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Abstract— Counter-intuitively, quantum mechanics enables
quantum particles to propagate simultaneously among multiple
space-time trajectories. Hence, a quantum information carrier
can travel through different communication channels in a quan-
tum superposition of different orders, so that the relative causal
order of the communication channels becomes indefinite. This
is realized by utilizing a quantum device known as quantum
switch. In this paper, we investigate, from a communications
engineering perspective, the use of the quantum switch within
the quantum teleportation process, one of the key functionalities
of the Quantum Internet. Specifically, a theoretical analysis is
conducted to quantify the performance gain that can be achieved
by employing a quantum switch for the entanglement distribution
process within the quantum teleportation, with respect to the
case of absence of the quantum switch. The analysis reveals that,
by utilizing the quantum switch, the quantum teleportation is
heralded as a noiseless communication process with a probability
that, remarkably and counter-intuitively, increases with the noise
levels affecting the communication channels considered in the
indefinite-order combination.

Index Terms— Quantum internet, quantum teleportation,
entanglement, quantum switch, indefinite causal order.

I. INTRODUCTION

TRADITIONALLY, the transmission of quantum infor-
mation is assumed to flow along classical trajectories,

i.e., trajectories that obey to the law of classical physics.
Specifically, the quantum information carriers are usually
assumed to travel along well-defined trajectories in space-
time [1].

This assumption implies that, when the quantum mes-
sage is sent through a sequence of communication channels,
the order in which the channels are traversed is well-defined.
As instance, with reference to Fig. 1, when a message m must
go through two communication channels, say channels D and
E , to reach the destination, either channel E is traversed after
channel D as in Fig. 1a or vice versa as in Fig. 1b.

However, quantum particles can also propagate simultane-
ously among multiple space-time trajectories [2]. This ability
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enables in principle the possibility for a quantum particle to
experience a set of evolutions in a superposition of alter-
native orders.1 In other words, quantum mechanics enables
communication channels to be combined in a quantum super-
position of different orders as in Fig. 1c, such that it is not
possible to say which channel is traversed before the other.
In literature, this is expressed by stating that the relative order
(i.e., the causal order) between the communication channels is
indefinite [4], [5].

This “exotic” communication scenario, realized through a
novel quantum device called quantum switch [6], arises when
the causal order of the communication channels is controlled
by a quantum degree of freedom, represented by a control
qubit.

The utilization of a quantum switch provides significant
advantages for a number of problems, ranging from quantum
computation [6]–[8] and quantum information processing [4],
[9] through non-local games [5] to communication complexity
[10], [11]. And multiple physical implementations of the quan-
tum switch have been proposed and experimentally realized
with photons [12]–[14], with the control qubit represented
by polarization or orbital angular momentum degrees of free-
doms.

Even more interesting from a communications engineering
perspective, the quantum switch has been recently applied
to the communications domain. Specifically, the quantum
channel capacity2 when the message traverses noisy channels
in a superposition of alternative orders has been investigated
theoretically [1], [2], [16], [19] and experimentally [20], [21].
And the results are remarkable [1]: a quantum superposition
of two alternative orders of noisy channels can behave as a
perfect quantum communication channel, even if no quantum
information can be sent throughout either of the constituent
channels individually.

In this paper, inspired by these recent works, we investigate
the use of the quantum switch within the quantum teleporta-
tion process, one of the key functionalities of the Quantum
Internet, as recently surveyed in [22].

Specifically, quantum teleportation [22]–[24] constitutes a
priceless strategy for “transmitting” qubits [25], [26], without
the physical transfer of the particle storing the qubit. To realize
the marvels of the quantum teleportation two resources are
needed. One resource is classic: two classical bits must be
transmitted from the source to the destination. The other

1Indeed, a quantum particle can also experience a set of alternative evolu-
tions by propagating simultaneously along multiple paths [3].

2Indeed, a superposition of alternative orders provides advantages also in
terms of classical channel capacity, as investigated in [15]–[18].
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Fig. 1. Pictorial representation classical/quantum trajectories: (a)-(b) a message traversing two channels in a well-defined causal order; (c) a message traversing
two channels in a superposition of different causal orders.

resource is quantum: a pair of maximally-entangled qubits
must be generated and shared between the two parties. As a
consequence, the entanglement generation/distribution process
plays a crucial role within the Quantum Internet.

Unfortunately, the quantum entanglement is a very fragile
resource, easily degraded by noise [22], [27]. And any entan-
glement degradation maps into a degradation of the teleported
quantum information. Nevertheless, as shown through the
paper, the deleterious effects of noisy communication channels
on the entanglement distribution can be significantly reduced
by exploiting the quantum superposition of different causal
orders realized through the quantum switch.

In this context, we conduct a theoretical analysis to quantify
the gain that can be achieved by employing a quantum switch
for the entanglement distribution in the quantum teleporta-
tion, with respect to the case of absence of the quantum
switch. More in details, we derive closed-form expressions
that link the teleported qubit at Bob’s side to the degradations
experienced by the entangled pair during the distribution
process. And stemming from these expressions, we evalu-
ate the average fidelity achievable by utilizing the quantum
switch. The theoretical analysis reveals that the possibility
of a quantum particle to experience a set of evolutions in a
superposition of alternative orders is key to enhance the fidelity
of the teleported qubit. Specifically, by utilizing the quantum
switch, the quantum teleportation is heralded3 as a noiseless
communication process with a probability that, remarkably and
counter-intuitively, increases with the noise levels affecting
the communication channels considered in the indefinite-order
time combination.

The rest of the paper is organized as follows. In Sec. II
we provide some preliminaries about the quantum
switch. In Sec. III we first discuss the quantum teleportation
process and the crucial role played by the entanglement
generation and distribution process within the Quantum
Internet, and then we introduce a practical communication
system model for entanglement distribution through the
quantum switch. In Sec. IV we present some preliminaries

3We refer to [2] for details about the limits to the indefinite order combi-
nation, such as the signaling from the message to the path.

on the entanglement distribution process realized through
a quantum switch, whereas in Sec. V we conduct the
theoretical analysis of the quantum teleportation in presence
of the quantum switch. Finally in Sec. VI we conclude the
paper by highlighting some challenges and open problems
arising with the quantum switch.

A. Contributions

Indefinite causal order, i.e., the theoretical framework under-
lying the quantum switch, is a novel area of research [4]–
[6]. So far, it has been investigated by the physics community
with the aim of theoretically describing the phenomenon and
experimentally confirming its existence, rather than designing
a communication protocol.

Here, with a communications engineering perspective and
by using terminology and concepts tailored for this research
community, we complement these preliminary efforts by con-
sidering one of the most critical communication problem in a
quantum network: the entanglement distribution. In a nutshell,
the main contributions of the paper are as follows.

• We design a scheme to exploit the indefinite causal order
for one of the most critical communication problem in a
quantum network: the entanglement distribution. To this
aim, we carry on a theoretical system modeling of the
quantum switch for 2-qubits systems.

