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Abstract—The Quantum Internet introduces a fundamental
shift in the network design, since its key objective is the
distribution and manipulation of quantum entanglement, rather
than the transmission of classical information. This shift breaks
key classical Internet design principles, such as the end-to-
end argument, due to the inherently stateful and non-local
nature of entangled states that require coordinated in-network
operations. Consequently, in this paper we propose a novel
hierarchical Quantum Internet architecture centered around
the concept of entanglement-defined controller, enabling scalable
and efficient management of the aforementioned in-network
operations. However, architecture alone is insufficient for network
scalability, which requires a quantum-native control plane that
fundamentally rethinks addressing and routing. Consequently,
we propose a quantum addressing scheme that embraces the
principles and quantum phenomena within the node identifiers.
Built upon this addressing scheme, we also design a quantum-
native routing protocol that exhibits scalable and compact routing
tables, by efficiently operating over entanglement-aware topolo-
gies. Finally, we design a quantum address splitting functionality
based on Schrodinger’s oracles that generalizes classical match-
and-forward logic to the quantum domain. Together, these
contributions demonstrate, for the first time, the key advantages
of quantum-by-design network functioning.

Index Terms—Quantum Internet, Quantum Network Archi-
tecture, Network Architecture, Quantum Networking, Entangle-
ment, Addressing, Quantum Addressing, SDN, Quantum Rout-
ing, quantum-native functionalities.

I. INTRODUCTION

The Quantum Internet [1]—[6] promises unprecedented ca-
pabilities, including unconditionally secure communication,
distributed quantum computing, and enhanced sensing [7]]. At
the core of these capabilities lies quantum entanglement, the
fundamental communication resource of the Quantum Internet
[3]], which demands a radical architectural departure from the
classical Internet design principles [8], [9].

Specifically, the end-to-end principle [10] breaks down
in the Quantum Internet, since the network paradigm shifts
from transmitting information to distributing and managing
entangled states [1]], [9]. Unlike classical bits, entanglement
generation, distribution, storage and exploitation inherently
require in-network operations and the maintenance of related
information inside the network. To elaborate more, classical
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bits are inherently stateless: intermediate network nodes can
process and forward them, without the need to retain any
additional information or detail about the state of the end-
to-end communication. In contrast, the temporal constraints
imposed by decoherence, along with the inherent complex
mechanisms underlying the generation and maintenance of
quantum entanglement, necessitate that the network nodes
retain state information. As a pivotal example, nodes must be
aware of the residual coherence time of the stored entangled
qubits (e-bits), for properly operating on them. Hence, e-
bits are fundamentally stateful [9]], directly contradicting the
classical end-to-end argument proposed by Saltzer in [11]],
outlining the classical stateless design.

Furthermore, the non-local nature of quantum entanglement
requires additional state information for its effective exploita-
tion, beyond merely identifying which nodes initially shared
the initial entangled states. Indeed, in EPR-based networks,
entanglement can be swapped, by changing at run-time the
identities of the entangled nodes. In more complex scenarios
where multipartite entanglement is exploited, the above dy-
namism is further enriched. In fact, multipartite entanglement
can be manipulated and reconfigured across subsets of network
nodes, namely, across entire sub-networks. Accordingly, since
entanglement is not information per-se but rather a communi-
cation resource [3, its value and utility extend well beyond
the original source-destination pair or the original initiating
sub-network. If left uncoordinated, these non-local effects
can trigger the so-called amplification principle [12]], where
uncontrolled entanglement resources lead to routing ambigui-
ties, resource inefficiencies, and ultimately network instability,
thereby undermining scalability. Therefore, effective tracking
and management of entanglement resources are essential for
scalable quantum network architectures.

Building on the above considerations, to efficiently manage
the in-network entanglement operations while at the same
time preserving the simplicity principle that shaped classical
Internet design, we propose a novel architectural framework,
which integrates quantum-native functionalities at its core.
Specifically, by extending the architectural vision pioneered
in [8]], this paper formalizes a two-tier Quantum Internet
architecture as depicted in Fig. I} which centralizes control
of entanglement operations through an Entanglement-Defined
Controller (EDC). Analogous to the SDN controller in clas-
sical networks, the EDC coordinates in-network operations
and supports scalable entanglement management, as further
detailed in Sec. [l

However, while such a proposed architecture provides a
foundational framework, it is not sufficient on its own to ensure
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Fig. 1: Proposed architecture showing: (1) ESPs forming a virtual mesh via proactive entanglement sharing (dashed lines), (2)
EDC in the control plane, and (3) end-user quantum nodes connected to the serving ESP.

scalability. Crucially, scalability depends on how the control
plane is designed [3|]. Specifically, the control plane must
embrace quantum principles and phenomena to manage entan-
glement dynamics effectively. The rationale behind this claim
stems again from the aforementioned non-locality of quantum
entanglement: entanglement proximity cannot be confined to
physical locality or restricted to fixed neighborhoods. This
leads to a profound implication: entanglement redefines the
very same concept of topological neighborhood (8], [13]], [[14].
As a result, a conventional control plane, built upon classical
assumptions of locality and IP-like addressing, cannot timely
track, respond to, or propagate entanglement state changes
across the network.

In other words, without a fundamental rethinking of network
addressing and control mechanisms, such a control plane will
become a bottleneck to scalability. This issue is not entirely
unfamiliar: even in classical networks where entanglement is
absent, it has been shown that the number of control messages
per topology change, namely, the updating communication
overhead, cannot scale better than linearly on Internet-like
topologies [15]]. In the quantum setting, the challenge is even
more severe due to the intrinsic statefulness and fragility of
entanglement.

To address this, we complement the proposed architec-
ture with a quantum-native routing protocol, built upon a
novel addressing scheme that leverages quantum principles
directly within the node identifiers. It is indeed the here-
designed addressing scheme that makes possible to operate
over entanglement-aware topologies with compact, dynamic,

and scalable routing tables. More in detail, we design a quan-
tum addressing scheme that leverages quantum superposition.
This enables a paradigmatic departure from the underlying
assumption beyond classical IP addressing: a sequence of
(32/128) bits encoding a single network address, reflecting
the node location within the physical network topology. In
fact, a sequence of (say m) qubits can encode a single node
identity, i.e., a single quantum network address, but it can also
encode a superposition of node identities, i.e., a superposition
of multiple quantum states with each state denoting a network
address. Thus, a sequence of n qubits can represent a set
of quantum nodes. Crucially and completely differently from
classical IP subnet addresses, a quantum network address can
represent a set of quantum nodes regardless of their physical
position within the quantum network.

The rationale for such a quantization of the network ad-
dressing functionality is that superposed network addresses
are key to achieve scalable routing tables. This is detailed in

Sec. [

In this light, it becomes crucial to allow a node to extract
and act on individual node identities within a superposed
address. Consequently, we design a quantum addressing
splitting functionality in Sec. [[V] which generalizes for the
quantum domain the classical match-and-forward paradigm
of classical networks. The proposed quantum addressing
splitting has been conceived by modifying Grover’s quantum
search algorithm in order to tailor quantum-superposed data
structures. In our proposal, the oracle is coherently controlled
by quantum sub-network addresses, so that the presence



or the absence of phase inversion becomes a controllable
quantum degree of freedom.

Contributions. To sum up, the contributions of this paper are
fourfold:

o the design of an architectural framework to manage
in-network entanglement operations efficiently, centered
around the Entanglement-Defined Controller (EDC);

o the design of a quantum addressing scheme, which en-
codes quantum properties and behaviors directly into
node identifiers;

o the design of a quantum-native routing protocol that fully
exploits the quantum nature of the addressing scheme to
achieve scalable and compact routing tables;

o the proposal of a quantum addressing splitting func-
tionality that extends classical forwarding operations to
quantum-superposed identifiers, through the design of
a Schrodinger’s oracle for Grover’s search algorithm,
coherently controlled by quantum addresses.

To the best of our knowledge, this is the first work demon-
strating with concrete architectural and protocol design the
advantages of the quantum-native functioning of the network,
that was previously only anticipated at a conceptual level in
(8]

The remaining part of the paper is organized as follows.
In Sec. we detail the two-tier architecture, by clarifying
and substantiating some key deviations from the classical
Internet design principles. In Sec. we design the quantum-
native routing protocol, built upon the quantum addressing
scheme. In Sec. we propose Quantum Addressing Splitting
functionality. Finally, in Sec. [V] we discuss some key aspects
of the proposal along with future directions.

II. QUANTUM INTERNET ARCHITECTURE

In this section, we propose some architectural principles for
the Quantum Internet design, which should not be interpreted
as dogmas but rather as pragmatic guidelines and criteria for
harvesting the unique properties of quantum entanglement.
Our design perspective departs from the classical Internet, yet
it aligns with its most long-standing insight described in RFC
1958 [10]:

“the principle of constant change is perhaps the
only principle of the Internet that should survive
indefinitely”,
arguably the most valuable lesson from the classical Internet
evolution.

A. Internet Architecture in a nutshell

By oversimplifying, in the classical Internet, Internet Ser-
vice Providers (ISPs) form a multi-tiered hierarchy where
lower-tier ISPs connect to higher-tier ones, creating a mesh
of packet-switched networks, that provide end-to-end connec-
tivity to end users. This hierarchy design has been the result
of a long and largely unforeseen evolution, where a complex
interplay of technical and economic factors played a crucial
role.

In this context, the end-to-end principle [10] emerged as
a key architectural tenet. Accordingly, end-to-end protocol
design should not rely on state maintenance inside the network,
i.e., on information about the state of the end-to-end commu-
nication. Rather, such a state should be maintained only at the
end points, so that the state can be destroyed only if the end
point itself breaks [12]]. The overall effeclﬂ of the end-to-end
principle, coupled with the simplicity principle [10], resulted
in the classical Internet architecture, where intelligence is
localized at the network edges rather than hidden inside the
core network. In other words, Internet has smart edges where
applications and operating systems reside and provide complex
communication functionalities, and a simple core, consisting
of stateless packet-forwarding engines and a control plane
offering mainly best-effort datagram delivery [12].

B. The need for Entanglement-Packet Switching

The aforementioned design principles — centered around
stateless routing, best-effort delivery, and end-to-end principle
— are fundamentally inadequate for the Quantum Internet,
which requires a radical departure from classical networking
paradigms. This shift fundamentally transforms the core net-
work operations, as detailed in the following.

First, a preliminary consideration must be introduced: infor-
mational qubits cannot be simply adapted to packet-switching
paradigm, due to the fundamental constraints imposed by the
no-cloning theorem and the quantum measurement postulate.
In fact, unknown qubits cannot be perfectly copied or am-
plified, and any measurement irreversibly alters their state.
This prohibits the adoption of conventional store-and-forward
packet-switching paradigm, and it makes traditional best-
effort delivery, where packets may be lost and retransmitted,
inherently incompatible with quantum information transfer.

Entanglement distribution circumvents these limitations, by
establishing quantum correlations as the fundamental network
resource, allowing us to move beyond the direct transmission
of informational qubits [|1], [2]. Indeed, since entanglement is a
communication resource rather than information itself, it is not
constrained by the no-cloning theorem [9]. And, through the
quantum teleportation protocol [2], pre-shared entanglement
enables reliable quantum information transfer, without the
need of physically transmitting an information carrier.

