature18648.
A.G. Fowler, S.J. Devitt, L.C.L. Hollenberg, Implementation of Shor’s algorithm
on a linear nearest neighbor qubit array, Quantum Inf. Process. 4 (2004)
237-251, http://dx.doi.org/10.26421/QIC4.4.

http://refhub.elsevier.com/S1389-1286(24)00504-8/sb72
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb72
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb72
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb73
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb74
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb74
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb74
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb74
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb74
http://dx.doi.org/10.1038/npjqi.2015.23
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb76
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb76
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb76
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb77
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb77
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb77
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb77
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb77
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb78
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb78
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb78
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb78
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb78
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb79
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb79
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb79
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb80
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb80
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb80
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb81
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb81
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb81
https://www.osti.gov/biblio/366453
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb83
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb83
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb83
http://arxiv.org/abs/1707.03429
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb87
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb88
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb88
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb88
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb88
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb88
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb89
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb89
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb89
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb89
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb89
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb90
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb90
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb90
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb90
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb90
http://arxiv.org/abs/2302.00267
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb92
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb92
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb92
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb92
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb92
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb93
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb93
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb93
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb93
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb93
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb94
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb94
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb94
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb95
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb95
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb95
http://dx.doi.org/10.1090/conm/381
http://dx.doi.org/10.1090/conm/381
http://dx.doi.org/10.1090/conm/381
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb97
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb97
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb97
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb97
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb97
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb98
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb98
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb98
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb98
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb98
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb99
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb99
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb99
http://arxiv.org/abs/2210.08135v1
http://arxiv.org/abs/2210.10752v1
http://arxiv.org/abs/2210.10752v1
http://arxiv.org/abs/2210.10752v1
http://dx.doi.org/10.1103/PhysRevA.100.032328
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb103
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb103
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb103
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb103
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb103
http://dx.doi.org/10.1109/TQE.2021.3068355
http://dx.doi.org/10.1109/TQE.2021.3068355
http://dx.doi.org/10.1109/TQE.2021.3068355
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb105
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb105
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb105
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb106
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb106
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb106
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb106
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb106
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb107
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb107
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb107
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb107
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb107
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb108
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb108
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb108
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb109
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb109
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb109
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb109
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb109
http://dx.doi.org/10.1098/rsta.2019.0161
http://dx.doi.org/10.1098/rsta.2019.0161
http://dx.doi.org/10.1098/rsta.2019.0161
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb111
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb111
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb111
https://qiskit.org/documentation/apidoc/transpiler.html
http://dx.doi.org/10.1103/PhysRevA.100.032308
http://dx.doi.org/10.1103/PhysRevA.100.032308
http://dx.doi.org/10.1103/PhysRevA.100.032308
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb114
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb114
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb114
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb114
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb114
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb115
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb115
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb115
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb115
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb115
http://dx.doi.org/10.1007/s10773-020-04633-8
http://dx.doi.org/10.1007/s10773-020-04633-8
http://dx.doi.org/10.1007/s10773-020-04633-8
http://dx.doi.org/10.1007/s11128-020-02871-7
http://dx.doi.org/10.1007/s11128-020-02871-7
http://dx.doi.org/10.1007/s11128-020-02871-7
http://dx.doi.org/10.1088/1402-4896/abd57c
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb119
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb119
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb119
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb119
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb119
http://dx.doi.org/10.1007/s10773-021-04904-y
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb121
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb121
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb121
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb122
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb122
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb122
http://dx.doi.org/10.1088/2058-9565/ad6734
http://arxiv.org/abs/2404.17077
http://dx.doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3297858.3304018
http://dx.doi.org/10.1109/MICRO50266.2020.00027
http://dx.doi.org/10.1109/ISCA45697.2020.00052
http://dx.doi.org/10.1109/ISCA45697.2020.00052
http://dx.doi.org/10.1109/ISCA45697.2020.00052
http://dx.doi.org/10.1038/nature18648
http://dx.doi.org/10.26421/QIC4.4

M. Caleffi et al.

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (2) (1970) 291-307, http://dx.doi.org/10.1002/j.1538-
7305.1970.tb01770.x.

B. Bartlett, A distributed simulation framework for quantum networks and
channels, 2018, arXiv e-prints, arXiv:1808.07047.

T. Coopmans, R. Knegjens, A. Dahlberg, et al., NetSquid, a NETwork Simulator
for QUantum Information using Discrete events, Commun. Phys. 4 (1) (2021)
164.