• To quantify the gain that can be achieved by employ-
ing a quantum switch for the entanglement distribution,
we consider the quantum teleportation process, one of
the enabling communication functionality of the quantum
Internet. To this aim, we first derive closed-form expres-
sions able to link the teleported qubit at Bob’s side to
the degradations experienced by the entangled pair during
the distribution process. Then, we quantified the gain by
deriving closed form-expressions for the average fidelity
achievable by utilizing the quantum switch.

• Furthermore, we discuss some future perspectives,
by paving the possibility that the quantum switch could
play a crucial role in the improvement of the quan-
tum communication performance by replacing and/or
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TABLE I

QUANTUM GATES

by acting in synergy with well-known error-correction
techniques such as entanglement purification.

In summary, although the analysis is far from being exhaus-
tive, the results derived in the manuscript are encouraging
in exploring the utilization of the quantum switch in all the
quantum communication protocols that rely on the entangle-
ment resource, ranging from QKD protocols such as E91
[28] through synchronization protocols such as [29], [30]
to consensus protocols as well as identification protocols as
discussed in [31].

II. QUANTUM SWITCH: PRELIMINARIES

As mentioned in Section I, the quantum switch is a novel
quantum device allowing a quantum particle to experience a
set of evolutions in a superposition of alternative orders [1],
[15]. In this “exotic” communication scenario, the relative
order of the communication channels becomes indefinite, since
the channel causal order is governed by a quantum degree
of freedom, which can be represented without any loss in
generality by a qubit |ϕc�, named control qubit.

More in details, whenever the control qubit is initialized to
one of the basis states, say |ϕc� = |0�, the quantum switch
enables the message m to experience the classical trajectory
D → E representing channel E being traversed after channel
D, as shown in Fig. 1a. Similarly, whenever the control qubit is
initialized to the other basis state, say |ϕc� = |1�, the quantum
switch enables the message m to experience the alternative
classical trajectory E → D representing channel E being
traversed before channel D, as shown in Fig. 1b.

Conversely, whenever the control qubit is initialized to a
superposition of the basis states, such as |ϕc� = |+�, the mes-
sage m experiences a quantum trajectory, i.e., it experiences
a superposition4 of the two alternative evolutions D → E and
E → D, as shown in Fig. 1c.

Indeed, as an example of the quantum switch advantages,
let us consider an arbitrary qubit |ϕ� traversing two noisy
quantum channels D and E , and let us assume channel D
being the bit-flip channel and channel E being the phase-flip
channel. The bit-flip channel D flips the state of a qubit from

4The key feature of the quantum switch implementation is the ability to
create entanglement between the control qubit and the causal order according
to the channels are traversed [2]. This is completely different from a classical
communication system, where the information carrier propagates through
channels in parallel.

|0� to |1� (and vice versa) with probability p, leaving the qubit
unaltered with probability 1 − p:

D(ϕ) = (1 − p)ϕ+ pXϕ, (1)

where X denotes the X-gate in Table I. The phase-flip channel
E introduces a relative phase-shift of π between the complex
amplitudes α and β of the qubit |ϕ� = α|0� + β|1� with
probability q, leaving the qubit unaltered with probability 1−q:

E(ϕ) = (1 − q)ϕ + qZϕ, (2)

where Z denotes the Z-gate in Table I. Taken individually,
the quantum capacity Q(·) of each channel is [32]:

Q(D) = 1 −Hb(p),
Q(E) = 1 −Hb(q), (3)

respectively, with Hb(x) � −x log x − (1 − x) log (1 − x)
denoting the Shannon binary entropy.

When the two channels are traversed in a well-defined order,
the overall quantum capacity is lower than the minimum of
the individual capacities [32], a result referred to as bottleneck
capacity. Hence, with reference to the classical well-defined
trajectory D → E , it results:

Q(D → E) ≤ min{Q(D), Q(E)}
= 1 − max{Hb(p),Hb(q)} (4)

and the same result holds for the classical trajectory E → D.
In particular, by considering the scenario where p = q = 1

2 ,
we have that no quantum information can be sent through any
classical trajectory traversing the channels D and E . Indeed,
no quantum information can be sent either through any single
instance of the channels.

Conversely and astounding, an even superposition of the
two alternative evolutions D → E and E → D behaves as an
ideal channel with probability pq = 1

4 [1], violating so the
bottleneck inequality given in (4).

Hence, in a nutshell, a quantum superposition of two
alternative orders of noisy channels can behave as a perfect
quantum communication channel, even if no quantum informa-
tion can be sent throughout either of the constituent channels
individually [1].
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Fig. 2. Quantum teleportation circuit. |ψ〉 denotes the qubit to be transmitted
from Alice to Bob, and |Φ+〉 denotes the EPR pair generated and distributed
so that one qubit is stored at Alice and another qubit is stored at Bob. The
symbol denotes the measurement operation, whereas the double-line =
represents the transmission of a classical bit from Alice to Bob.

III. QUANTUM SWITCH FOR THE QUANTUM INTERNET

Here, we apply the quantum switch to the enabling function-
ality of the Quantum Internet: the entanglement generation and
distribution process. Specifically, we first introduce in Sec. III-
A the quantum teleportation process and we highlight the key
role played by the entanglement generation and distribution
process within the Quantum Internet. Stemming from this,
in Sec. III-B we design a practical communication system
model for entanglement distribution through the quantum
switch.

A. Quantum Teleportation

Quantum teleportation [22]–[24] constitutes a priceless
strategy for “transmitting” qubits [25], [26], without the phys-
ical transfer of the particle storing the qubit.

To realize the marvels of the quantum teleportation two
resources are needed. One resource is classic: two classical
bits must be transmitted from the source, say Alice, to the
destination, say Bob. The other resource is quantum: a pair of
maximally-entangled5 qubits, referred to as EPR pair in honor
of Einstein, Podolsky, and Rosen’s seminal work [33], must
be generated and shared between Alice and Bob.

Once the EPR pair is distributed between Alice and Bob,
Alice performs a sequence of local operations on the two
qubits at her side: the qubit to be teleported and one of the
qubits forming the EPR pair, as shown in Fig. 2. Then, she
transmits to Bob the output, i.e., two classical bits, of a joint
measurement of the two qubits. Once Bob receives the two
bits conveying Alice’s measurement output, he can “recover”
the original quantum information from the EPR qubit at his
side with a sequence of local operations, which depends on
Alice’s measurement, as depicted in Fig. 2. It is worthwhile to
note that, since the entanglement is destroyed as a consequence
of the measurement process, the teleportation of another qubit
requires the generation and the distribution of a new EPR pair.

From the above, it becomes evident that the entanglement
generation/distribution process plays a key role within the

5In simple terms and oversimplifying, entanglement is a counter-intuitive
form of correlation with no counterpart in the classical domain. By mea-
suring individually any of the qubits forming the EPR pair, one obtains a
random outcome. However, by comparing the results of the two independent
measurements, one finds that they match, either directly or complementary.
In particular, measuring one qubit of an EPR pair instantaneously changes the
status of the second qubit, regardless of the distance dividing the two qubits
[22]. For a more in-depth description of quantum entanglement and quantum
teleportation, please refer to Sec. II.D and Sec. III in [22].

