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Abstract—Multipartite entanglement plays a crucial role in the
Quantum Internet design, due to its potentiality of significantly
increasing the network performance. In this paper, we identify
the four key network functionalities for managing multipartite
entanglement among remote nodes. And we discuss each func-
tionality by considering – as case study – a specific multipartite
state, which exhibits an attractive computing feature. Specifically,
the designed state allows an arbitrary entangled node to calculate
– in a distributed way – the sum of a set of values arbitrarily
selected by the remaining entangled nodes.

Index Terms—Quantum Internet; Entanglement; Multipartite;
Quantum Communications; Quantum Networks.

I. INTRODUCTION

The Quantum Internet is a global quantum network inter-
connecting multiple heterogeneous quantum networks [1]–[5],
able to exchange quantum bits (qubits) and to generate end
distribute entangled states.

A fundamental role in the Quantum Internet design is played
by multipartite entanglement [6], [7], since it enables com-
munication functionalities with no counterpart in the classical
world. Yet, the generation and distribution of multipartite
entanglement poses several challenges, ranging from quantum
hardware technology [8] to quantum protocol stack design [6]
through quantum vs. classical communication functionalities
interplay [9].

From a communication engineering perspective, a key open
issue is constituted by the quantum communication overhead
induced by the management of multipartite entanglement
among remote nodes. More into details, by abstracting from
the particulars of the hardware devoted to entanglement gen-
eration, the communication overhead can be quantified as
the amount of EPR pairs consumed by the quantum network
functionalities to manage the entanglement relationship among
multiple nodes.

From the above, it becomes evident that finding suitable
multipartite states which minimize the number of required
EPR pairs for the aforementioned management is a key
strategy to mitigate the communication overhead.

In this paper, we identify four key network functionali-
ties for managing multipartite entanglement in the Quantum
Internet. We discuss the communication overhead associated
with each function by considering, as case study, a specific
multipartite entangled state, denoted as C3 state, with the
appealing property of exhibiting the lowest communication
overhead for each key functionality.

Furthermore, the C3 state exhibits an attractive computing
property, which allows to calculate at a certain node of
a multipartite entangled state the sum of a set of values
arbitrarily selected by the remaining entangled nodes. Such
a property can be exploited for designing advanced security
functionalities in the Quantum Internet.

The paper is structured as follows. We first identify the four
key network functionalities for multipartite entanglement in
Section II. Then, we introduce the multipartite entangled state
which exhibits the appealing performance in terms of four key
functionalities as well as calculating functionality in Section
III. Finally, we conclude the paper in Section IV.

II. MULTIPARTITE ENTANGLEMENT: KEY NETWORK
FUNCTIONALITIES

In order to distribute and manage multipartite entanglement
in the Quantum Internet with communication overhead con-
sideration, we identify four key network functionalities, as
described in the following.

(1) Adding. Adding functionality is the primary factor that
enables multipartite-entangled-based networks. It offers the
possibility to enlarge set of entangled nodes in the quantum
network by building entanglement relationship based on at
least one pair of pre-shared EPR state between quantum nodes.
For example, in Fig. 1, with the initial network consisting in
two connected quantum nodes and one isolated node, adding
functionality creates the quantum entangled link with each
node so that the new multipartite entangled quantum network
becomes interconnected.

(2) Deleting. Deleting functionality provides the possibility
to dynamically eliminate entanglement relationship with target
nodes in the Quantum Internet. For example, in Fig. 1, a three-
parties completed entangled network can remove arbitrary
node by deleting functionality. In general, this functionality
is accomplished by quantum measurements and LOCC. With
minimal or even no remote quantum operation, deleting func-
tionality will contribute to mitigating communication overhead
of Quantum Internet.

(3) Joining. The joining functionality extends the adding
functionality for merging heterogeneous quantum sub-
networks. For example, in Fig. 1, three independent quantum
subnets can be interconnected by merging them into a 6-party
full-connected entangled network, based on joining function-



Fig. 1: Key network functionalities for distributing multipartite entanglement. Blue icons represent remote quantum nodes,
whereas link between icons represent entanglement relationship. Cloud background denotes a set of quantum nodes sharing
multipartite entanglement. Adding and deleting – denoted with blue and red solid-arrows respectively – enables the possibility to
enlarge and to reduce the set of entangled nodes, i.e., to build and to eliminate entanglement relationship. Joining and splitting
functions – denoted with blue and red dashed-arrows respectively – enables the possibility to merge and split entangled quantum
networks. Replacing – denoted with yellow solid-arrow – enables the possibility to swap entanglement between quantum nodes.

ality. To this aim, generally a substantial amount of EPR pairs
is consumed.