A. Dahlberg, S. Wehner, SimulaQron - a simulator for developing quantum
internet software, Quantum Sci. Technol. 4 (1) (2018) 015001.

X. Wu, A. Kolar, J. Chung, et al., SeQUeNCe: a customizable discrete-event
simulator of quantum networks, Quantum Sci. Technol. 6 (4) (2021) 045027.
T. Matsuo, Simulation of a dynamic, RuleSet-based quantum network, 2021,
arXiv e-prints, arXiv:1908.10758.

S. DiAdamo, J. Notzel, B. Zanger, M.M. Bese, QuNetSim: A Software Framework
for Quantum Networks, IEEE Trans. Quantum Eng. 2 (2021) 1-12.

QuTech, Quantum Network Explorer ADK, 2022, URL https://github.com/
QuTech-Delft/qne-adk.

C.-T. Liao, S. Bahrani, F.F. da Silva, E. Kashefi, Benchmarking of quantum
protocols, Sci. Rep. 12 (1) (2022) 5298, http://dx.doi.org/10.1038/541598-022-
08901-x.

M. Mehic, M. Niemiec, S. Rass, et al., Quantum key distribution: A networking
perspective, ACM Comput. Surv. 53 (5) (2020).

A. Manzalini, M. Amoretti, End-to-end entanglement generation strategies:
Capacity bounds and impact on quantum key distribution, Quantum Rep. 4
(3) (2022) 251-263.

C. Cicconetti, M. Conti, A. Passarella, Request scheduling in quantum networks,
IEEE Trans. Quantum Eng. 2 (2021) 2-17.

Various Authors, Quantum protocol zoo, 2022, URL https://wiki.verigloud.fr/
index.php.

S. Devitt, W. Munro, K. Nemoto, Quantum error correction for beginners, Rep.
Progr. Phys. 76 (7) (2013).

D.S. Steiger, T. Haner, M. Troyer, ProjectQ: An Open Source Software Frame-
work for Quantum Computing, Quantum 2 (2018) 49, http://dx.doi.org/10.
22331/q-2018-01-31-49, arXiv:1612.08091.

B. Zanger, S. DiAdamo, EQSN: Effective Quantum Simulator for Networks, 2020,
URL https://github.com/tqsd/EQSN_python.

D. Ferrari, S. Nasturzio, M. Amoretti, A software tool for mapping and executing
distributed quantum computations on a network simulator, 2021, URL https:
//2021.qcrypt.net/speakers/#list-of-accepted- posters.

A.W. Cross, L.S. Bishop, J.A. Smolin, J.M. Gambetta, Open quantum assembly
language, 2017, arXiv e-prints, arXiv:1707.03429.

P. Magnard, S. Storz, P. Kurpiers, et al., Microwave quantum link between
superconducting circuits housed in spatially separated cryogenic systems, Phys.
Rev. Lett. 125 (2020) 260502.

L. d’Avossa, M. Caleffi, C. Wang, J. Illiano, S. Zorzetti, A.S. Cacciapuoti,
Towards the quantum internet: entanglement rate analysis of high-efficiency
electro-optic transducer, in: 2023 IEEE International Conference on Quantum
Computing and Engineering, QCE, 1, IEEE, 2023, pp. 1325-1334.

N. Lauk, N. Sinclair, S. Barzanjeh, J.P. Covey, M. Saffman, M. Spiropulu, C.
Simon, Perspectives on quantum transduction, Quantum Sci. Technol. 5 (2)
(2020) 020501.

L. d’Avossa, A.S. Cacciapuoti, M. Caleffi, Quantum transduction models for
multipartite entanglement distribution, IEEE QCNC24 (2024).

C.H. Bennett, G. Brassard, S. Popescu, et al., Purification of noisy entanglement
and faithful teleportation via noisy channels, Phys. Rev. Lett. 76 (5) (1996) 722.
C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state
entanglement and quantum error correction, Phys. Rev. A 54 (5) (1996) 3824.
J.I. Cirac, AK. Ekert, S.F. Huelga, C. Macchiavello, Distributed quantum
computation over noisy channels, Phys. Rev. A 59 (1999) 4249-4254.

L. Ruan, W. Dai, M.Z. Win, Adaptive recurrence quantum entanglement
distillation for two-kraus-operator channels, Phys. Rev. A 97 (5) (2018) 052332.
F. Rozpedek, T. Schiet, D. Elkouss, et al., Optimizing practical entanglement
distillation, Phys. Rev. A 97 (6) (2018) 062333.