Fig. 3. Entanglement distribution via quantum switch. The entanglement
generation process is located at Alice, and ρe = |Φ+〉〈Φ+| denotes the
density matrix of the EPR pair |Φ+〉 generated at Alice. A quantum switch
is employed to distribute the entanglement-pair member |Φ+〉B to Bob.

Quantum Internet, since it is a fundamental pre-requisite for
the transmission of quantum information through the quantum
teleportation process. Hence, at this stage, a question arises:
“how an EPR pair can be generated and distributed between
remote nodes?”

In a nutshell and by oversimplifying, the generation of
quantum entanglement requires that two qubits interact each
others, so that the state of each qubit cannot be described
independently from the state of the other [22]. As an exam-
ple, a popular scheme for entanglement generation involves
carefully pointing a laser beam toward a non-linear crystal,
so that two polarization-entangled photons emerge from the
crystal [34].

Since Alice and Bob represents remote nodes, the entangle-
ment generation occurring at one side must be complemented
by the entanglement distribution functionality, which “moves”
one of the entangled particles to the other side. To this
matter, there is a broad consensus on the adoption of photons
as entanglement carriers [35]. The rationale for this choice
lays in the advantages provided by photons for entanglement
distribution, such as weak interaction with the environment,
easy control with standard optical components as well as high-
speed low-loss transmission to remote nodes.

Despite the attractive features provided by photons as
entanglement carriers, quantum entanglement is a very fragile
resource and it is easily degraded by noise. Indeed, the effect
of the noise is to transform the EPR pair into a non-maximally
entangled pair, i.e., to degrade the amount of entanglement
shared between Alice and Bob. And any entanglement
degradation introduces an unavoidable degradation6 of
the quantum teleportation process, which becomes noisy.
More specifically, the amount of entanglement degradation
introduced during the entanglement generation/distribution
process governs the imperfection of the teleportation
process: the higher is the imperfection affecting the shared
entanglement, the more the teleported qubit at Bob will differ
from the original qubit at Alice.

B. Entanglement Distribution via Quantum Switch

With the discussions of Sec. III-A in mind, here we aim
at designing, from a communications engineering perspective,
a scheme able to exploit the quantum switch for entanglement
distribution.

6We refer the reader to [22] for a in-depth discussion about the different
sources of imperfections affecting the quantum teleportation process.
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More in detail, we envision the scheme depicted in Fig. 3.
A pair of entangled particles is generated7 at Alice. Hence,
one member of the EPR pair, say |Φ+�A, is retained at
Alice whereas the other member, say |Φ+�B , is distributed
to Bob through a quantum switch by using a photon as
entanglement-carrier.

Unfortunately, the quantum switch is an abstract function
rather than a well-defined physical device. Clearly, the naive
implementation proposed in [36] does not fit with any practical
communication system model, since it envisions a sequence of
two teleportation processes sequentially applied in a superposi-
tion of time-orders. Furthermore, although a number of differ-
ent physical implementations have been proposed in literature
[12]–[14], [17], [18], [20], [21], these implementations aimed
at confirming the theoretical results rather than at designing
a communication system block. Indeed, within the mentioned
implementations, realized at a laboratory scale, the communi-
cation links needed to interconnect the different components
of the quantum switch were reasonably assumed ideal.

Conversely, we aim at modeling a practical communica-
tion system where any communication link, regardless of
being an optical fiber link or a free-space optical link, rea-
sonably behaves as a noisy channel degrading the amount
of entanglement eventually shared between Alice and Bob.
Hence, we adapt the circuit realization of the quantum switch
proposed in [2] to the entanglement distribution process,
as depicted in Fig. 4.

Specifically, in Fig. 4 the gate U routes the entanglement-
carrier |Φ+�B through either the upper or the lower wire,
depending on the state of the control qubit |ϕc�. Regardless
whether |Φ+�B encountered channel D (upper wire) or chan-
nel E (lower wire), the SWAP gate routes the entanglement-
carrier through the other portion of the circuit, implementing
so the trajectories D → E and E → D, respectively. Eventu-
ally, regardless of the followed trajectory, gate U † routes the
entanglement-carrier through the correct (upper) wire. Clearly,
whenever the control qubit |ϕc� is in a superposition of the
basis states, we have that the entanglement-carrier experiences
the quantum trajectory corresponding to a superposition of the
two alternative orders D → E and E → D.

From Fig. 4, it becomes evident that a practical commu-
nication system model for entanglement distribution through
quantum trajectories requires (along with a SWAP block) two
communication links. However, by mapping the control qubit
|ϕc� and the entangled-carrier |Φ+�B into different degrees of
freedom of a single photon, it is possible to realize a quantum
trajectory by transmitting a unique photon from Alice to Bob.

More in detail, in Fig. 5 we outline the sketch of a
possible photonic implementation of a quantum switch for
entanglement distribution, where |ϕc� is mapped into the pho-
ton’s polarization |H�,|V � and |Φ+�B is mapped into another
photon’s degree of freedom. Whenever |ϕc� is initialized into
a superposition of the basis states, two photons emerge from
the first Polarization Beam Splitter (PBS): a horizontally-

7It is worthwhile to underline that the assumption of entanglement gener-
ation located at source is not restrictive. Indeed, it constitutes one of most
employed schemes for practical generation and distribution process as recently
surveyed in [22].

Fig. 4. Circuit realization of a quantum switch for entanglement dis-
tribution. The entanglement-carrier |Φ+〉A is retained at Alice, whereas
the entanglement-carrier |Φ+〉B is distributed at Bob through a quantum
trajectory constituted by a superposition of alternative orders D → E and
E → D. The U gate routes the entanglement-carrier |Φ+〉B either through
channel D or E , depending on the state of the control qubit ϕc. When the
entanglement-carrier emerges from one channel, the SWAP gate routes it
through the other channel. Finally, the gate U† recombines the paths of
the entanglement-carrier. ρQS

e denotes the density matrix of the EPR pair
distributed between Alice and Bob through the quantum switch.

polarized photon and a vertically-polarized photon, which are
sent to Bob through two different quantum communication
links. The two photons, during their journeys through the
communication links, bump into a photonic SWAP gate. The
SWAP , implemented with a PBS and a couple of Half-Wave
Plates (HWPs) converting |H� into |V � and vice versa [20],
implements the superposition of alternative orders D → E and
E → D. Finally, the two photons emerging from the two paths
are recombined at Bob with a third PBS.

IV. MODELLING ENTANGLEMENT DISTRIBUTION VIA

QUANTUM SWITCH

A quantum switch for a one-qubit system, represented by
the density matrix ρ, is described mathematically as a higher-
order transformation [1] taking ρ as input and returning as
output P(D, E , ρc)(ρ), function of the two channel D and E
along with the state ρc = |ϕc��ϕc| of the control qubit |ϕc�:

P(D, E , ρc)(ρ) =
∑
i,j

Wij(ρ⊗ ρc)W
†
ij . (5)

In (5), {Wij} denotes the set of Kraus operators associated
with the superposed channel trajectories, given by [1], [2]:

Wij = DiEj ⊗ |0��0| + EjDi ⊗ |1��1|. (6)

with {Di} and {Ej} denoting the Kraus operators associated
with the channels D and E , respectively.