From the above, it follows that the Quantum Internet must
embrace a fundamentally new paradigm:

ebits serve as the basic network “packets”, carrying
quantum correlations across network nodes. We term
this paradigm as entanglement-packet switching.

This transition is not merely an optimization or a mod-
ification of the current packet-switching paradigm, but a

't is worthwhile to observe that this observation is not intended to imply a
strict causal relationships between design principles and historical evolution.
In fact, as authoritatively described in [16]], the architectural foundations of
the Internet were profoundly shaped by the combination of specific sets of
priorities and a military context, characterizing the early stages of ARPANET
development. For example, [|[16] explicitly identifies “survivability” as a design
objective, directly emerging from the original military context in which
the network was conceived. This requirement for survivability is widely
recognized as the most essential rationale behind the end-to-end principle
(“fate-sharing” concept in [16]).



Classical Internet Quantum Internet

complexity located at the network
edges

complexity concentrated in the
core network

stateless core network stateful core network

end-to-end protocol design network-mediated protocol design

TABLE I: Classical vs Quantum Internet architecture: concise
comparative overview.

fundamental departure, imposed by the unique constraints of
quantum mechanics:

While the goal of the classical packet-switching
paradigm is to determine the best next-hops toward
a set of nodes (routing) and to forward packets
through these next-hops from source to destina-
tion, entanglement-packet switching aims to dis-
tribute and manipulate entanglement among quan-
tum nodes, ultimately entangling the source and
destination regardless of their physical location.

Accordingly, this paradigm shift enables the following two key
features.

e Decoupled design: entanglement-packet switching fully
decouples the quantum information transfer from the
physical transmission of information carriers, overcom-
ing the limitations imposed by the no-cloning theorem
and the quantum measurement postulate on the direct
informational-qubit transmission.

e Scalability and compatibility:  entanglement-packet
switching retains the flexibility and inherent scalability
of packet-switching architectures, while ensuring
backward compatibility with the classical Internet
[17]-[19]. Hence, the approach is at the same time
forward-looking and backward-compatible.

Given this fundamental transition towards entanglement-
packet switching, we can now better digest the rationale for
the incompatibility between the end-to-end principle (as said,
substratum of the classical Internet design) and the Quantum
Internet, highlighted in Sec. [} This breakdown stems directly
from the unique properties of quantum entanglement.

Indeed, as described in Sec. [I] the complex, challenging
stateful nature of entanglement along with its non-local effects
call for in-network operations and persistent state awareness
across all phases of the entanglement lifecycle — from gener-
ation through distribution to storage and final utilization — by
directly contradicting Saltzer’s end-to-end argument.

Accordingly, the Quantum Internet demands a complete
inversion of the classical design philosophy, as summarized
in Table [l

Remark 1. Indeed, when the above considerations are com-
bined with the sophisticated and resource-intensive setups
required by the state-of-the-art hardware, it becomes both prac-
tical and efficient to advocate for concentrating the complexity
inside the core network, while leaving the edges of the network
simpler.

C. The Two-Tier Hierarchy

Building on the above perspective, we propose a two-
tier Quantum Internet architecture, by distinguishing between
entanglement service providers (ESPs) and quantum edge
nodes, as represented in Fig. [T}

o Top Tier: ESPs act as the highest tier, referred to also as
tier-2, analogous to ISPs in the classical Internet. They
form the “entangled—backbone’ﬂ by providing end-to-end
entanglement connectivity to the lowest tier, via proac-
tively maintenance of entangled resources. The EPSs are
interconnected via long-distance quantum links, such as
optical fibers and they are equipped with the sophisticated
and resource-intensive infrastructure required for entan-
glement generation and distribution.

e Bottom Tier: edge quantum nodes, which include quan-
tum processors, sensors, cryptographic devices, acting
as the edge tier (referred to also as tier-1) consuming
entanglement resources to fulfill the quantum applications
needs. They are mainly connected to the nearest ESP via
short-range quantum links.

Remark 2. The two-level hierarchy introduced so far is not
intended to represent a definitive architecture for the Quantum
Internet, which is still in its early stage conceptualizatioﬂ
Rather, it serves as a reference model for capturing the
distinguishing features of quantum entanglement in contrast
to classical information.

In the remaining part of this manuscript we focus on the
design of the fop tier, given its pivotal role in enabling large-
scale deployment of the Quantum Internet.

To this aim, we must first recall a key point from a
networking perspective. Specifically, it has been extensively
shown in literature that entanglement, once shared, enables
a new and richer form of connectivity, with no-counterpart
in classical networks. The activated entanglement-proximity
gives rise to an overlay topology, often referred to as artificial
topology, established upon the physical topology [9], [13],
[14], [20]. And differently from the physical topology, the
entanglement-enabled overlay is inherently dynamid®, since
entanglement can be locally manipulated while still producing
global coverage effects, due to its inherently non-local nature.
Thus, the artificial topology can be reconfigured on-the-fly
via local quantum operations (with entanglement swapping the
archetypal example), by enabling global connectivity changes
without modifying physical links. This adaptability is essential
to accommodate evolving end-to-end entanglement requests,
reduce latency — key in scenarios very sensitive to decoher-

2Tt is worth emphasizing that, in the classical Internet, the terms “core
network™ and “backbone network™ are often used interchangeably, despite
a subtle, yet important, distinction between them. In this paper, we adopt
the same interchangeable usage in the context of the Quantum Internet,
where these terms are borrowed primarily by analogy. Indeed, given that the
Quantum Internet remains in its infancy and early conceptual stages, a formal
distinction between the two has yet to emerge or become necessary.

31t is likely that the Quantum Internet will evolve into a multi-level
hierarchy of increasing complexity, as happened to the classical Internet.

4We refer the reader to [8], [9]] for an in-depth discussion about the artificial
topology dynamics, which differ profoundly from the ones induced by node
mobility in classical networks.



ence — and mitigate the limitations imposed by the physical
topology [14].

In this perspective, we envision the ESPs to proactively
establish and maintain entanglement resources among each
others, by exploiting the underlying physical network topol-
ogy. The activated artificial topology serves as the func-
tional equivalent of the physical mesh network interconnecting
ISPs. Crucially, this topology is continuously refreshed and
reconfigured to reflect the current status and availability of
entangled resources, thereby enhancing the overall reliability,
adaptability, and robustness of the network. Moreover, the
proactive nature of the strategy allows to face with the non-
persistence of entangled resources, since the Quantum Internet
must operate under the constraint of entanglement depletion,
upon use. The overall result is a dynamic artificial mesh, where
links are continually created and consumed, in response to
quantum application demands.

D. Entanglement-Defined Controller

To efficiently manage in-network operations and state main-
tenance while addressing scalability, an Entanglement-Defined
Controller (EDC) orchestrates the entanglement resources
among the ESPs, by mirroring the role of a Software-Defined
Networking (SDN) controller in classical architectures. The
EDC oversees three main crucial functions:

e Reconfiguration: the dynamic management and reconfig-
uration of entangled resources among ESPs;

o Monitoring: the monitoring of the fidelity and availability
of entanglement resources across ESPs;

e Policy enforcement: the enforcement of global policies
for routing, resource allocation, and entanglement loss
recovery.

By centralizing the control logic within the EDC, we lay
the foundation for a scalable, adaptable, and programmable
Quantum Internet architecture, necessary to manage quantum
entanglement as a dynamic, non-persistent network resource.
Indeed, the EDCE] enables coordinated management of en-
tangled resources across the network, thereby supporting the
inherent network-mediated nature of quantum communication
protocols. Moreover, the EDC enables a dynamic response
to evolving application-demands and to the intrinsic volatility
of entangled resources. It is important to highlight that, for
maintaining the overlay topology, we do not force any EDC
to have a persistent global network knowledge. In fact, in
Sec. we design a quantum-native routing protocol that
operates effectively under limited or local network visibility.

Stemming from the above, we propose an architecture with
a clear distinction between quantum control and quantum data
plan, as summarized in Table where the EDC implements
control plane functionalities, while the ESPs implement data
plane functionalities.

As for the control plane, it is worthwhile to note that
state-of-the-art quantum routing literature [21]] has designed

SPlease refer to Sec. in which we provide further details on the EDC,
by including how the proposed architecture can support multiple, potentially
federated EDCs rather than relying on a single controller.

so far control functions, by exploiting only classical commu-
nications [22]]. Conversely, we advocate for quantum-native
control functionalities. More in detail, we design a quan-
tum control plane where routing information is encoded into
quantum states by leveraging the quantum addressing scheme,
designed in Sec. These “quantum-encoded routes” are
then stored within quantum routing tables and manipulated
through quantum operations for the forwarding. This approach
allows scalable and efficient path selection, without requiring
persistent global network knowledge, as shown in Sec. [III

In this way, we scale the network to a quantum-native
functioning.

As for the quantum data plane, it generalizes to the quantum
domain the classical forwarding functionality, as highlighted
in [22]. However, for accounting for the quantum-native func-
tioning, key extensions beyond [22]] must be introduced.

Specifically, in classical networks, the forwarding logic
follows a match-and-forward paradigm, where the destination
address is extracted from the packet header and matched
against the routing table. In our architecture, this paradigm
is extended as follows:

o Entanglement-packet forwarding via quantum address-
ing: ESP identifiers are encoded into quantum states via
quantum addresses, as described in the next subsection.
Thus, forwarding decisions require the presence of a
quantum header in the packet as shown in Fig.[2] carrying
the quantum equivalent of the source-destination address.
To extract and manipulate this type of information, ap-
propriate quantum operations are applied to the quantum
addresses stored in the routing tables, by enabling path
selection without classical header parsing. This mecha-
nism is detailed in Secs. [l and

o End-to-end entanglement establishment: The data plane
actively supports the establishment of end-to-end (E2E)
entanglement across ESPs for the bottom-tier demands.
This involves generating elementary hop-by-hop entan-
gled links, which may not yet exist at the time of the
request, and performing quantum operations, such as
entanglement swapping and purification. Consequently,
quantum packets, which carry ebits, are propagated
through sequences of quantum operations, rather than
merely through transmission over physical links.

o Artificial topology maintenance: The maintenance of the
artificial topology among the ESPs requires the data plane
to continuously regenerate virtual links depleted during
the forwarding. This is achieved through elementary
entanglement-link generation, quantum operations and
refreshing of entangled resources.

This separation between data and control plane ensures
scalability while facing with the ephemeral nature of quantum
entanglement. For instance, a bottom-tier request is fulfilled,
by manipulating and hence by reconfiguring the overlay among
ESPs (e.g., stitching virtual links via swaps), while the con-
trol plane concurrently instructs the data plane to repair the
overlay, by redistributing elementary entanglement. This main-
tains the topological robustness. Thus, while the data plane
consumes pre-established entanglement for applications (e.g.,



network feature classical Internet

Quantum Internet

resource persistence
largely exceed the forwarding dynamics

communication links are permanent, i.e., their dynamics

entanglement is ephemeral and depleted upon use

control plane

populates routing tables with best hops toward destinations

encodes routing information via quantum superposition
exploiting the quantum addressing scheme and orchestrates
entanglement resources so that they are efficiently dis-
tributed

data plane packet forwarding

quantum operations and entanglement-packet forwarding

TABLE II: Control and data plane: classical Internet vs the proposed Quantum Internet architecture.

teleportation), the control plane continuously refills depleted
resources.