L. Ruan, B.T. Kirby, M. Brodsky, M.Z. Win, Efficient entanglement distillation
for quantum channels with polarization mode dispersion, Phys. Rev. A 103 (3)
(2021) 032425.

F. Mazza, M. Caleffi, A.S. Cacciapuoti, Quantum LAN: On-demand network
topology via two-colorable graph states, IEEE QCNC24 (2024).

K. Simonov, M. Caleffi, J. Illiano, A.S. Cacciapuoti, Universal quantum com-
putation via superposed orders of single-qubit gates, 2023, arXiv preprint
arXiv:2311.13654.

F. Riera-Sabat, W. Diir, A modular entanglement-based quantum computer
architecture, 2024, arXiv preprint arXiv:2406.05735.

R. Raussendorf, H. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86
(2001) 5188-5191.

R. Raussendorf, H. Briegel, Computational model underlying the one-way
quantum computer, 2001, arXiv preprint quant-ph/0108067.

M. Hein, J. Eisert, H.J. Briegel, Multiparty entanglement in graph states, Phys.
Rev. A 69 (6) (2004) 062311.

24

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Computer Networks 254 (2024) 110672

P. Murali, J.M. Baker, A.J. Abhari, et al., Noise-adaptive compiler mappings
for noisy intermediate-scale quantum computers, 2019, arXiv e-prints, arXiv:
1901.11054.

S. Nishio, Y. Pan, T. Satoh, et al., Extracting success from ibm-s 20-qubit
machines using error-aware compilation, J. Emerg. Technol. Comput. Syst. 16
(3) (2020).

S. Niu, A. Suau, G. Staffelbach, A. Todri-Sanial, A hardware-aware heuristic
for the qubit mapping problem in the nisq era, IEEE Trans. Quantum Eng. 1
(2020) 1-14.

D. Ferrari, M. Amoretti, Noise-adaptive quantum compilation strategies evalu-
ated with application-motivated benchmarks, in: Proceedings of the 19th ACM
International Conference on Computing Frontiers, CF 22, 2022, pp. 237-243,
http://dx.doi.org/10.1145/3528416.3530250.

J. Wang, G. Guo, Z. Shan, Sok: Benchmarking the performance of a quantum
computer, Entropy 24 (10) (2022) http://dx.doi.org/10.3390/e24101467.

F. Bouchard, K. Fenwick, K. Bonsma-Fisher, D. England, P.J. Bustard, K.
Heshami, B. Sussman, Programmable photonic quantum circuits with ultrafast
time-bin encoding, 2024, arXiv preprint arXiv:2404.17657.

M. Amoretti, S. Carretta, Entanglement verification in quantum networks with
tampered nodes, IEEE J. Sel. Areas Commun. 38 (3) (2020) 598-604.

O. van Deventer, N. Spethmann, M. Loeffler, M. Amoretti, et al., Towards
European Standards for Quantum Technologies, EPJ Quantum Technol. 9 (3)
(2022).

Marcello Caleffi is currently Professor with the DIETI
Department, University of Naples Federico II, where he co-
lead the Quantum Internet Research Group. He is also with
the National Laboratory of Multimedia Communications,
National Inter- University Consortium for Telecommunica-
tions. From 2010 to 2011, he was with the Broadband
Wireless Networking Laboratory with the Georgia Institute
of Technology, as a Visiting Researcher. In 2011, he was
also with the NaNoNetworking Center in Catalunya (N3Cat)
with the Universitat Politecnica de Catalunya, as a Visiting
Researcher. Since July 2018, he held the Italian National
Habilitation as a Full Professor of Telecommunications
Engineering. His work appeared in several premier IEEE
Transactions and Journals, and he received multiple awards,
including the “2024 IEEE Communications Society Award for
Advances in Communication and the “2022 IEEE Commu-
nications Society Best Tutorial Paper Award”. He currently
serves as an Editor/Associate Editor for IEEE Trans. On
Wireless Communications, IEEE Trans. on Communications,
IEEE Transactions On Quantum Engineering, IEEE Open
Journal of the Communications Society and IEEE Internet
Computing. He has served as the chair, the TPC chair, and a
TPC member for several premier IEEE conferences. In 2017,
he has been appointed as Distinguished Visitor Speaker
from the IEEE Computer Society and he has been elected
treasurer of the IEEE ComSoc/VT Italy Chapter. In 2019,
he has been also appointed as a member of the IEEE New
Initiatives Committee from the IEEE Board of Directors and,
in 2023, he has been appointed as ComSoc Distinguished
Lecturer.