Here, we extend this result to the entanglement distrib-
ution process. More in detail, by considering the circuital
scheme depicted in Fig. 4 with photonic implementation given
in Fig. 5, we extend the use of the quantum switch to the case
of a two-qubit system, represented by the density matrix ρe
that is a 4×4 matrix. To this aim, we consider8 the two noisy
quantum channels introduced in Sec. II: the bit flip channel
and the phase flip channel, given in (1) and (2), respectively.

By assuming without any loss of generality ρe being
the 4 × 4 density matrix9 associated with the EPR pair

8As noted in [1], this choice is not restrictive, since other types of
depolarizing channels are unitarily equivalent to a bit flip and a phase flip
channel. Hence, the analysis in the following can be easily extended by
considering suitable pre-processing and post-processing operations.

9We refer the reader to [22] for a concise introduction to the density matrix
formalism, whereas a in-depth description can be found in [37].
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|Φ+� = (|00� + |11�) /√2:

ρe � |Φ+��Φ+| =

⎡
⎢⎢⎢⎢⎣

1
2

0 0
1
2

0 0 0 0
0 0 0 0
1
2

0 0
1
2

⎤
⎥⎥⎥⎥⎦ , (7)

we have the following results.
Lemma 1: The global quantum state P(D, E , ρc)(ρe) at the

output of the quantum switch depicted in Fig. 4 is given by
equation (8), reported at the bottom of this page, where k⊕1

denotes the addition modulo-2 of k and 1.
Proof: See Appendix A.

From (8), it is possible to recognize that the effect of the
quantum switch on the control qubit ϕc with initial density
matrix ρc is to transform the control qubit into a mixed state of
the two basis states |−�,|+�. By exploiting Lemma 1, we can
derive in Corollary 1 the expression of the density matrix ρQS

e

of the EPR pair distributed between Alice and Bob at the
output of the quantum switch.

Corollary 1: The density matrix ρQS
e of the EPR pair dis-

tributed between Alice and Bob via a quantum switch is given
by (9), reported at the bottom of this page.

Proof: See Appendix B.

From Corollary 1, we have two cases. With probability
pq heralded by a measurement of the control qubit corre-
sponding to the state |−�, the entanglement distribution is
a noiseless process. In fact, Bob receives the particle |Φ+

B�
of the EPR pair without any error, being ρQS

e = ρe as
detailed in Appendix B. As a consequence, by utilizing the
quantum switch, the entanglement distribution process is a
heralded noiseless communication process with probability pq.
Differently, with probability 1−pq heralded by a measurement
of the control qubit corresponding to the state |+�, the entan-
glement distribution is a noisy process being Bob’s particle
|Φ+
B� degraded by the noisy channels. Nevertheless, as it will

be shown in Proposition 1, also in this case the quantum
switch provides a considerable gain, in terms of degradation
reduction, with respect to the case of absence of quantum
switch.

Before concluding this section, we give with Corollary 2
another intermediate result: the expression of the density
matrix ρCT

e of the EPR pair distributed between Alice and Bob
through the classical trajectory D → E . Indeed, the expression
ρCT
e given in (10), as shown at the bottom of this page, holds

for both the classical trajectories D → E and E → D.
Corollary 2: The density matrix ρCT

e of the EPR pair
distributed between Alice and Bob through the classical

P(D, E , ρc)(ρe) =

⎛
⎝(1 − p)(1 − q)ρe + (1 − p)q

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]
ρe

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]†

+ p(1 − q)

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦†⎞⎟⎠⊗ |+��+|

+ pq

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦†

⊗ |−��−| (8)

ρQS
e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρe, with prob. pq,

(1 − p)(1 − q)ρe + p(1 − q)
[∑

i,j |ij��ij⊕1|
]
ρe

[∑
i,j |ij��ij⊕1|

]†
1 − pq

+
(1 − p)q [

∑
i (|i0��i0| − |i⊕11��i⊕11|)] ρe [

∑
i (|i0��i0| − |i⊕11��i⊕11|)]†

1 − pq
otherwise

(9)

ρCT
e = (1 − p)(1 − q)ρe + p(1 − q)

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦†

+ (1 − p)q

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]
ρe

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]†

+ pq

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦†

(10)
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Fig. 5. Sketch of a possible photonic implementation of a quantum switch for entanglement distribution. Two quantum communication links, corresponding to
the noisy quantum channels D and E , are available between Alice and Bob. The control qubit |ϕc〉 of the quantum switch is mapped into the horizontal/vertical
photon’s polarization |H〉,|V 〉, whereas the entangled-carrier |Φ+〉B is mapped into another photon’s degree of freedom. The Polarization Beam Splitter (PBS)
transmits a horizontally-polarized photon and reflects a vertically-polarized photon, whereas the Half-Wave Plate (HWP) realizes the polarization conversion
between |H〉 and |V 〉.

trajectory D → E is given by (10) reported at the bottom
of the previous page.

Proof: See Appendix C.

V. QUANTUM TELEPORTATION VIA QUANTUM SWITCH

Here, we evaluate the performance gain achievable by
distributing the entanglement via a quantum switch within the
quantum teleportation process.

To this aim, in the following we first prove the prelimi-
nary result reported in Lemma 2, revealing the closed-form
expression of the density matrix of the teleported qubit at
Bob’s side as a function of the density matrix of the EPR
pair shared between Alice and Bob. Such a result is manda-
tory to understand and to quantify how the communication
noise impairments on the EPR distribution process affect the
teleported qubit. Finally, stemming from this, we prove the
main result in Proposition 1.

Let ρψ � |ς��ς| be the 2×2 density matrix of the unknown
pure quantum state |ς� = α|0� + β|1� = cos

(
θ
2

) |0� +
eiφ sin

(
θ
2

) |1� that Alice wants to “transmit” to Bob via
the quantum teleportation process introduced in Sec. III-A.
In spherical coordinates, ρψ is equivalent to:

ρψ =

⎡
⎢⎢⎣ cos2

(
θ

2

)
cos

(
θ

2

)
e−iφ sin

(
θ

2

)
cos

(
θ

2

)
eiφ sin

(
θ

2

)
sin2

(
θ

2

)
⎤
⎥⎥⎦

=

[
ρ11
ψ ρ12

ψ

ρ21
ψ ρ22

ψ

]
. (11)

To stress the generality of Lemma 2, it is convenient to intro-
duce the notation ρ̃e to denote the density matrix of the actual
EPR pair distributed between Alice and Bob. The rational of
this choice is that Lemma 2 holds regardless of specific noise
affecting the entanglement generation and distribution process.
As instance and according to this, whenever the entanglement
generation/distribution process is perfect, it results ρ̃e = ρe

given in (7). With this in mind we provide the following
definitions.