E. Quantum Addressing Scheme

As aforementioned, we scale the network to a quantum-
native functioning, by designing control plane functionalities
via quantum state manipulations. To this aim, we embrace
quantumness within the node addresses [8]]. It is worthwhile
to note that the quantum addressing is not a substitute of
the classical network addressing. Indeed, each network node
must be equipped with two types of addresses: i) a classical
address, such as an IP address, which is mandatory for
the classical communications and signaling required by any
quantum communication protocol; ii) and a quantum address,
which facilitates efficient and scalable control functions.

This dual-addressing framework ensures backward compat-
ibility with the classical infrastructure, while unlocking quan-
tum advantages in control-plane scalability and entanglement
orchestration, as proved in Sec.

In assigning the quantum addresses, we hybridize classical
hierarchical principles with quantum features. Specifically,
each node in the network, regardless of being either an EPS
or a tier-1 node, is assigned a quantum address represented
by a computational basis state of an IN-qubit system. Thus,
the addresses are orthogonal quantum states, ensuring so per-
fect distinguishability. We account for the two-tier hierarchy
introduced so far by imposing tier-1 addresses to share a
common prefix with the address of the serving ESP. We
envision that this addressing scheme enables efficient routing
and entanglement management across the quantum network.

In Fig. we provide a pictorial representation of a toy
model for the above scheme, by considering a network of
n = 16 nodes with 4 ESPs. Each ESP serves up to 3 tier-1
nodes, and their corresponding address prefix determining the
clustering are:

|00xz) , |01lzx) , |10zz) , [11zx) . (1)

Formally, the quantum network is modeled as an undirected
graph:
G=(V,E), 2

where:

« the vertex set V' represents the |V| = n quantum nodes,
partitioned in two disjoint subsets: V7, representing edge

quantum (tier-1) nodes with |V;| = n,,, and V5, represent-
ing ESPs (tier-2 nodes), with |V5| = n.. Accordingly:

V:V1U%7 Vlﬂ‘/2:®7 (3)

with n = n, + ne.
e the edge set £ C V x V denotes the set of links
interconnecting the quantum nodes.

Definition 1 (Quantum  Address). Let B 2

{|z) | 2 € {0,1}"} denote the computational basis of
the Hilbert space associated with an /N-qubit system, where
N = [log, n].

Let £ 2 {Jv1),...,|vn.)} C B be a set of n. distinct
computational basis states. Let define p = [log, n.| as the
prefix length. For any x € B, we define prefix,(z) as the
string consisting of the first p bits of z, i.e.:

prefix,, : {0, 1} — {0,1}*. 4)
The elements of £ are selected to satisfy the condition:

for i 7 j, &)

ensuring that each element in £ is assigned a unique prefix.
Each ESP in V5 is uniquely identified by a quantum address
|v;), selected in E:

vi) € {lo1) -5 [onc)}- (6)

In the following, we refer to an ESP as either v; or |v;),
depending on the context.

Each edge (tier-1) quantum node in V; served by a given ESP
|v;) is assigned with a quantum address that shares the same
k-prefix with |v;), thereby preserving hierarchical coherence
in the quantum address space. Formally, for each ESP in V5
with address |v;) € £, we define its serving cluster as:

prefix, (v;) # prefix, (v;),

Cloy) = {|z) € B| prefix,, () = prefix,,(v;) } . (7)

That is, each cluster contains all and only those computational
basis states that share the first & bits with |v;). By constructimﬂ

By construction, each cluster has the same size equal to 2V —P — 1, by
excluding the address of the serving ESP. To support heterogeneous cluster
sizes while keeping the prefix length p fixed, one would need to define
a maximum cluster size Mqaz and set the quantum address length as
N = p + [logy Mmax|. This approach inevitably results in address spaces
with unused quantum addresses in smaller clusters. However, exploring such
generalizations is beyond the scope of this paper, which instead focuses on
showing the powerful setup allowed by quantum addressing schemes.



quantum header quantum payload

Fig. 2: Quantum packet structure. The header carries quantum
information for the quantum routing logic, such as source-
destination quantum network addresses |z;),|z;) and quan-
tum superpositions |A;) representing set of quantum nodes
introduced in Sec. while the payload carries entangled
qubits (ebits) to be shared among network nodes.

lzo) | 125) | 147)

f(ne)
)]

the serving clusters are mutually disjoint and they constitute
a partition of the computational basis set B, i.e.:

B = U?;lc|vi> A C|Ui) ﬁC|Uj> =0,Vi£jeVs. (8)

F. Quantum Packet Structure

The proposed quantum addressing scheme requires the
definition of a quantum packet structure, represented in Fig.
Differently from existing proposals [[17], [23]l, our proposal
consists of both a quantum header and a quantum payload,
thus enabling a fully quantum-native processing. Specifically,
the quantum packet is organized into:

e a quantum header, carrying quantum addresseﬂ This
header enables the network nodes to interpret and forward
entangled packets according to the quantum routing logic,
based on the hierarchical address structure;

e and a quantum payload, carrying entanglement as mul-
tiple ebits, intended for distribution to the destination
node(s).

As aforementioned, this design allows the quantum packet
to be processed in a fully quantum-native manner, without
fallback to classical parsing mechanisms. This facilitates scal-
able quantum routing, as analyzed in the following section.
Furthermore, since in this paper we focus on tier-2 nodes, we
restrict our attention to packets carrying ESP-related informa-
tion. Accordingly, the source and destination addresses {|z/)}
in Fig. [2| should be interpreted as {|vs)} and {|A})} denote
superposed quantum addresses representing set of nodes.

As a final remark, although a comprehensive treatment is
beyond the scope of this work and left for future investigation,
the proposed quantum packet structure can be generalized to
the multipartite entanglement case. In such a scenario, we
envision the header carrying source address and a variable-
length list of destination addresses, while the payload carrying
a multipartite entangled state, which is intended for simulta-
neous distribution across the specified destination nodes.

7As detailed in the next two sections, a quantum address can be the univocal
identifier of a network node, which by design is an orthogonal basis states.
But it can also be a superposition of quantum states constituting the identifiers
of a set of nodes — as instance, the superposed address stored within the e-
neighborhood entry of the routing table as shown in Fig.[4] As aforementioned,
there may be also the need of sharing classical information, as instance,
for classical signaling. Although quantum/classical coexistence is a key open
problem, we envision that this can be achieved by multiplexing the quantum
header/payload with classical header through quantum/classical multiplexing
techniques [17], [23], [24].

ITI. QUANTUM-NATIVE ROUTING

Here we design two different versions of the quantum-
routing protocol tasked with proactively maintaining and uti-
lizing the entanglement-activated overlay topology among the
ESPs. Although these protocols differs in terms of overall
control-plane complexity, they both leverage the quantum
addressing scheme introduced in the previous section.

Before delving into the technical details of the proposal,
we refer the reader to Box [I] which provides an outline of
the overall routing logic for tier-1 nodes, which, as already
described, delegate routing complexity to their serving ESPs.

A. Preliminaries

As pioneered in [8] and reflected in the previous sections,
the goal of a quantum routing protocol for ESPs fundamen-
tally diverges from classical routing paradigm. In contrast to
the classical objective of determining physical routes toward
destinations for packet forwarding, a native-quantum routing
shifts the goal to:

proactively maintaining the overlay topology acti-
vated by the entanglement and ensuring end-to-end
entanglement distribution, by managing and tracking
the entangled resources shared within the tier-2
network.

Achieving this goal requires a paradigmatic departure in
the structure and semantics of routing tables. Specifically,
routing entries no longer store next-hop interfaces toward
destination addresses. Rather, they list the locally-available
entangled qubitsf’j at each node, together with the identitiesﬂ
of the ESPs sharing this entanglement.

This shift does not imply that physical topology knowledge
is irrelevant. On the contrary, such knowledge remains essen-
tial for the generation and distribution of link-level entangle-
ment, needed to replenish or restore depleted entangled re-
sources. In this perspective, by leveraging the dual-addressing
framework described above in which classical addresses are
augmented with quantum addresses, each ESP maintains two
distinct routing tables:

« a classical routing table, used to manage physical topo-
logical information related to the classical communica-
tion infrastructure and populated using classical routing
protocols;

e a quantum routing table, used to manage the entangled
overlay topology information and populated by the EDC.

The focus of the remaining part of the manuscript is on
the design of such quantum routing tables and on their central
role in enabling scalable, quantum-native forwarding decisions
within the tier-2 network. To this aim, we first collect some
definitions used in the following.

Definition 2 (Link Entanglement Metric). The “cost” asso-
ciated with generating and distributing link entanglement over

8 As instance, as pointers to the “addresses” of the communication qubits
[3]] storing the entangled state.

9Indeed, any quantum communication protocol requires a tight cooperation
between the network nodes storing the entangled qubits for being able to
exploit the quantum correlation provided by entanglement, and thus nodes
must be aware of each other identities.



As aforementioned, by hybridizing classical hierarchical design principles with quantum features in the addressing
scheme, the proposed architecture enables a tier-aware differentiation of routing information stored locally at each node.
Specifically, the structure of the quantum addresses, based on a shared prefix between tier-1 nodes and their serving
ESP, allows tier-1 nodes to operate with minimal routing intelligence, effectively delegating forwarding decisions and
complexity to tier-2 nodes. As a result, tier-1 nodes require only basic quantum-packet forwarding logic based on the
generalization to the quantum domain of the classical prefix-matching mechanism. In contrast, ESPs maintain richer
and more dynamic routing tables to manage inter-ESP overlay, activated by entanglement, as analyzed in Sec. [T}
These tables are used to execute entanglement operations/manipulations, such as entanglement swapping, enabling end-
to-end distribution of ebits across the network. This tiered routing abstraction significantly enhances scalability, by
localizing complexity at tier-2 nodes. Indeed, it reduces both memory and processing overhead on tier-1 nodes, without
compromising global routing capabilities.

More in detail, by leveraging the proposed quantum addressing scheme, end-to-end entanglement requests initiated by
tier-1 nodes are first routed to their respective serving ESPs. In the ideal case, where the ESP overlay topology activated
by the entanglement is fully connected, the serving ESP can directly perform entanglement swapping on the ebit(s)
within the quantum payload, to reach the destination’s serving ESP, thereby enabling efficient end-to-end entanglement
distribution.

In more general and realistic scenarios, where the ESP overlay is not fully connected, the serving ESP must inspect
its quantum routing table to assess whether pre-established entanglement exists with the destination’s serving ESP. If
such a “link” is available, the ESP can immediately perform entanglement swapping to enable end-to-end entanglement
between the tier-1 nodes. Otherwise, the ESP must identify an appropriate next-hop ESP, selected according to the
adopted routing metric, that brings the quantum packet closer to the destination. Thus, the ebit(s) in the quantum packet
payload is eventually forwarded through an entangled path, i.e., through a sequence of intermediate ESPs, until an
ESP already sharing entanglement with the destination ESP is found. This interplay between packet forwarding and
swapping mechanism, ruled by the quantum addressing scheme and the selected routing metric, is detailed in Sec. [ITI}
While several alternative design choices for tier-1 nodes are possible, including the option to handle their requests only
with classical communicationg’] this paper focuses on the core routing functionality of ESPs, which ensures end-to-
end entanglement distribution across the network. Accordingly, the exploration of alternative tier-1 design choices lies

beyond the scope of this work.