Michele Amoretti received his Ph.D. in Information Tech-
nologies in 2006 from the University of Parma, Parma,
Italy. He is an Associate Professor of Computer Engineering
at the University of Parma (Italy), where he leads the
Quantum Software Laboratory (QSLab) in the Department of
Engineering and Architecture. He authored or co-authored
over 130 research papers in refereed international journals,
conference proceedings, and books. He serves as Associate
Editor for the journal IEEE Trans. on Quantum Engineering.
He is the Principal Investigator of the University of Parma’s
research unit involved in the “Quantum Internet Alliance”
project funded by the European Union - Horizon Europe —
Quantum Flagship initiative. He is also involved as a re-
searcher in the “National Quantum Science and Technology
Institute (NQSTI)”, funded by the European Union — Next
Generation EU. He is a member of the Italian delegation in
CEN/CENELEC’s JTC 22 “Quantum Technologies”.

http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://arxiv.org/abs/1808.07047
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb132
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb132
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb132
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb132
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb132
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb133
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb133
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb133
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb134
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb134
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb134
http://arxiv.org/abs/1908.10758
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb136
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb136
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb136
https://github.com/QuTech-Delft/qne-adk
https://github.com/QuTech-Delft/qne-adk
https://github.com/QuTech-Delft/qne-adk
http://dx.doi.org/10.1038/s41598-022-08901-x
http://dx.doi.org/10.1038/s41598-022-08901-x
http://dx.doi.org/10.1038/s41598-022-08901-x
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb139
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb139
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb139
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb140
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb140
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb140
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb140
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb140
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb141
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb141
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb141
https://wiki.veriqloud.fr/index.php
https://wiki.veriqloud.fr/index.php
https://wiki.veriqloud.fr/index.php
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb143
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb143
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb143
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2018-01-31-49
http://arxiv.org/abs/1612.08091
https://github.com/tqsd/EQSN_python
https://2021.qcrypt.net/speakers/#list-of-accepted-posters
https://2021.qcrypt.net/speakers/#list-of-accepted-posters
https://2021.qcrypt.net/speakers/#list-of-accepted-posters
http://arxiv.org/abs/1707.03429
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb148
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb148
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb148
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb148
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb148
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb149
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb150
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb150
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb150
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb150
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb150
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb151
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb151
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb151
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb152
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb152
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb152
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb153
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb153
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb153
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb154
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb154
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb154
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb155
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb155
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb155
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb156
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb156
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb156
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb157
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb157
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb157
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb157
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb157
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb158
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb158
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb158
http://arxiv.org/abs/2311.13654
http://arxiv.org/abs/2406.05735
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb161
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb161
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb161
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb162
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb162
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb162
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb163
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb163
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb163
http://arxiv.org/abs/1901.11054
http://arxiv.org/abs/1901.11054
http://arxiv.org/abs/1901.11054
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb165
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb165
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb165
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb165
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb165
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb166
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb166
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb166
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb166
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb166
http://dx.doi.org/10.1145/3528416.3530250
http://dx.doi.org/10.3390/e24101467
http://arxiv.org/abs/2404.17657
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb170
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb170
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb170
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb171
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb171
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb171
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb171
http://refhub.elsevier.com/S1389-1286(24)00504-8/sb171

M. Caleffi et al.

Davide Ferrari his Ph.D. in Information Technologies at the
Department of Engineering and Architecture of the Univer-
sity of Parma, Italy, in 2023. During the Ph.D. he worked on
quantum compiling, quantum optimization and distributed
quantum computing. He has been a research scholar at
Future Technology Lab of the University of Parma, working
on the design of efficient algorithms for quantum compiling.
He is now a research fellow at the Department of Engi-
neering and Architecture of the University of Parma. He is
involved in the Quantum Information Science (QIS) research
initiative at the University of Parma, where he is a member
of the Quantum Software Laboratory. In 2020, he won
the ’IBM Quantum Awards Circuit Optimization Developer
Challenge’. His research focuses on quantum optimization
applications and efficient quantum compiling for local and
distributed quantum computing.

Jessica Illiano received the B.Sc degree in 2018 and then
the M.Sc degree in 2020 both (summa cum laude) in
Telecommunications Engineering from University of Naples
Federico II (Italy). In 2020 she was winner of the schol-
arship "Quantum Communication Protocols for Quantum
Security and Quantum Internet" fully funded by TIM S.p.A.
and in 2024 she received her Ph.D. degree in Information
Technologies and Electrical Engineering at University of
Naples Federico II. Since 2017, she is a member of the
Quantum Internet Research Group, FLY: Future Communi-
cations Laboratory at the University of Naples Federico II
where she currently is Assistant Professor. Currently, she is
website co-chair of N2Women and student Associate Editor
for IET Quantum Communication. Her research interests
include quantum communications, quantum networks and
quantum information processing.