Definition 1: Let us denote with
{
ρ̃eij

}
i,j=1,2

the four sub-
block matrices arising by partitioning the 4×4 density matrix
ρ̃e of the actual EPR pair shared between Alice and Bob into
2 × 2 block-matrices, i.e.:

ρ̃e =
[
ρ̃e11 ρ̃e12
ρ̃e21 ρ̃e22

]
. (12)

Definition 2: 1Aij denotes the indicator function of the tele-
portation measurement process at Alice, i.e.:

1Aij =

{
1, if Alice measures state |ij�
0, otherwise.

(13)

Lemma 2: The density matrix ρt of the teleported qubit at
Bob’s side is equal to:

ρt

= 1A00
[
2
(
ρ11
ψ ρ̃e11 + ρ12

ψ ρ̃e12 + ρ21
ψ ρ̃e21 + ρ22

ψ ρ̃e22
)]

+ 1A01
[
2 X

(
ρ22
ψ ρ̃e11 + ρ21

ψ ρ̃e12 + ρ12
ψ ρ̃e21 + ρ11

ψ ρ̃e22
)
X†]

+ 1A10
[
2 Z

(
ρ11
ψ ρ̃e11 − ρ12

ψ ρ̃e12 − ρ21
ψ ρ̃e21 + ρ22

ψ ρ̃e22
)
Z†]

+ 1A11
[
2ZX

(
ρ22
ψ ρ̃e11 − ρ21

ψ ρ̃e12 − ρ12
ψ ρ̃e21 + ρ11

ψ ρ̃e22
)

× (ZX)†
]
, (14)

where ρijψ is given in (11), 1Aij is defined in Def. 2, ρ̃e denotes
the density matrix of the EPR pair distributed between Alice
and Bob, and ρ̃eij is defined in Def. 1.

Proof: See Appendix D.
The closed-form expression (14) derived within Lemma 2

holds regardless of the particulars of the entanglement gen-
eration and distribution process, as long as ρ̃e denotes the
density matrix of the actual EPR pair distributed between
Alice and Bob. Specifically, (14) holds for both quantum
trajectories arising with a quantum switch as well as classical
trajectories. Furthermore, (14) holds also in case of partially
entangled states shared between Alice and Bob, and it remains
valid regardless of the specific noise (if any) affecting the
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Fig. 6. Average fidelity of the teleported qubit when the EPR pair member |Φ+〉B is distributed at Bob’s side via a quantum switch as a function of the
error probabilities p and q of the two considered noisy channels D and E given in (1) and (2).

entanglement generation and/or the quantum channel used for
entanglement distribution.

Indeed, whenever the entanglement generation and distribu-
tion process is perfect, the sub-matrices {ρ̃eij}i,j=1,2 are given
by (7), i.e.:

ρ̃e11 = ρe11 =

[1
2

0

0 0

]
, ρ̃e12 = ρe12 =

[
0

1
2

0 0

]
,

ρ̃e21 = ρe21 =

[
0 0
1
2

0

]
, ρ̃e22 = ρe22 =

[
0 0

0
1
2

]
. (15)

In this case, from (14), it is easy to recognize that the density
matrix ρt of the teleported qubit coincides with the density
matrix ρψ of the unknown pure quantum state |ς� for every
possible outcome of the measurement. Conversely, whenever
the entanglement generation and distribution process is imper-
fect, (14) continues to hold but the sub-matrices {ρ̃eij}i,j=1,2

deviate from their ideal expressions as a consequence of the
noise.

In the following, stemming from the result derived in
Lemma 2, we evaluate in Proposition 1 and in the subsequent
Corollary 3 the performance gain, in terms of reduction of
the imperfections affecting the teleported qubit, achievable
through the superposition of causal orders via the quantum
switch. For this, we resort to the fundamental figure of merit
known as quantum fidelity F . In a nutshell, the fidelity F of
an imperfect quantum state with density matrix ρ, with respect
to a certain pure state |ς�, is a measure, with values between
0 and 1, of the distinguishability of the two quantum states,
and it is generally defined as F = �ς|ρ|ς� [38], [39].

Proposition 1: The average fidelity F
QS

of the teleported
quantum state at Bob’s side when the EPR pair is distributed

via a quantum switch is given by:

F
QS

=

⎧⎨
⎩
F

QS
|−〉 = 1, with probability pq,

F
QS
|+〉 =

3 − 2p− 2q + pq

3(1 − pq)
, otherwise.

(16)

where p and q are the error probabilities of the two considered
noisy channels D and E given in (1) and (2), and F

QS
|−〉 and

F
QS
|+〉 denote the average fidelity when the measurement of the

control qubit correspond to the state |−� and |+�, respectively.
Proof: See Appendix E.

From (16) it is easy to recognize that, with probability pq
heralded by a measurement of the control qubit equal to |−�,
the quantum trajectory corresponding to a even superposition
of the two alternative noisy evolutions D → E and E → D
is equivalent to a noise-free channel. In fact, a fidelity equal
to one, which corresponds to the case of a teleported qubit at
Bob’s side identical to the original qubit, is obtained whenever
the measurement of the control qubit returns state |−�. Clearly,
(16) can be equivalently written in a compact form as:

F
QS

= pq F
QS
|−〉 + (1 − pq)F

QS
|+〉 =

3 − 2p− 2q + 4pq
3

. (17)

Stemming from Proposition 1, in Fig. 6 we report the aver-
age fidelity achievable with a quantum switch, as a function
of the error probabilities p and q of the two considered noisy
channels, i.e., the bit flip channel and the phase flip channel
given in (1) and (2), respectively. More in detail, in Fig. 6a
we show the density plot of the average fidelity F

QS
|+〉 obtained

when the control qubit |ϕc� is measured into state |+� as a
function of p and q. As discussed following Corollary 1, when-
ever |ϕc� is measured into state |+�, the noise on the quantum
channels causes an unavoidable and irreversible degradation of
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Fig. 7. Performance comparison between quantum and classical trajectories as a function of the error probabilities p and q of the two considered noisy
channels D and E given in (1) and (2).

the entanglement, which maps into a degradation of the tele-
ported quantum information. This is evident in Fig. 6a: for any
p, q > 0 the average fidelity F

QS
|+〉 < 1, with values lower than

0.4 for the highest values of the error probabilities p and q.
However, as it will be shown in the following with Fig. 7, when
a quantum switch is utilized for the entanglement distribution,
the degradation of the teleported quantum state is always lower
than the degradation introduced by the classical trajectory for
any value of p, q �= 0. As regards to the average fidelity F

QS
|−〉

obtained when |ϕc� is measured into state |−�, a graphical plot
is not necessary given that F

QS
|−〉 = 1 for any value of p and

q. Finally, in Fig. 6b we report the density plot of the average
fidelity F

QS
= pqF |−〉+(1−p)FQS

|+〉 as a function of p and q.
It is worthwhile to note that the quantum switch guarantees an
average fidelity exceeding the threshold 2

3 , which is the maxi-
mum fidelity achievable by distributing entanglement through
classical channels [40], for most of the values spanned by p
and q. An exception arises whenever p is close to zero and q is
close to 1 (and vice versa). The rationale for this performance
is that, in this case, the superposition of alternative orders
collapses into a classical trajectory given that one of the two
quantum channels behaves as an identical channel.