“In such a case the proposed quantum packet structure would apply only to ESPs.

a quantum link (7,5) € Vo x V4 is modeled by a general
entangling-cost metric w(i, 7). This metric is equipped with
two operations [23]:
1) an order relation <, allowing pairwise comparison of link
entanglement costs;
ii) a binary operation @, enabling the composition of entan-
glement costs over multiple links.

In particular, the order operation < allows us to express
relative entangling difficulty across links. For instance:

w(i, k) < w(j,k), ©)

implies that establishing link entanglement between ESP v,
and vy, is less costly than between v; and vg. The binary
operation ¢ extends the cost function from individual links to
multi-hop entanglement paths. For instance:

w((i, k) & (k, 7))

denotes the cost of distributing end-to-end entanglement be-
tween remote ESPs v; and v;, via an intermediate ESP vy.

(10)

This abstraction allows us to support arbitrary entanglement
cost models, which in turn reflect the chosen quantum routing
metric . In other words, with this abstraction, we decouple

the routing logic from any specific cost formulation. Hence, the
framework accommodates a broad class of quantum metrics,
ranging from fidelity degradation to quantum memory usage or
decoherence effects. Consequently, the entangling cost w(-, -)
encapsulates the link/route “quality” under the selected model,
allowing the routing protocol to adapt to the specific charac-
teristics and constraints of the underlying quantum network.

Remark 3. For notational and conceptual simplicity, we refer
to routes with the lowest entangling cost as shortest paths.
This is in line with the conventional terminology of classical
routing, originally developed under the assumption that the
“quality” of a communication path is determined by its hop
count, with shorter paths being preferable.

We assume that w(-, -) satisfies the axiomatic properties of
a metric, i.e.:

definiteness: w(i, i) =0<=v;=v; (1)
non-negativity: w(i,j) <0 (12)
symmetry: w(i,j) =w(ji1) (13)
triangle inequality:  w(i, j) < w((i,k) @ (k,5)), (14)

plus an additional property to ensure the metric being isotone,



namely, being both left-isotone:

w(j, 1) < w(j k) = w((i,j) ® (j,1)) <w((i,j) & (7, k()l)s)

and right-isotone:

w(l, j) < w(k, j) = w(({l.5) & (7)) <w((k,j) & (4,1))-

(16)
Remark 4. Isotonicity ensures that the relative ordering of
entangling costs between two quantum links (or paths), sharing
a common origin or destination, is preserved when both are
extended by the same quantum link. Meanwhile, triangle
inequality, also referred to as monotonicity in [25], implies
that the entangling cost cannot decrease, when it is extended
by a new quantum link. These properties are not only rationale
for capturing the constraintsEG] of entanglement distribution,
but they are required for guaranteeing the convergence [26]]
of quantum routing protocols to optimal entanglement paths,
without resorting to exhaustive enumeration of all possible
routes [25].

Definition 3 (End-to-end Entangling Metric). Let us con-
sider two pair of non-adjacent ESPs, say v; and v; and
let R denote a set of ESPs forming a valid swapping path
from v; to v;. wg(4,j) denotes the accumulated entangling
cost along that specific path, using the @ operator. Clearly,
end-to-end entanglement between v; and v; can be achieved
through multiple possible routes, and an effective routing
protocol should select the route with the lowest entangling
cost. Specifically, swapping should occur at the most favorable,
accordingly to the selected metric, sequence of intermediate
ESPs acting as quantum repeaters, i.e.:

w(t, §) :mpiin{wR(i,j)}. (17)

Stemming from Def. 3] we are now ready to formally
define the entangling stretch introduced by a quantum routing
protocol. Broadly speaking, the purpose of a quantum routing
protocol is to discover and select, among the available ESPs,
a suitable sequence of intermediate nodes that enables two
remote ESPs to establish shared entanglement through entan-
glement swapping. This selection is driven by a predefined cost
metric, which models the quality or difficulty of establishing
entanglement along a link or path.

Let QR denote an arbitrary quantum routing protocol. And
let us define with R = QR(i,j) the set of ESPs selected
as repeaters by QR to establish end-to-end entanglement
between the remote (in the overlay topology) ESPs v; and
Vj.

Definition 4 (Entangling Stretch). The entangling stretch
induced by the quantum routing protocol QR between ESPs
v; and vj is deﬁne(E-] as:

wR(i,j)

B0 = %0G,0)

. with R= QR(i,j), (18

10As an example, the triangle inequality correctly models the preference
for direct link entanglement over entanglement swapping at an intermediate
node.

For simplicity, we omit the explicit dependence of £8(i,5) on QR, i.e.,
.\ A ..
€8(i, ) = €8or (i, J)-

where wg(%,j) denotes the entangling cost incurred by the
path selected by the routing protocol QR, and w(i,j) rep-
resents the optimal entangling cost in (I7). Accordingly, the
overall entangling stretch €S of the quantum routing protocol
QR is defined as the worst-case stretch over all ESP pairs in
the network:

&8 = max {&8(4,4)}.

v, €V) (19)

From Eq. (T9), it follows that a quantum routing protocol is
optimal if and only if its entangling stretch satisfies €8 = 1,
since it always selects the lowest-cost entangled path for any
ESP pair. Conversely, an entangling stretch strictly greater than
1 indicates that the protocol may route entanglement through
suboptimal entangled paths, for at least some pairs of ESPs.

Remark 5. We emphasize that the term stretch, used in Def. 4]
stems from classical routing terminology. In classical net-
works, the path stretch of a routing scheme is typically defined
as the ratio between the actual path length followed by a packet
(usually measured in number of hops) and the shortest possible
path lengtliT_Z] [15]. Here we adopt this classical terminology,
by reinterpreting the concept: the stretch is defined as the
ratio between the entanglement cost incurred by the routing
protocol, based on the selected sequence of repeaters, and the
minimum possible entanglement cost under optimal swapping
sequence. This generalization preserves the intuition behind
the term “stretch”, while capturing the fundamentally different
nature of cost in quantum networks, reflecting entanglement
quality/complexity.

B. Design Principles

Design Principle 1 (Compact). Our goal is to design a
quantum routing protocol with sublinear quantum memory
requirements. This is achieved by defining: i) routing tables
that, for each ESP, have at mos w (5(\/776) entries, and ii)
logarithmic quantum network addresses, i.e., addresses that
scales in size as O(logn), with n denoting the number of
ESPs within the quantum network.

The design principle[I]is very reasonable, since maintaining
entanglement between every pair of ESPs would determine
prohibitive memory requirements at each ESP, as well as
significant network overhead in terms of both quantum and
classical resources for entanglement generation and distribu-
tion. Consequently, we adopt the strategy whereby each ESP
shares entanglement with only a subset of the other ESPs. And
the size of this subset scales sublinear with the total number

of ESPs, i.e., \/n. logn. or equivalently O(,/n;).

121n this context, the research area in classical networks named as compact
routing aims at designing scalable routing schemes able to guarantee a path
stretch upper-bounded by a constant factor c independent from the network
size n, such as ¢ = 5 or even ¢ = 3 as in [27]. In this research area, both
the table-scaling and the path-stretch bounds are derived with a worst-case
analysis, i.e., the routing table of each node scales sub-linearly in n and the
path stretch is at most ¢ among all the source-destination paths

13 In this manuscript, we adopt the computer science notation for classifying
routing protocols time/space complexity. Accordingly, O(-) (namely, big O)
denotes the asymptotical growth rate of the number of communication qubits
stored at each node as the network size grows, while O(-) (namely, soft O)
denotes the asymptotical growth rate when logarithmic factors are ignored.



ENTANGLING STRETCH UPPER BOUND

routing scheme entangling cost metric section
arbitrary additive  min

Partial-Anchor M 5 1 Sec. [II-C
wii.j)_

Full-Anchor w(@s (i.9) 3 1 Sec.|Ul-D
w(i, j)

TABLE III: Entangling stretch vs. quantum routing scheme.
With a “Partial-Anchor” scheme, only a subset of ESPs is
responsible for proactively creating long-range (i.e., high-cost)
artificial links as shown in Fig. [3] yet at the price of a slight
increased entangling stretch.

Clearly, the choice of which ESP belongs to such a fraction
crucially dictates the overall quantum routing performance.
This aspect is thoroughly analyzed in Secs. [[II-C}Sec.
where we introduce and compare two distinct design strategies,
offering different trade-offs in terms of complexity and routing
efficiency.

Design Principle 2 (Constant Stretch). Our objective is to
design a quantum routing protocol that guarantees an overall
entangling stretch €8 upper-bounded by a constant factor for
an arbitrary isotonic entangling cost metric:
g5 < o2 walind)
w(i, )

where v; and v; denote the ESPs exhibiting the worst-case
entangling stretch, i.e., the pair of nodes satisfying (I9), and
wg (i, ) denotes an upper bound on the cost of entangling v;
and v; through the entangled path discovered by the protocol.
The exact expression of the constant factor depends on the
specific design choices.

Remark 6. In Secs. [l1I-C|and [l1I-D} we show that our protocol
is able to assure a constant stretch of 5 and 3, respectively,
Le.:

(20)

8 <c=3V5. 1)

These results are obtained under the assumption that the
entangling cost metric is additive, namely, when the binary
operation & in denotes the standard addition: w ((i, k) @

(k, 7)) 2 w(i,k) + w(k, ). It is worthwhile to note that
routing protocol metrics (classical or quantum) are mainly
additive, with delay and the quantum version of the hop count
as representative examples. Other popular metrics could be
either multiplicative, e.g., packet loss, or concave metrics,
e.g, bandwidth. As for the former class, multiplicative metrics
can be straightforwardly converted into additive metrics via
logarithmic scaling. Differently, for the latter class — namely,
whenever the binary operation @ in (@) denotes the minimum
operator [28] and w((i, k) ®w(k, j)) 2 min{w(i, k), w(k,j)}
— the constant factor is unitary:
&8s =1. (22)

From the above, it is evident that restricting the attention
on additive entangling-cost metric w(-,-) is not a limitation.

On the contrary, it represents a conservative design choice:
the concave case trivially achieves optimality, while additive
metrics pose a more realistic and challenging setting for
protocol design.

Although the next design principle has been already intro-
duced and justified in the previous section, here we report it
once again for the sake of completeness.

Design Principle 3 (Quantum Addressing). Our objective is
to design a quantum routing protocol that takes advantage of
quantum principles and phenomena via quantum addressing.