Antonio Manzalini received the M. Sc. Degree in Electronic
Engineering from the Politecnico of Turin (Italy) and the
Ph.D. (cum Laude) from Sorbonne Universités (France). In
1990 he joined Telecom Italia (formerly CSELT) where he
was involved in innovation activities on technologies and
architectures for optical networks. He actively participated
in standardization, mainly in ETSI and ITU-T, and he was
involved in several EURESCOM and European Project play-
ing responsibility roles. He was Chair of the IEEE initiative
on Software Defined Networks (SDN), and he was General

25

Computer Networks 254 (2024) 110672

Chair of the several IEEE Conferences. He owns several
patents on methods and systems for networks and services.
His results were published in more than 130 of technical
papers and publications. Currently, he is working in TIM
(Telecom Italia) Innovation, addressing Cloud-Edge Com-
puting, Beyond-5G Networks and Quantum Communications
and Computing. He is currently Chair in GSMA of a group
on Quantum Networking and Services.

Angela Sara Cacciapuoti (www.quantuminternet.it) is a
Professor of Quantum Communications and Networks at
the University of Naples Federico II (Italy). Her work
has appeared in first tier IEEE journals and she received
different awards, including the “2024 IEEE ComSoc Award
for Advances in Communication”, the “2022 IEEE ComSoc
Best Tutorial Paper Award”, the “2022 WICE Outstanding
Achievement Award” for her contributions in the quantum
communication and network fields, and “2021 N2Women:
Stars in Networking and Communications”. Lately, she also
received the IEEE ComSoc Distinguished Service Award for
EMEA 2023, assigned for the outstanding service to IEEE
ComSoc in the EMEA Region. Currently, she is an IEEE
ComSoc Distinguished Lecturer with lecture topics on the
Quantum Internet design and Quantum Communications.
And she serves also as Member of the TC on SPCOM
within the IEEE Signal Processing Society. Moreover, she
serves as Area Editor for IEEE Trans. on Communications
and as Editor/Associate Editor for the journals: IEEE Trans.
on Quantum Engineering, IEEE Network and IEEE Commu-
nications Surveys & Tutorials. She served as Area Editor
for IEEE Communications Letters(2019 - 2023), and she
was the recipient of the 2017 Exemplary Editor Award of
the IEEE Communications Letters. In 2023, she also served
as Lead Guest Editor for IEEE JSAC special issue "The
Quantum Internet: Principles, Protocols, and Architectures".
From 2020 to 2021, Angela Sara was the Vice-Chair of
the IEEE ComSoc Women in Communications Engineering.
Previously, she has been appointed as Publicity Chair of
WICE. From 2017 to 2020, she has been the Treasurer of
the IEEE Women in Engineering (WIE) Affinity Group of
the IEEE Italy Section. Her research interests are in Quan-
tum Information Processing, Quantum Communications and
Quantum Networks.

http://www.quantuminternet.it

	Distributed quantum computing: A survey
	Introduction
	Outline

	Distributed Quantum Computing
	Monolithic Quantum Computing
	Archetypes for Distributed Quantum Computing
	Multi-Core Quantum Architectures
	Multi-Computer Quantum Architectures
	Multi-Farm Quantum Architectures

	Quantum Networking: Enabling Remote Operations
	Communication Primitives
	Direct Qubit Transmission
	TeleData Primitive
	TeleGate Primitive
	Classical Control and Communications

	Augmented Coupling Map
	More on Communication Protocols for DQC

	Quantum Algorithms
	Description Formats
	Partitioning
	Execution Management

	Quantum Compiling
	Hardware Matching
	Qubit Assignment
	Remote Operations Optimization

	Simulation Tools
	Hardware-oriented
	Protocol-oriented
	Application-oriented

	Open Issues and Research Directions
	Quantum Networking
	Multi-Core Quantum Architectures
	Multi-Computer Quantum Architectures
	Multi-Farm Quantum Architectures
	Cross-Architecture Challenges

	Quantum Algorithms
	Quantum Compiling
	Quantum Simulation

	Discussion and Future Perspective
	Discussion
	Industrial and Standardization Perspective

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