Corollary 3: The average fidelity F
QS

of the teleported
quantum state at Bob’s side achievable with the quantum
switch is always greater than the average fidelity F

CT
of

the teleported quantum state when a classical trajectory is
adopted, for every p, q �= 0:

F
QS
> F

CT
, (18)

where F
CT

= 3−2p−2q+2pq
3 .

Proof: See Appendix F

Stemming from Corollary 3, in Fig. 7 we compare the
average fidelities achievable with either a quantum switch or a
classical trajectory, as a function of the error probabilities p
and q of the bit flip and the phase flip channel, respectively.
More in detail, in Fig. 7a we report the density plot of the ratio
F

QS
/F

CT
between the average fidelity F

QS
of the teleported

qubit when the EPR pair member |Φ+�B is distributed to Bob
via a quantum switch and the average fidelity F

CT
of the

teleported qubit when the EPR pair member |Φ+�B is dis-
tributed to Bob through a classical trajectory. Indeed, Fig. 7a
clearly shows the performance gain achievable by distributing
entanglement via a quantum switch. To better visualize the
performance gain in terms of fidelity, in Fig. 6b we plot the
average fidelity as a function of p when q = p. Remarkably,
when p = q = 1

2 , i.e., when no quantum information can be
sent through any classical trajectory traversing the channels D
and E , it results that F

QS
= 2

3 while F
CT

= 1
2 . Furthermore,

higher is the noise affecting the communications channels D
and E , higher is the performance gain in terms of fidelity
provided by the quantum trajectory implemented via quantum
switch. Differently, F

CT
decreases by increasing p and q. In the

limit case of having p = q → 1, F
CT → 1

3 whereas F
QS → 1.

In a nutshell and by summarizing, distributing the entan-
glement through a quantum switch provides a significant
performance gain, in terms of fidelity of the teleported qubit
at Bob’s side, for each level of the noise affecting the quan-
tum communication channels. More remarkably, by retaining
at Bob’s side the entangled particles heralded by a |−�-
measurement of the control qubit |ϕc� and by discarding the
particles heralded by a |+�-measurement, the quantum switch
realizes a noiseless entanglement distribution through noisy
channels.
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VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we investigated the utilization of the quantum
switch to face with the noise degradation introduced by the
entanglement distribution within the quantum teleportation
process.

The theoretical analysis revealed that exploiting the possi-
bility for a quantum particle to experience a set of evolutions
in a superposition of alternative orders is key to enhance the
fidelity of the teleported qubit. Specifically, by utilizing the
quantum switch, the teleportation is heralded as a noiseless
communication process with a probability that, remarkably and
counter-intuitively, increases with the noise levels affecting
the communication channels considered in the indefinite-order
time combination.

These preliminary results are encouraging. Nevertheless,
a substantial amount of conceptual and experimental work
has to be developed in order to tackle the challenges and open
problems associated with the utilization of the quantum switch
in the Quantum Internet. In the following, we outline some of
these issues.

A. Quantum Switch vs Entanglement Distillation

A well known technique to counteract the noise impairments
affecting the entanglement generation/distribution process
is the entanglement distillation (or entanglement purifica-
tion) [41]. According to this technique, if the contamination
of the entangled qubits is below a certain threshold, it is
possible to purify multiple imperfectly entangled pairs into
a single “almost-maximally entangled” pair, albeit at the price
of additional processing. Hence, the entanglement purification
exploits multiple transmissions of imperfect entangled pairs
to obtain a single more entangled pair [22]. By compar-
ing entanglement purification and quantum switch from a
communication network perspective, we can argue that the
communication delay induced by the former seems to be
higher that the one induced by the latter. However, further
research is needed to quantify this possible delay-advantage.
Finally, it is worthwhile to note that the benefits provided by
the quantum switch and the entanglement purification can be
mutually combined, with the quantum switch enhancing the
fidelity of each imperfect entangled pair and hence reducing
the number of imperfect pairs required at the destination to
distill a maximally entangled pair, rather than constituting
mutually-exclusive alternatives.

B. Network Design Issues

The possible photonic implementation of a quantum switch
sketched in Sec. III-B requires the availability of two commu-
nication links between Alice and Bob, interconnected through
a swapping device. Although multiple physical implemen-
tations of the quantum switch have been proposed in lit-
erature [12]–[14], [20], [21] as discussed in Sec. I, further
research is needed to face with the challenges arising with
the quantum network design. As instance, when the quantum
communication links are implemented through optical fiber
links, the interconnection through the quantum swap requires

a spatial proximity between the fibers, which in turns poses
additional constraints on the network topology.

C. Channel Noise

The assumption of channel D being the bit-flip channel and
channel E being the phase-flip channel is not restrictive, since
other types of depolarizing channels are unitarily equivalent
to a bit flip and a phase flip channel. Hence the analysis
can be easily extended by considering suitable pre-processing
and post-processing operations, as noted in [1]. Nevertheless,
further research is needed to quantify the performance gain
achievable when both the entangled qubits are distributed via
quantum switches through noisy channels.

Finally, the question whether the quantum switch can be
integrated within the framework of quantum error correction
techniques [42] is an open and interesting problem.

APPENDIX A
PROOF OF LEMMA 1

According to the entanglement distribution scheme depicted
in Fig. 4, the entanglement-pair member |Φ+�A, is already
at Alice’s side, thus it does not need to go throughout any
communication channel. Differently, the second qubit of the
EPR pair |Φ+�B needs to be distributed to Bob.

By distributing |Φ+�B through a quantum switch, the state
of the global system constituted by the entangled pair ρe,
the control qubit ρc = |+��+| and the communication chan-
nels D and E can be described through the Kraus operators
Wij given by:

Wij = (I ⊗Di) (I ⊗ Ej) ⊗ |0��0|
+ (I ⊗ Ej) (I ⊗Di) ⊗ |1��1|, (19)

being the first qubit of the entangled pair (virtually) traveling
throughout an ideal channel represented by the unitary trans-
formation I given in Table I. By exploiting the tensor product
properties, such as A ⊗ C + B ⊗ C = (A + B) ⊗ C and
(A1 ⊗B1)(A2 ⊗B2) = A1A2 ⊗B1B2, (19) can be rewritten
equivalently as:

Wij = I ⊗ (DiEj ⊗ |0��0| + EjDi ⊗ |1��1|) . (20)

Since D and E denotes the bit flip channel and the phase flip
channel, respectively, their Kraus operators are given by [37]:

D1 =
√

1 − pI, D2 =
√
pX

E1 =
√

1 − qI, E2 =
√
qZ (21)

By substituting (20) and (21) in (5), and by exploiting again
the tensor product properties, after some algebraic manipula-
tions it results:

P(D, E , ρc)(ρe)
= (1 − p)(1 − q)(ρe ⊗ |+��+|)

+ (1 − p)q(I ⊗ Z)ρe(I ⊗ Z) ⊗ |+��+|
+ p(1 − q)(I ⊗X)ρe(I ⊗X) ⊗ |+��+|
+ pq(I ⊗XZ)ρe(I ⊗XZ)† ⊗ (Z|+��+|Z) (22)
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Fig. 8. Pictorial Representation of the Quantum Teleportation Process in
terms of density matrices.