Summarizing, regardless of the particulars of the adopted
entangling cost metric w(-, -), which determines the final form
of (19), our design principles enforce a quantum routing
protocol characterized by the following key features and
summarized in Table

1) Sublinear size of the routing tables: each ESP maintains
entanglement with an ESP set of size 1) (\/7”76), where
ne is the total number of ESPs. This implies a sublinear
quantum memory overhead.

ii) Logarithmic quantum address length: the quantum ad-
dress length scales as O (logn), with n denoting the total
number of nodes in the network.

iii) Constant entangling stretch: the quantum communication
overhead, measured in terms of entangling stretch, and
quantifying the entanglement “wasted” for not having a
fully-connected overlay mesh among the ESPs, is upper
bounded by a constant, independent of the network size.

C. PFartial-Anchor Scheme

Here, as aforementioned, we design the first version of the
quantum-routing protocol, in which a small subset of ESPs,
referred to as anchor ESPs, is responsible for proactively
establishing and maintaining long-range (i.e., high-cost) en-
tangled links. The remaining ESPs, constituting the majority,
are instead in charge of proactively creating and maintaining
short-range (i.e., low-cost) artificial links.

As proved in the following, this design yields an overlay
topology, where any ESP is at most 3-hop-entanglement away
from any other ESP (see Remark [8). This worst-case guarantee
stems from the strategic connectivity established through the
anchor ESPs, which serve as entanglement hubs within the
overlay.

Conversely, when we relax the constraint of (very) limited
number of anchor ESPs, as explored in Sec. the overlay
topology is restructured to have every ESP 2-hop-entanglement
distant from any other ESP (see Remark . Thus, we reduce
the communication cost in terms of entangling stretch, at
the price of increasing the maintenance complexity of the
overlay. Remarkably, this enhancement in routing performance
is achieved without affecting the asymptotic scaling of the
routing table size.

The aforementioned trade-off between routing performance
and control complexity, summarized in Table gives rise
to two distinct protocol variants: the first, governed by the
following last-but-not-least design principle, is referred to



metric ‘ scaling ‘ description

quantum memory overhead @(\/ne) size of the ESP Routing Table defining the number of entangled links maintained by each ESP node,
with n. denoting the total number of ESPs

quantum address length O(logn) | number of qubits required to encode a quantum address, with n denoting the total number of network
nodes

entangling stretch &8 <ec maximum ratio between the actual and optimal entangling cost bounded by a constant ¢, independent
of network size

TABLE IV: Key performance indicators of the proposed quantum-native routing protocol.

(a) Partial-Anchor Scheme: only the fraction of ESPs in 7" (depicted
in purple) is responsible for proactively creating high-cost artificial
links each others, whereas all the ESPs maintain low-cost artificial
links with their e-neighborhood N ().

(b) Full-Anchor Scheme: each ESP is responsible for proactively
creating both low- and high-cost artificial links, the formers with
their e-neighborhood N(-) and the latters with a specific subset of
nodes.

Fig. 3: Schematic view of the two schemes underlying our compact quantum routing protocol: Partial-Anchor (presented in
Sec. [II-C)) vs Full-Anchor (presented in Sec. [[II-D). Artificial links are denoted with red arrows, whereas circles around ESPs

denote their e-neighborhood as defined in Def. ﬁ}

as partial-anchor scheme; the second, discussed in the next
section and formalized by Design Principle is referred to
as the full-anchor scheme.

Design Principle 5.A (Partial-Anchor Scheme). Our objec-
tive is to design a quantum routing protocol where most of the
nodes proactively creates and maintains short-range (i.e., low-
cost) artificial links, and only a fraction of nodes is responsible
for proactively creating and maintaining long-range (i.e., high-
cost) artificial links.

Accordingly, we begin by defining two sets of nodes: the
e-neighborhood and the anchor-nodes.

Definition 5 (e-neihborhood). The e-neighborhoo N (v;)
of the arbitrary ESP v; € V3 denotes the set of the k = | N (v;)]
nodes closest to v;, according to the entangling-cost metric
w(-,-). The nodes in N (v;) are referred to as the e-neighbors
of V;.

Intuitively, the e-neighborhood of an ESP captures also
localized information about the underlying physical topology,
as inferred through the entangling-cost w(-,-). In this sense,
the concept of e-neighborhood inherently reflects the low-cost
regime associated with the proactive creation and maintenance
of entangled links. Conversely, only the nodes in the following
set are requested to proactively create and maintain high-cost
entangled links.

14We omit the explicit dependence on k for notational simplicity.

Definition 6 (Anchor Set). A subset 7' C V5, of ESPs
is defined as anchor set, and its elements are equivalently
referred to as anchor ESPs or simply anchors.

From the above, it is evident that the two key parameters
influencing the overall routing behavior are: i) the size of each
ESP e-neighborhood, denoted by k, and ii) the cardinality of
the anchor-node set |T|, as summarized in Tab. [V} Building
on this observation, we now propose a constructive method to
set these parameters to induce the compact routing Property [I]
which is subsequently exploited by the routing protocol.

Specifically, we leverage a result from classical combinato-
rial set theory concerning the covering set problem, originally
introduced in [29], but in the formulation given in [30]
as follows. Let P be a finite set of ¢ elements, and let
A={A;,..., Ay} be a collection of subsets of P, each with
cardinality |A;| = s. A set D C P is said to cover A if:

By constructing the set D using a randomized cover algorithm,
then with high probability 1 — O(h'~™), for any constant
m > 1, D covers A and its size is upper bounded as:

D=0 <£logh) '
s

In our context, we map this result to the quantum routing
problem, by interpreting P as the set of ESPs, and the
collection 4 as the set of e-neighborhoods, each with size

(24)



feature e-neighborhood

‘ anchor

connectivity scope local

global (long-range)

entanglement
gling cost w(-, -)

toward the k-closest ESPs according to entan-

toward the other |T'| — 1 anchors

entanglement cost low

high

routing role

capturing local physical topology structure and
ensuring short-entanglement hop redundancy

enabling global connectivity across distant ESPs

overlay topology impact

supporting dense local clustering

guaranteeing that any pair of ESP is within at
most 3-entanglement-hops

maintenance complexity low

high

design parameter

number of e-neighbors k = | N (v;)]

number of anchors |7T|

scalability/performance
impact

sublinear routing tables

constant entangling stretch

TABLE V: Comparison between e-neighborhood N(-) and anchor set T, highlighting their respective contributions to local

and global entanglement reachability in the overlay topology.

k = |N(vj;)|. The goal is to construct the anchor set T, such
that each e-neighborhood N (v;) contains at least one anchor
ESP. Thus, in this analogy, 7" plays the role of the covering
set D. By applying the result from [30] and by neglecting
lower-order terms, we ensure that if the e-neighborhood size
is set to:

k= (14 m)y/n.logne, (25)
then there exists a cover set T" of size:
IT| = /ne, (26)

that covers all the e-neighborhoods with high probability. In
other words, with this parametrization, we are able to ensure
that the anchor set 1" serves as a dominating set over the graph
induced by e-neighborhoods, thereby enabling the following
crucial Property [T} while maintaining both sublinear memory
complexity and constant stretch.

Property 1. Any ESP has in its e-neighborhood at least one
anchor with high probability (w.h.p.), i.e.:
P( Av; €T :v; € N(v;)) =O(nl™™),

€

Vv, € V. (27)

Remark 7. As aforementioned, the anchor set T’ can be
constructed by using the randomized algorithm proposed in
[30], which does not require any a-priori knowledge nor any
particular property. And the probability of violating Property [I]
can be made arbitrarily small, by appropriately tuning the
constant m. In practical scenarios, when the anchors are
equipped with enhanced quantum hardware capabilitiesE], it
may be preferable to deterministically construct the anchor
set. This can be accomplished either by de-randomizing the
aforementioned algorithm using techniques such as those
proposed in [31], or by adopting a classical greedy approach
as originally introduced in [29]]. In the latter case, a tighter
bound on the anchor set size can be achieved, such as
|D| < w, yet at the price of some global network
knowledge. Indeed, more efficient covering algorithms can
be devised, by exploiting particular properties of the overlay
topology. However, the investigation of optimized techniques

15 An assumption arguably reasonable given their role in proactively main-
taining long-range entangled links.

for the anchor-set construction lies beyond the scope of this
paper. Our goal here is to demonstrate that Property [T| can be
enforced with high probability through careful parameteriza-
tion, and that both randomized and deterministic construction
methodologies exist to support this design objective.

With the above in mind, the key design choice for the
routing protocol is the following:

each anchor node v; € T proactively establishes
and maintains entanglement with any other anchor
node in T,

via the optimal end-to-end entangling metric in Def. [3] Ac-
cordingly, v;, v; € T are connected by an artificial link within
the artificial topology, with the lowest entangling stretch, i.e.,
&8(i,j) = 1. Additionally:

each ESP wv; proactively establishes and main-
tains entanglement with any ESP within its e-
neighborhood N (v;),

again, by exploiting the optimal entangling metric in Def.
Such artificial links between v; and any v; € N(v;) likewise
exhibit the minimum entangling stretch, i.e., £8(i,k) = 1.
This design is depicted in Fig. [3a] where non-anchor ESPs,
i.e., nodes in Vo \ T, and ESPs in T are represented in blue
and purple, respectively, and artificial links are denoted with
red arrows.

As a consequence, an arbitrary ESP |v;) maintains an
entangling routing table with @(\/77(,) entries, as enforced by
our compact design principle. This table is organized as shown
in Fig. ] and detailed below:

o O(y/nclogn,) “entries” are dedicated to e-neighbors in
N (v;), with each entry storing a certain numbeIE] of e-
bits shared with v; in N(v;), along with:

i) the quantum address |v;),
ii) and the superposition of the quantum addresses
{|vm)} of the e-neighbors in N (v;).

16The number of e-bits per entry is a design parameter, that depends on
the number of communication qubits available at each ESP. Thus this choice
is dictated by the hardware-specific complexity, characterizing the ESPs.



QUANTUM ROUTING TABLE AT ESP v;

ebits e-hop e-neghborhood Anchor
rfee]- ] ]
Z for any v; € V.:
.. |v5) 7% [um)  yes/no O(y/nelogn,.) entries
IN (v vmeN(vJ one for each v; : v; € N(v;)
rfee]- ] ]
.. PARTIAL-ANCHOR SCHEME FULL-ANCHOR SCHEME
if v; € T: O(\/n.) entries
v — v es v €

.. [oe) VIN (vl EzN(Uk fom) ¥ one for each v, € T O(,/n) entries

- one for each vy, € t(v;)
.. if v; € T": no entries

Fig. 4: Schematic view of the entangling table of ESP v;. The former portion is devoted to track entanglement within e-
neighborhood (low-cost artificial links) and it is common in both Partial-Anchor and Full-Anchor schemes. The latter portion
is devoted to maintain high-cost artificial links, and it differs depending on the adopted scheme.

o If v; € T then there exist O(,/n.) additional “entries”,
storing a certain number of e-bits shared with each anchor
ESP v, € T, together with:

i) the quantum address |vy),
ii) and the superposition of the quantum addresses of
the e-neighbors in N (vy).