From (22), the proof follows by recognizing that Z|+��+|Z =
|−��−| and that:

I ⊗ Z =
∑
i

(|i0��i0| − |i⊕11��i⊕11|)

I ⊗X =
∑
i,j

|ij��ij⊕1|

I ⊗XZ =
∑
i,j

(−1)j⊕1 |ij��ij⊕1| (23)

APPENDIX B
PROOF OF COROLLARY 1

From (8) of Lemma 1, it results that the global state
P(D, E , ρc)(ρe) at the output of the quantum switch is a
mixture of pure states {|+�, |−�} of the control qubit. As a
consequence, by measuring the control qubit in the Hadamard
basis, whenever the measurement outcome is equal to |−� the
global state collapses into the state ρQSe,|−〉 reported in equation
(24), shown at the bottom of this page. In this case, happening
with probability pq, Bob receives the particle |Φ+�B of the
EPR pair without any error. In fact, ρe can be recovered
perfectly from ρQS

e,|−〉 by simply applying on ρQS
e,|−〉 the unitary

corrective operation (I ⊗XZ), defined in (23).
Differently, when the measurement outcome of the control

qubit is the one corresponding to the state |+�, the global state

collapses into the state ρQSe,|+〉 reported in (25), shown at the
bottom of this page. In this case, happening with probability
(1 − pq), Bob cannot receives the particle |Φ+

B� without
errors. Nevertheless, also in this case as it will be shown
in Proposition 1, a considerable gain is assured with respect
to the standard channel composition arising with classical
trajectories.

APPENDIX C
PROOF OF COROLLARY 2

When the bit-flip and phase-flip channels are traversed in a
well defined order - let us say D → E - the density matrix of
the entangled pair ρCT

e at Bob’s side is given by:

ρCT
e = E [D (ρe)] = E

⎡
⎣ ∑
i=1,2

DiρeD
†
i

⎤
⎦

=
∑
j=1,2

Ej

⎡
⎣ ∑
i=1,2

DiρeD
†
i

⎤
⎦E†

j . (26)

By substituting (21) in (26) and by accounting for (23),
the proof follows after some algebraic manipulations.

APPENDIX D
PROOF OF LEMMA 2

To prove the lemma, let us consider Fig. 8 in which we
depicted schematically the quantum teleportation process. The
initial global state ρ1 ∈ C8×8 = ρψ ⊗ ρ̃e is an 8 × 8 matrix
given by:

ρ1 = ρψ ⊗ ρ̃e =

[
ρ11
ψ ρ̃e ρ12

ψ ρ̃e

ρ21
ψ ρ̃e ρ22

ψ ρ̃e

]
. (27)

As indicated in the main text, we denoted with ρ̃e the density
matrix of the actual EPR pair shared between Alice and Bob,
since we do not formulate any assumption on the scheme
employed for the entanglement generation and distribution
process as well as for the noise affecting the process. Specifi-
cally, ρ̃e can be either given by (7) in absence of noise or can
be in some way affected by the noise.

ρQSe,|−〉 =

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

(−1)j⊕1 |ij��ij⊕1|
⎤
⎦†

(24)

ρQSe,|+〉 =

(1 − p)(1 − q)ρe + p(1 − q)

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦ ρe

⎡
⎣∑
i,j

|ij��ij⊕1|
⎤
⎦†

1 − pq

+

(1 − p)q

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]
ρe

[∑
i

(|i0��i0| − |i⊕11��i⊕11|)
]†

1 − pq
(25)
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The teleportation process starts with Alice applying the
CNOT-gate of Table I to the pair of qubits at her side. In terms
of density matrix, this is equivalent to consider an unitary
operator U = CNOT ⊗ I2×2 acting on the global state ρ1,
so that the Bob’s qubit is left unchanged:

ρ2 = Uρ1U
† = (CNOT ⊗ I2×2)ρ1(CNOT ⊗ I2×2). (28)

By accounting for the expression of the CNOT gate and by
substituting (27) in (28), after some algebraic manipulations
one obtains:

ρ2 =

[
ρ11
ψ ρ̃e ρ12

ψ ρ̃eχ

ρ21
ψ χρ̃e ρ22

ψ χρ̃eχ

]
, (29)

with χ ∈ R
4×4 equal to:

χ �
[
02×2 I2×2

I2×2 02×2

]
= χ†. (30)

Then, as shown in Fig. 8, Alice applies the H-gate of Table I
to the state to be teleported. Hence the global state ρ3 after
the H gate is:

ρ3 = (H ⊗ I2×2 ⊗ I2×2)ρ2(H ⊗ I2×2 ⊗ I2×2)†. (31)

By accounting for the expression of the H gate, it results:

H ⊗ I2×2 ⊗ I2×2 =
1√
2

[
I4×4 I4×4

I4×4 −I4×4

]
. (32)

By substituting (32) and (29) in (31), after some algebraic
manipulations, one obtains equation (33), reported at the
bottom of this page, with Γ ∈ C4×4 and Λ ∈ C4×4 defines as:

Γ =

[
ρ11
ψ I2×2 ρ21

ψ I2×2

ρ21
ψ I2×2 ρ11

ψ I2×2

]
, (34)

Λ =

[
ρ12
ψ I2×2 ρ22

ψ I2×2

ρ22
ψ I2×2 ρ12

ψ I2×2

]
. (35)

Finally, as shown in Fig. 8, Alice jointly measures the
pair of quantum states at her side, with 25% chance of
finding each of the four combinations 00, 01, 10, 11. Alice’s
measurement operation instantaneously fixes Bob’s quantum
state, regardless of the distance between Alice and Bob,
as a consequence of the entanglement. However, Bob can
only recover the original state after he correctly receives the
pair of classical bits conveying the specific results of Alice’s
measurement. This further step projects ρ3 on the subspaces
described by the operators Πij ∈ R8×8 = |ij��ij|⊗I2×2, with
i, j ∈ {0, 1}.

More in detail, let us suppose that the measurement out-
come is the one corresponding to the state |00�. After the
measurement, the global quantum state collapse into the state:

ρ00
4 =

Π00ρ3Π
†
00

Tr[Π00ρ3Π
†
00]
. (36)

As a consequence of its definition, Π00 is equal to:

Π00 =

⎡
⎢⎢⎣

|00〉〈00|+|01〉〈01|︷ ︸︸ ︷[
I2×2 02×2

02×2 02×2

]
04×4

04×4 o4×4

⎤
⎥⎥⎦ (37)

By substituting (37) and (33) in (36), and by exploiting the
expressions of Γ and Λ given in (34) and (35), after some
algebraic manipulations, it can be recognized that (36) is
equivalent to:

ρ00
4 = 2|00��00| ⊗ (

ρ11
ψ ρ̃e11 + ρ12

ψ ρ̃e12 + ρ21
ψ ρ̃e21 +ρ22

ψ ρ̃e22
)
,

(38)

where we utilized the block-structure of the matrix ρ̃e in terms
of the 2×2 sub-blocks {ρ̃eij}i,j=1,2. From (38), by tracing out
the composite Alice’s state and by recalling that TrC(C⊗D) =
DTr(C), it results that the density matrix ρt of the teleported
qubit at Bob’s side, when the measurement outcome at Alice
is equal to |00�, is given by:

ρt = 2
(
ρ11
ψ ρ̃e11 + ρ12

ψ ρ̃e12 + ρ21
ψ ρ̃e21 + ρ22

ψ ρ̃e22
)
. (39)

Hence by accounting for Definition 2, the proof follows.
With the same reasoning, the lemma can be proved for

different outcomes of the measurement process at Alice’s side.
As instance, let us suppose that the measurement outcome is
the state |10�. By reasoning as above, it results:

ρ10
4 =

Π10ρ3Π
†
10

Tr[Π10ρ3Π
†
10]

= 2|10��10| ⊗ (
ρ11
ψ ρ̃e11 − ρ12

ψ ρ̃e12 − ρ21
ψ ρ̃e21 + ρ22

ψ ρ̃e22
)
.

(40)

From (40), by tracing out the composite Alice’s state, one
obtains that the density matrix ρt of the teleported qubit at
Bob’s side after having applied the Z gate is given by:

ρt = 2Z
(
ρ11
ψ ρ̃e11 − ρ12

ψ ρ̃e12 − ρ21
ψ ρ̃e21 + ρ22

ψ ρ̃e22
)
Z. (41)

APPENDIX E
PROOF OF PROPOSITION 1

The average fidelity F
QS

of the teleported qubit at Bob’s
side can be evaluated by averaging the conditional fidelity
FQS(θ, φ) � �ς|ρt|ς� [39] on all the possible values of the
qubit |ς�, to avoid the dependence on the specific chosen qubit
|ς�, i.e.:

F
QS

=
1
4π

∫ π

0

dθ

∫ 2π

0

FQS(θ, φ) sin(θ)dφ

=
1
4π

∫ π

0

dθ

∫ 2π

0

�ς|ρt|ς� sin(θ)dθdφ (42)

ρ3 =
1
2

⎡
⎣ Γρ̃e + Λρ̃eχ Γρ̃e − Λρ̃eχ

(I ⊗ Z)Γ(I ⊗ Z)ρ̃e + (I ⊗ Z)Λ(I ⊗ Z)ρ̃eχ (I ⊗ Z)Γ(I ⊗ Z)ρ̃e − (I ⊗ Z)Λ(I ⊗ Z)ρ̃eχ

⎤
⎦ (33)
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By adopting a quantum switch for the entanglement dis-
tribution scheme, from Corollary 1 the density matrix of
the entangled pair ρQS

e at the output of the quantum switch
coincides with ρe whenever the measurement of the control
qubit |ϕc� provides as outcome the one corresponding to the
state |−�. And this outcome is obtained with probability pq.
As a consequence, by substituting ρQS

e = ρe in (14) of
Lemma 2, it results ρt = ρψ. Hence, from (42), the average
fidelity F

QS
|−〉 given that the control qubit |ϕc� is measured into

state |−� is equal to 1.
Conversely, whenever the measurement of the control qubit

|ϕc� provides as outcome the one corresponding to the state
|+�, from Corollary 1 the density matrix of the entangled
pair ρQS

e at the output of the quantum switch is given by (9).
And this outcome is obtained with probability (1− pq). As a
consequence, by supposing without any loss of generality that
1A00 = 1,10 and by substituting the expression (9) of ρQS

e in
(14), it results that the conditional fidelity FQS

|+〉(θ, φ) is given
by:

FQS
|+〉(θ, φ) = �ς|ρt|ς� = Tr [ρtρψ]

= Tr

[
2
(
ρ11
ψ ρ

QS
e11,|+〉 + ρ12

ψ ρ
QS
e12,|+〉 + ρ21

ψ ρ
QS
e21,|+〉

+ ρ22
ψ ρ

QS
e22,|+〉

)[
ρ11
ψ ρ12

ψ

ρ21
ψ ρ22

ψ

]]
, (43)

where ρψ is given in (11) and {ρQS
eij ,|+〉} denotes, according

to Def. 1, the set of the sub-block matrices constituting the
density matrix of the entangled pair ρQS

e in (14) when the
control qubit is measured in the state |+�.

After some algebraic manipulations and by exploiting the
notable equality Re2(z) − Im2(z) = |z|2 − 2Im2(z), holding
for complex quantities, one can write (43) as follows:

FQS
|+〉(θ, φ) =

1
1 − pq

[
(1 − p) − q(1 − p) sin2(θ)

+ p(1 − q) sin2(θ) cos2(φ)
]
. (44)

By substituting (44) in (42), it results:

F
QS
|+〉 =

1
4π

∫ π

0

dθ

∫ 2π

0

FQS
|+〉(θ, φ) sin(θ)dθdφ

=
1

4π(1 − pq)

∫ π

0

dθ

∫ 2π

0

× [
(1 − p) − q(1 − p) sin2(θ)

+ p(1 − q) sin2(θ) cos2(φ)
]
sin(θ)dθdφ. (45)

The proof follows by solving (45).

APPENDIX F
PROOF OF COROLLARY 3

According to the result of Corollary 2, the density matrix
of the entangled pair ρCT

e when no quantum switch is adopted
is given by (10). As a consequence, by assuming without any

10Whenever the indicator function of the measurement process at Alice is
different from 1A

00 = 1, all the above analysis continues to hold, since it is
sufficient to single out the corresponding value of ρt in (14).

loss of generality that 1A00 = 1,11 and by substituting ρCT
e in

(14) of Lemma 2, it results that the average Fidelity F
CT

when
no quantum switch is adopted is given by:

F
CT

=
1
4π

∫ π

0

dθ

∫ 2π

0

F (θ, φ) sin(θ)dθdφ

=
1

4π(1 − pq)

∫ π

0

dθ

∫ 2π

0

[
(1 − p) − q(1 − 2p) sin2(θ)

+ p(1 − 2q) sin2(θ) cos2(φ)
]
sin(θ)dθdφ

=
3 − 2p− 2q + 2pq

3
. (46)

The proof easily follows by considering that (16) can be
equivalently written in a compact form as:

F
QS

= pqF
QS
|−〉 + (1 − pq)F

QS
|+〉 =

3 − 2p− 2q + 4pq
3

. (47)

In fact, by comparing (47) with (46), one obtains that for every
p, q �= 0, F

QS
> F

CT
.
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