It is important to note that an artificial link between v; and
v, representing a shared entangled state, requires that (at least)
one ebit is stored at each node. Thus, whenever an ESP v;
establishes a link with its e-neighbor v;, there is an entry in
v; quantum routing table as well as a corresponding entry in
v; quantum routing table. However, the neighbor sets of v;
and v; may differ: the entangling cost function w(-,-) may
induce the selection of v; among the top ,/n. entanglement-
neighbors of v;, ie., v; € N(v;), but the reverse is not
true, i.e., v; ¢ N(v;). This asymmetry may arise, since the
neighbors for v; and v; could be constructed independently
and possibly from partial views of the network. To preserve
routing consistency and full usability of the links established
by v;, node v; must be aware of such asymmetry. This
motivates the introduction of the reverse neighborhood of
node v;, defined as R(v;) U{v] €V :v € N}
In practice this means that, while the primary entries in v;
entangling table are determined by its own neighbor-set N (v;)
and utilized for the packet forwarding at v;, the table must also
accommodate auxiliary entries for R(v;), to enable correct
handling of routing requests terminating at or passing through
v; due to its inclusion in another node’s neighbor-set. Thus,
the number of entries at v; scales as |R(v;) U N(v;)|. There
exist some degenerate cases, where the cardinality of |R(v;)]
is not upper-bounded by (7)(\/7?@), such as when the entangling
cost w(-,-) does not satisfy the axiomatic properties of a
metric given in (TI)-(T4) or when the cost induces strong
centralization, with a few privileged nodes being entangled-

efficient for a disproportionately large number of others. In
the following, we reasonably assume that such degenerate
cases can be properly handled by fairness policies enforced
by the EDC. These policies can induce a maximum number
of entangling table entries per node, prioritizing fairness and
scalability.

Quantum Routing Logic:

We are ready now to present the logic underlying our com-
pact quantum routing protocol for the partial-anchor scheme,
achieving entanglement-stretch €8 upper bounded by 5, as
proved in Lemma [I] More in detail, end-to-end entanglement
between an “initiating” ESP, say node v;, and a ‘“target”
ESP v4 proceeds through one of the following three cases,
examined in order.

o Case I. vy belongs to N(v;), or equivalently if v; € T,
vg may belong to 7" as well. This case can be checked
by simply searching for quantum address |d) within the
e-hop field of the entangling table entries, by exploiting
the orthogonality of the addresses. If this condition holds,
then v; has already established entanglement with vy,
through the optimal entangling metric by design. Thus,
an artificial link exists with unitary entangling stretch,
ie., E8(i,d) =1

o Case II. This case is illustrated in Fig. [5al If Case I
does not hold, the targeted ESP vy may still belong
to the e-neighborhood of some v; € N(v;). This can
be checked by searching for the quantum address |vg)
within the superposed quantum addresses stored in the
e-neighborhood field of the entangling table entries, by
exploiting the quantum addressing splitting functionality
designed in Sec. If |vg) is found, by denoting with
v; € N(v;) the e-hop of |vg) as in Fig.[54] then both v;, v;
and v;, vy are entangled through the optimal entangling
metric by design. Thus, two artificial links with unitary



stretch exist — £8(4,5) = €8(j,d) = 1 — and they
enable end-to-end entanglement between v; and v, via
entanglement swapping at v;.

e Case III. This case is represented in Fig. [5b] When-
ever the previous two cases do not apply then, with a
probability that can be made as close to 1 as wished
accordingly to Property |1} there exists an anchor ESP,
say v; € T, within the e-neighborhood of U,E By
design, v; has already established entanglement with any
other anchor in 7, including some anchor v, € T that
belongs to the e-neighborhood of v4. This can be verified
by searching for the quantum address |vg) in the e-
neighborhood fields associated with the e-hops field of
v; € T. As a consequence, there exist three artificial
links characterized by unitary entangling stretch — i.e.
E8(i,1) = E8(I, k) = E8(k,d) = 1 — and thus end-to-end
entanglement between v; and vy can be straightforwardly
obtained by entanglement swapping at both v; and v,ﬂ

Remark 8. The configuration described in Case III substanti-
ates the key insight anticipated at the beginning of Sec.
Specifically, with high probability, every ESP is at most 3-hop-
entanglement distant from any other ESP within the overlay
topology, and this confirms the strategic role of the anchors as
entanglement hubs. Importantly, this 3-hop value represents a
worst-case scenario, derived under the assumption that both v;
and vy are neither anchor nor k-closest neighbor nodes, thus
without direct entanglement. In many practical configurations,
the hop-entanglement can be strictly smaller. Nevertheless,
this worst-case guarantee offers strong evidence of the routing
performance, achieved with only sublinear memory overhead
and local decision-making. Thus, it reinforces the effectiveness
of the anchor-based overlay design.

Remark 9. Although we fairly impose an optimal entan-
gling metric w(-,-) for the selection of the e-neighbors, by
ensuring that each ESP maintains entanglement with its most
favorable peers according to a selected performance criterion,
the entangling stretch €S of the proposed routing scheme is
not necessarily equal to one. This is the consequence of two
structural relaxations deliberately introduced in our design to
preserve the compactness and scalability of our protocol.

First, we relax the requirement of a fully connected entangled
mesh among the ESPs. While such a mesh would guarantee
unit stretch for all the aforementioned cases, even in Case
111, maintaining all-to-all entanglement among ESPs would be
practically unsustainable, due to the complexity related to the

"The underlying and non-restrictive hypothesis is that each anchor ESP
reveals its anchor-status to its e-neighbors. In other words, if v; € T
belongs to the e-neighborhood N (v;), then v; is aware that v; is an anchor.
This information is required to allow forwarding decisions that leverage the
entanglement already shared among the anchors. Importantly, this does not
entail any global coordination, only local exchanges during the entangle-
ment establishment phase, achieved by embedding such metadata into the
exchanged quantum packets, carrying also the superposed state encoding the
identities of the neighbors of each e-hop.

18 There exists some special configurations of Case IIl — such as when
v; € T as shown in Fig.[5cor when vq € T — that yield a tighter upper bound
for the entangling stretch, i.e., £§ < 3. In particular, when both v;,vg € T,
the configuration actually falls under Case I, since anchor ESPs are directly
entangled by design, resulting in unitary stretch £§ = 1.

hardware and control overhead. Instead, our protocol relies
on a sparse backbone, built through localized decisions and
bounded connectivity.

Second, but most importantly, we do not optimize the construc-
tion of the anchor set T', as mentioned above. The anchor ESPs
are selected through the randomized, distributed algorithm,
described in Remark[7] While this approach requires no global
knowledge, it may yield a suboptimal anchor placement from
the perspective of minimizing end-to-end entangling stretch.
In this light and in agreement with Remark [/} it is reasonable
to assume the nodes in 7' equipped with enhanced quantum
hardware capabilities. Under this assumption, it may be more
appropriate to construct the anchor set deterministically. Such
a deterministic approach, potentially combined with a joint
optimization of the entangling cost metric and the anchor
topology, could further improve the routing efficiency, by
achieving even lower stretch, even in scenarios corresponding
to Case IlI. However, a detailed investigation of this joint
optimization strategy falls beyond the scope of this paper. We
leave it as future work.

The entangling stretch of the proposed partial-anchor
scheme is upper-bounded formally in the following Lemma.

Lemma 1. By denoting with v; and vq the ESPs exhibiting the
worst-case entangling stretch defined in (19), the stretch of the
corresponding entangling path is upper bounded as follow:

P (UTE 2 GO A U KX LI OT))

w(i,d)
w (D5 (i,d))
w(i,d)

For additive metrics, i.e., when the composition operator is
such that w(a ® b) = w(a) + w(b), @8) simplifies to:

E8§ <ec=35.

1>

(28)

(29)

Conversely, for concave metrics where the composition opera-
tor is defined as ® = min, the stretch in @]} becomes unitary,
ie., E§ = 1.

Proof: See Appendix [A] [ |

D. Full-Anchor Scheme

Here we design a second quantum routing scheme, which
relies on enhanced ESP capabilities to establish long-range
artificial links. To this aim, while the definition of e-
neighborhood in Def. E] remains unchanged, we introduce
the following design principle, as an alternative to Design

Principle [5.A]

Design Principle 5.B (Full-Anchor Scheme). The design of
the quantum routing protocol requires each ESP to proactively
generate and sustain both the two “species” of artificial links:
short-range (i.e., low-cost) and long-range (i.e., high-cost)
links.

Accordingly, in this second routing scheme, each ESP
serves as anchor. To emphasize this aspect, we termed it
full-anchor scheme. However, to avoid unsustainable routing-
table growth, we induce a sparse tracking paradigm, where



each ESP monitors only a subset, randomly selected, of
other ESPs. A naive design of this scheme may result in
pathological scenarios, such as for instance, all ESPs tracking
the same subset, leaving parts of the overlay unreachable.
Consequently, to ensure that the sparse tracking preserves
full-network coverage, we leverage the result for extended
dominating sets, introduced in the previous subsection. To
formalize this approach, the following definitions are needed.

Definition 7 (Tracked-Sets). A collection of disjoint subsets
T = {T1,...,T m;} is said to form a partition of the ESP
set V5 if:

Urn=wv AT =0 (30)

In the following, we refer to the elements in 7 as tracked-sets.

We assume that the mapping function V' — 7, determin-
ing the partition of the ESP set V5, is globally known by the
nodes.

In the following, for the sake of simplicity we assume the

tracked-sets are constructed via an arbitrary flat partitioning
of the ESP set V5. One natural choice is to partition nodes
based on their quantum addresses, i.e., a node with quantum
address |i) is assigned to the j-th tracking-set 7} if and only
if (j —1)y/ne <1< jy/ne.
Remark 10. The aforementioned flat partitioning has the de-
sirable property of being independent of the network topology
and yet it guarantees that each tracked-set T contains at
most /n. nodes, ie. T; < /n. for any j. Nevertheless,
any alternative flat partitioning that respects this cardinality
constraint is equally valid.

We now define the tracking-nodes.

Definition 8 (Tracking-nodes). Each ESP v; € V5 tracks only
one tracked-set T; € T, chosen uniformly at random. This set
is denoted as t(v;):

Vo, € Vo E”Tj eT st t(Ui) = Tj (€1}

Any node vgq € t(v;) is referred to as one of the nodes tracked
by v;.

The key observation is that the union of tracked-sets orig-
inating from the e-neighborhood of any given ESP must
collectively cover the entire ESP set. This ensures reachability
and global coverage under sparse tracking regime. To enforce
this coverage, we leverage again the result on extended dom-
inating sets [29]], introduced in the previous section. Indeed,
by enforcing the same parametrization of the e-neighborhood
cardinality £ = (1 4+ m),/nclogn., we ensure the following
property with high-probability:

Property 2. Any ESP v; has in its neighborhood at least one
node tracking any other ESP w.h.p., i.e.:

P( Bv; € N(v) 1 vg € t(vj)) = O(nl™™), Yv;,v4 € Va.
(32)

This property guarantees that, although each ESP tracks
only a limited number of other ESPs, the collective coverage

provided by the e-neighborhood is sufficient to ensure full
overlay reachability.

Remark 11. As noted in Remark [7] a similar observation ap-
plies here as well: the specific construction of the tracked sets
lies outside the scope of this work. Our primary objective is
to demonstrate that Property [2| can be ensured with high prob-
ability, through appropriate parametrization. Although more
optimized constructions are possible, our analysis deliberately
avoids assuming any particular structure in the tracked set
formation. As such, the presented results should be interpreted
as worst-case guarantees.

With the above in mind, the full-anchor scheme relies on
the following:
each ESP v; proactively establishes and maintains
entanglement with any node within its tracked-set
t(’l]i),
where entanglement is established using the optimal end-to-
end entangling metric in Def. Accordingly, v; and any
v; € t(v;) are connected by an artificial link within the
artificial topology characterized by unitary entangling stretch,
i.e., £8(4,j) = 1. Furthermore:
each ESP wv; proactively establishes and main-
tains entanglement with any ESP within its e-
neighborhood N (v;),
again via the optimal end-to-end entangling metric in
Def. [3] Consequently, each artificial link between v; and any
v, € N(v;) also exhibits a unitary entangling stretch, i.e.,
&8(i, k) = 1.

As a consequence, an arbitrary ESP |v;) maintains an
entangling routing table with (5(\/776) entries, as enforced
by our compact design principle. This table is organized as
shown in Fig. 4] The distinguishing factor between the partial-
anchor scheme and the full-anchor scheme is the latter part of
the quantum routing table devoted to high-cost artificial links.
Specifically, the full-anchor scheme allows each ESP, rather
than only the nodes in 7', to proactively establish and maintain
such links. This maps into an “enhanced” connectivity within
the artificial topology, which enables our compact quantum
routing protocol to guarantee entangling stretch €8 upper
bounded by 3, as in (2I), with at most @(\/TTP) qubits to
be stored at each node.

Quantum Routing Logic:

We are ready now to describe the logic underlying full-anchor
scheme. More in detail, end-to-end entanglement between
“initiating” ESP v; and “target” ESP vy proceeds through one
of the following two cases, examined in order.

e Case I. vy may belong to N (v;) or t(v;); if so, similarly
to Case I of the Partial-Anchor Scheme, then v; already
established some entanglement with v, through the opti-
mal entangling metric by design. Thus, an artificial link
exists with unitary entangling stretch: £8(i,d) = 1.

o Case II. It is similar to the case represented in Fig. [5a
Whenever the first case does not hold, according to
Property [2| which holds w.h.p., v4 belongs to the e-
neighborhood of at least one node in N(v;). This can
be checked by searching for the quantum address |vg)



within the superposed quantum addresses stored in the
e-neighborhood field of the entangling table entries, by
exploiting the addressing splitting functionality designed
in Sec. If |vg) is found, by denoting with v; € N (v;)
the e-hop of vg as in Fig. @ then both v;,v; and v, vq
are entangled with unitary stretch by design. Thus, two
artificial links with unitary stretch exist. As a conse-
quence, end-to-end entanglement between v; and vy can
be straightforwardly obtained by entanglement swapping
at v;.

Remark 12. Similarly to the observation in Remark [8] the
configuration described in Case II substantiates the key insight
anticipated at the beginning of Sec. Specifically, with
high probability, every ESP is at most at 2 entanglement-hops
from any other ESP in the overlay topology.

Lemma 2. By denoting with v; and v,y the ESPs exhibiting the
worst-case entangling stretch defined in (19), the stretch of the
corresponding entangling path is upper bounded as follow:

w((i,d) ® (i,d) & (i,d)) o w(D4(i,d))
E8§ < c= =
= w(i, d) w(i, d) (33)
which, for additive metrics 28)), simplifies to:
€8 < c=3. (34)

. A, .
Conversely, for concave metrics (& = min) the stretch in (25)
becomes unitary, i.e., €8 = 1.
Proof: The proof follows by adopting the same reasoning

as in App. [A] [ |

IV. QUANTUM ADDRESS SPLITTING VIA SCHRODINGER’S
ORACLE

As detailed in the previous section, the proposed routing
protocol, by exploiting superposed quantum addresses, re-
quires the availability of a functionality we termed quantum
address splitting.

This functionality generalizes classical forwarding opera-
tions to quantum-superposed identifiers. Specifically, the quan-
tum address splitting mechanism determines whether a given
quantum address, say |vg), is embedded within the superposed
address stored in the e-neighborhood field of a the quantum
routing table entry, as illustrated in Fig. ] And this check
must be performed by satisfying two key constraints:

1) non-reliance on prior knowledge: the addressing splitting
functionality must not require any preliminary knowledge
about the specific quantum addresses that have been
superposed, since they depend on the topology via the
e-neighborhood N (-);

ii) non-destructive search: the addressing splitting function-
ality should not alter any superposed address that does
not contain the target address, |vgq), ensuring so that
the superposed address remains available for subsequent
queries involving different target addresses.

With the above two key constraints in mind, we propose

a modified version of Grover’s quantum search algorithm
[32]l, tailored for quantum-superposed data structures. In our

design, the oracle operates coherently on quantum-superposed
entries and is thus referred to as the Schrodinger’s oracle.
Specifically, the oracle is implemented via controlled quan-
tum gates, where the control is provided by the quantum
registers encoding the superposed addresses stored in the e-
neighborhood field of the routing table. The control condition
is determined by the target quantum address |vg) we aim to
identify. As illustrated in Fig. [f] and detailed in the following,
the oracle evaluates whether |vy) is included in any superposed
e-neighborhood associated with each routing entry. Specifi-
cally, it performs a phase inversion on the state representing
the label of a given entry only when the corresponding
superposed e-neighborhood contains the address |vg).

This modified oracle causes the algorithm to evolve into a
superposition of parallel search paths: one where the marked
entry undergoes a phase flip, and another where it does not.
Thus, the presence of the phase inversion becomes a coherent,
quantum-controllable degree of freedom. This mechanism
enables the selective identification of |d) without collapsing
the superposition of unrelated addresses.

A. Quantum Search Register

To fulfill the second key constraint, namely, the ability to
perform non-destructive queries, we encode the labels of the
routing table entries into a dedicated quantum register, which
then undergoes the Grover search iterations. Formally, our
search space consists of the{lg] nt routing table entries, each
uniquely identified by a label encoded as a computational basis
state |y), with y € {0,1}"7, and Ny = [logy(nr)]. This
quantum register, referred to as the entry label register, holds
the label of each entry. The register is initialized following the
standard Grover preparation step, as shown in Fig. [6] resulting
in an equal superposition of all the nt basis states:

nTl

o) = Z ly) - (35)

B. Quantum Superposed Address Registers

Let us consider the arbitrary entry labeled as |y) and denote
the quantum address of its associated e-hop as |v;).

The e-neighborhood N (v;) of node v; is partitioned by the
node itself into f(n.) disjoint sub-e-neighborhoods, such that
any given quantum node v € N(v;) belongs to exactly one
of these partitions. Each of these partitions is encoded as a
quantum-superposed address, denoted as |A§> and announced
by |v;). The superposition representing I-th partition of N (v;)
is defined as follows:

|A5) = (36)

\/TTelogne Z'

where S} is the set of nodes in the I-th partition of N(v;).
Accordingly, each node |v) in Sj» appears in the quantum

superposition [AL) with amplitude %,

19We introduce a more compact notation for the number of routing entries,
with respect to the one adopted in Sec. @ for the sake of brevity.



h ~ _ &8(i,d) <5

(b) Case IIL: there exists v, vy € T so that v; € N(v;) and
vg € N(vq).

v €T 1 vg € ;\“Y<1/‘/‘-)

(c) Case IV as particular configuration of case III where either

v; belongs to T'.

Fig. 5: Partial-Anchor Scheme: schematic view of the logic underlying our compact quantum routing protocol for establishing
end-to-end entanglement between “initiating” ESP v; and “target” ESP v,4. Tracking nodes in T' are denoted in purple, artificial
links are denoted with red arrows, and circles around quantum nodes denote their e-neighborhood.

Remark 13. We highlight that f(n.) serves as a key tunable
design parameter of our quantum address splitting functional-
ity. Indeed, f(n.) allows us to drive the success probability
of the Grover search via our Schrédinger’s oracle toward one:
the larger is f(n.), the higher is the success probability.

The f(n.) quantum addresses {|A’)}, jointly describing the
e-neighborhood N (v;) of e-hop |v;), control our Schrodinger’s
oracle for the j-th entry label, as shown in Fig. [

C. Schrodinger’s Oracle

The Schrodinger’s oracle Og for the e-hop |v;) acts on

the composite quantum system |¢y) ® |A;), with |A;) 2

1 f(ne) . . ho
|A}) @ ... ®|A;"), as shown in equation (37) show

within next page. The amplitude associated with the target

20Where we omitted the superposed addressed for the e-neighborhoods of
the other entries for the sake of notation simplicity and brevity. For the same
reasons, we assume, without loss of generality, that vy is in Ajl-.

address in the first sub-e-neighborhood is denoted as v/« 2

_ f(ne
<'Ud|AJ1‘> = \/776(10;"6) .

As evident from equation (37) shown within next page,
whenever the target |vg) does not belong to the e-neighborhood
N (v;) of the e-hop |v;), then our Schrodinger’s oracle Og sat-
isfies both the aforementioned constraints, by acting trivially
on the entry label |2z) (namely |z) is unchanged) and, crucially,
leaving any non-matching superposed address unaltered. This
ensures the non-destructive property of the search.

Conversely, whenever |vg) € N(v;), then Og generates an
inversion of the phase of the associated entry label |x). More
precisely, Og entangles the entry label |z) with the “hitting ”
sub-e-neighborhood, inducing a conditional phase flip on |z).
Thus, two computational evolutions are possible, one with and
the other without the oracle phase inversion, as follows (by
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Remark 14. The Schrodinger’s oracle Og allows Grover’s
algorithm to evolve in a coherent superposition of oracle-
inverting and oracle-trivial computational dynamics. Further
discussion in reported in Sec.

In Fig. [| we provide a straightforward, un-optimized circuit-
level realization of the Schrodinger’s oracle for 3-qubits quan-
tum addresses. The control conditions are determined by the
binary coefficients {¢;} driving the X-gates, derived from the
classical representation of the target state |vg):

=2

-1

d= b2, b e {0,1}, (39)

Il
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i

with NV defined in Def. [1]

D. Diffusion Operator

As shown in Fig. [f] each application of the Schrédinger’s
oracles is followed by the standard Grover diffusion operator
Up, acting on the entry label register. Up performs the
conventional inversion about the mean, a key mechanism in
amplitude amplification.

As shown in @]) what distinguishes our setting, however,
is that the overall system evolves into a coherent superposition
of two computational branches:

1) a non-inverting branch, corresponding to the component
|z) ® [vg) , in which the label has not undergone a phase
flip, and

ii) an inverting branch, corresponding to |z) ® |vg), where
the label has experienced a phase inversion, namely has
been marked.

Here |x) denotes the label of the entry whose e-neighborhood
contains the target address |vg). In the non-inverting branch,
since no phase-inversion occurs, the subsequent application of
Up leaves the amplitude distribution unchanged. In contrast
in the inverting branch, the diffusion operator Up acts as
in standard Grover: it amplifies the probability amplitude of
hitting entry |x), while it suppresses those of the non-marked
entries.

E. Measurement

As shown in Fig. [] the search is concluded upon the
measurement of the entry label register, after a prescribe
number of iterations. This measurement collapses the super-
position over the entry labels, yielding a specific outcome |z*).

The probability of successfully identifying a hitting entry
associated with the target address |vg) benefits from two
contributing factors: one coming from the non-inverting branch
and the other from the inverting branch. Specifically, in the

21 This prescribed number can be computed by averaging over the optimal
number of iterations for the two different branches.

non-inverting branch, the amplitudes remain uniform, i.e., NG
and the measurement behaves like a uniform random choice
over all the entries. Differently, in the phase-inverting branch,
the amplitude of the hitting entry label associated to |vg) is
amplified toward unity, following standard Grover dynamics.

Overall, the probability of successfully measuring the
marked entry |z) is enhanced by the Grover-amplified branch
weighted by a, while the no-inverting branch contributes with
a uniform background distribution. Since « is proportional to
f(ne), ie., to the number of superposed addressed announced
by each e-hop, f(n.) becomes pivotal in steering the algo-
rithm’s success probability toward one.

Furthermore, while we assumed a single hitting entry |z) for
simplicity, the expected number of such entries is much larger,
on the order of log n.. This follows from our parametrization
of the routing tables in terms of e-neighborhood size k& and
number of anchors (or tracking nodes in the second routing
scheme), which is ,/n.. Under this design, each quantum
address appears redundantly in approximately logn. distinct
entries of a routing table. As a result, the probability of
successfully detecting a hitting entry is further boosted by this
built-in redundancy.

Although a comprehensive analytical characterization re-
mains open for future work, preliminary simulations suggest
that a poly-logarithmic scaling of f(n.), when combined
with the inherent redundancy of approximately logn. hitting
entries, is sufficient to ensure w.h.p the discovery of a match-
ing entry, even in very large-scale quantum networks with a
number of nodes in the order of millions or more.

V. DISCUSSION

We conclude the paper by discussing several key aspects
and implications of our proposed approach. For clarity and
readability, each point is discussed individually, by highlight-
ing specific aspects of the proposal and by providing context
for rational and future directions.

Compact Routing Design: In 1977, Kleinrock and Kamoun
published their pioneering paper [33] on hierarchical rout-
ing. Since then, hierarchical routing has been the foundation
of both inter-domain and intra-domain routing techniques
adopted in Internet, such as CIDR and OSPF/ISIS [15]. And
Kleinrock and Kamoun’s hierarchical approach was essentially
the first name-dependent routing schemeFZl In the same paper,
they were the first to analyze the stretch/routing-table size
trade-off, by showing that the routing stretch produced by
the hierarchical approach is satisfactory only for specific
topologies. In other words, hierarchical routing is optimal
by achieving shortest paths (namely, paths minimizing the
route cost according to the adopted metric) with scalable
routing table (routing tables that scale sublinearly with the
number of nodes) for topologies with specific characteristics,
such as trees or grids. But Internet does not satisfy this

221n a nutshell, a name-dependent routing scheme embeds some topological
information within node addresses, which, thus, cannot be arbitrary. This
topological information is, then, exploited to reduce the amount of information
to be stored in each routing table. Conversely, name-independent routing
works with topologically-agnostic node addresses. The differences between
the two routing approaches are summarized in Table [ZT]



property name-dependent name-independent

address structure topology-aware topology-agnostic

sublinear (universal)
high

routing table size topology-dependent

robustness to topology | limited

changes

TABLE VI: Name-dependent vs name-independent routing:
concise comparative overview

type of topologies. And indeed, analytical estimates show that
applying hierarchical routing to the Internet topology incurs a
~ 15-times path length increase [|15].

With this lesson learned from the classical Internet his-

tory, and by accounting for the unsuitability of topological-
addresses for tracking entanglement as pioneered in [§f], we
focus our attention on the design of universal quantum routing
schemes, namely, accordingly to the notation introduced in
[15]], schemes that work correctly and satisfy promised scaling
bounds on all graphs. The rationale for our design choice does
not limit to the attractive feature of generality exhibited by uni-
versal routing protocols. But it accounts also for the conflicting
preliminary results in terms of topology properties of quantum
networks reported by recent literature [34], [35], as well as
for the absence of experimental studies on quantum network
topologies (excepting extremely-small quantum networks such
as [[24]).
Last but not least, it is worthwhile to note that our proposal
is the first compact routing protocol proposed in literature
that achieves fully name-independent routing, i.e., that does
not exploit an underlying name-dependent scheme [15]]. This
achievement is made possible by the design of the quantum
addressing scheme, which encodes quantum properties directly
into node identifiers. We believe that many other network
functionalities could benefit similarly from quantum-native
design principles.

Worst-Case Baseline for Clustering: The clustering of
ESPs into the anchor set (or tracked-sets for the second
scheme) has been performed using a flat, non-topology-aware
partitioning (see Remarks [9] and [IT)). This results in a worst-
case baseline, as no effort has been made to optimize the place-
ment or connectivity of anchors/tracking ESPs. Indeed, our
goal in this first-case analysis is to demonstrate that, even un-
der such an unaware clustering, the proposed schemes achieve
coverage w.h.p. and constant-bounded entangling stretch. It
follows that future clustering optimizations will definitively
lead to even better performance.

Quantum Address Splitting: The Address Splitting func-
tionality proposed in this paper serves as a foundational proof
of concept for extending classical forwarding operations to
quantum-superposed identifiers. While potential optimizations,
such as tuning the redundancy factor log, n. and the parameter
f(ne) have been briefly discussed in Sec. one important
optimization dimension remains unexplored. Specifically, the
current design does not account for the impact of anchor
set (tracked sets in the second scheme) structure on the
effectiveness of address splitting. This opens the door to more
efficient variants that could emerge from a joint optimization
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of the address splitting mechanism and the clustering strate-
gies. Exploring this synergy is a promising future direction.

Schrodinger’s Oracle: The Schrodinger’s oracle Og de-
signed to implement the quantum address splitting allows
Grover’s algorithm to evolve in a coherent superposition of
oracle-inverting and oracle-trivial computational dynamics.
The presence or absence of the oracle’s action becomes itself
a quantum degree of freedom, which introduced a new layer
of coherence within the search process. We strongly believe
this approach generalizes standard Grover search and opens
new directions for exploring quantum algorithms operating in
superpositions of operational regimes, enabled by quantum-
superposed data structures. Indeed, the potential advantages
offered by this additional dimension of quantumness are
reminiscent of the benefits observed in scenarios involving
superpositions of quantum operations or tasks [36]—[39]. How-
ever, this remains an open question and warrants further
investigation.

Multipartite Entanglement: The proposed quantum-native
routing protocol considered only bipartite-entanglement, as
key communication resource. Yet, the full potential of the
proposed quantum addressing scheme becomes even more
evident in multipartite entanglement scenarios. Indeed, in such
cases, the ESPs must address not just individual nodes, but
entire subsets of nodes involved in the entanglement relation.
Thus, the quantum addressing and the tracking mechanisms
proposed here are particularly well-suited for the multipartite
setting, as they can significantly reduce routing table sizes that,
without superposed addresses, would scale more than linearly.
Exploring this extension is part of our future work.

Architecture Scalability and Generality: The proposed
architecture integrates hierarchical principles with SDN prin-
ciples, resulting in a two-tier structure that clearly separates
control from data plane. This separation simplifies network
management, by localizing decisions and reducing control
overhead. The two-tier hierarchy enables scalable orchestration
of entanglement generation and routing, while preserving flex-
ibility and extensibility. Although our work focuses primarily
on routing, the architectural foundation here presented is gen-
eral and it can support other quantum-native functions, such as
scheduling, fault tolerance, and resource provisioning. Thus,
it is a robust and adaptable foundation for future Quantum
Internet design and deployment.

Furthermore, the proposed architecture is not constrained by
the assumption of a single, centralized EDC with complete
network knowledge. Instead, multiple EDCs can coexist, either
hierarchically organized or operating in a distributed fashion,
with each EDC orchestrating a portion of the network. Thus,
the EDCs can coordinate to share partial topological knowl-
edge and enforce consistent entanglement resource policies,
while still enabling local autonomy and scalability.

In this perspective, the aforementioned approach mirrors the
design philosophy of distributed SDN controllers in classical
networks, where control logic is logically centralized but
physically distributed.

Overall, our proposal is flexible and supports scalability and
resilience. It allows even for a decentralized control infrastruc-
ture that can better adapt to the operational demands of large-



scale quantum networks, as exemplified by the full-anchor
scheme.

APPENDIX A
PROOF OF LEMMA 1]

By denoting with v; and v; the ESPs exhibiting the worst-
case entangling stretch in (T9), we have two cases® with a
entangling stretch larger than one: either Case II or Case III.

Let us focus first on Case IIl. Accordingly, it results:

wr(i,d) = w((i,1) & (I,k) & (k,d)) (40)

By applying the axiomatic monotonic property of a metric
given in (T4) to quantum path (I, k), we can upper bound @0)
as:

wr(i,d) =w((i,1) & (I,k) ® (k,d)) <

<w((i,) (i) 4,k & (kd) @)

Clearly, it results vg & N(v;) — otherwise Case I would hold —
whereas v; € N(v;) by design. Thus, being w(i, 1) < w(i,d)
from Def. [6] and by accounting for the axiomatic symmetry of
a metric given in (T3), we have:

w((i, 1) & (1,7) < w((i,d) ® (d,7)) (42)

By extending both the entangling paths given in @2) with the
common path (i,k) & (k,d) and by accounting for the right
isotonicity property given in (16), we can upper bound @T)
as:

((i,0) & (1,4) ® (i, k) @ (k,d))

((i,d) @ (d,i) ® (i,k) @ (k,d)) (43)

By using the axiomatic monotonic property of a metric given
in (T4) to the entangling path (i, k), we can upper bound (@3)
as follows:

< w((i,d) @ (

)

d,i) @ (i, k) © (k, d))
d,i) ® (i,

(i,d) ® (d, k) @ (k,d)) (44)

We have that v; € N(vgq) — otherwise there would have been
a corresponding entry for vy in v; quantum routing table,
as pointed out with the remark after Lemma [T and Case
I would hold — while v, € N(vg) by design. Thus, being
w(d, k) < w(d,i) from Def. [f] and by accounting for the
axiomatic symmetry of a metric given in (T3), we have:

w((d, k) @ (k,d)) <w((d,i) @ (i,d)) (45)

By extending both the entangling paths given in @3) with the
common path (i,d) & (d, ) ® (i,d) and by accounting for the
left isotonicity property given in (T3], we have the thesis, i.e.:

wr(i,d) < w((i,d) ® (d,9) ® (i,d) ® (d,7) ® (i,d))

2w (P, d) | & wpli,d).

5

(40)

As for Case 11, it follows straightforward from Case III by
denoting vy, 2 v and by setting w(¢,l) = 0. Indeed, in this
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particular case the entangling stretch exhibits an even tighter
upper bound, i.e.:

wr (i, d) = w((i,j) ® (4,d)) < w((i,5) ® (1) ® (i, d))

< w((i,d) @ (d,) @ (i,d)) = w | i, d)

3

(47)
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