(4) Splitting. The splitting functionality extends the deleting
functionality. Multipartite entanglement relationship is com-
plex in the Quantum Internet so that it is hard to segment
the networks adaptively. The splitting functionality supports
adaptive network segmentation in the Quantum Internet. For
example, a 6-party full-connected entangled network can be
adaptively splitted in different subnets as depicted in Fig. 1.

We further note that by combing suitably the adding and
deleting functionalities, a new functionality, named Replacing,
is obtained. In fact, node-specific replacing is equivalent to
adding and then deleting. It enables the possibility to swap
entanglement between quantum nodes. In Fig. 1, the differ-
ent kinds of entanglement relationship among three quantum
nodes can be swapped due to this functionality.

III. C3 STATE

In this paper, we propose a multipartite entangled state,
named C3 state, which can be exploited for designing the
four key functionalities described in Sec. II. To this aim, we
first provide a recursive generation procedure for such a state,
which is pivotal in distributed approaches. Then we show that
such a state exhibits the peculiar property of consuming at
most one EPR pair for the joining and splitting functionalities.
Hence, it exhibits the lowest communication overhead, and
it can be utilized as premium entanglement resources to be

distributed in the Quantum Internet. Finally we discuss an
attractive computing property of the C3 state, which allows
to calculate at a certain node of a multipartite entangled
state the sum of a set of values arbitrarily spread among the
remaining entangled nodes. Such a property can be exploited
for designing advanced security functionalities in the Quantum
Internet.

Definition 1. (C3 state) The n-qubit C3 state is defined as:

∣∣C3
n

〉
=

n∏
i=2,j=Random(i)

CNOTAi,Aj
CZAi,Aj

|−⟩⊗n−1 |0⟩A1

(1)
where (n− 1) qubits A2, A3, ..., An are initialized in state

|−⟩, and one single qubit denoted as A1 without loss of
generality, is initialized in state |0⟩. Then C3

n state is obtained
recursively by CZ and CNOT .

Remark. We use graph state notation [10] to describe C3

state. More in detail, we give several corresponding graph
illustrations in Fig. 2 to explain the generation of C3 state.
Specifically, we uniformly use n-vertex full connected graph
in blue to represent C3

n state in following figure.

We introduce a slightly modification of C3 state, denoted
C̃3, which is its orthogonal state, been LU equivalent to C3.



Fig. 2: Generating C3
2 , C3

3 , C3
4 states. Qubits A2, A3, ..., An are initialized in state |−⟩, while qubit A1 is initialized in state

|0⟩. (1) By performing CNOTA2,A1CZA2,A1 , qubits A1, A2 entangled into C3
2 state. (2) Choosing an arbitrary qubit in C3

2

with qubit A3 to be performed on recursive CZ and CNOT operations. (i.e. CNOTA3,A1CZA3,A1 or CNOTA3,A2CZA3,A2 ),
qubit A3 been entangled to C3

3 . (3) Similarly, choosing an arbitrary qubit in C3
3 with qubit A4 to be performed on recursive

CZ and CNOT operations. (i.e. CNOTA4,A1
CZA4,A1

or CNOTA4,A2
CZA4,A2

or CNOTA4,A3
CZA4,A3

), then qubit A4

been entangled to C3
4 . Here n-vertex full connected graph in blue represents C3

n state.

Definition 2. (C̃3 state) The n-qubits C̃3 state is defined as:∣∣∣C̃3
n

〉
=

n∏
i=2,j=Random(i)

CZBi,Bj
CNOTBi,Bj

|+⟩⊗n−1 |1⟩B1

(2)
Similarly to Definition 1, (n− 1) qubits B2, B3, ..., Bn are

initialized in state |+⟩, and one single qubit denoted as B1

without loss of generality, is initialized in state |1⟩. Then C̃3

state is obtained recursively by CNOT and CZ.

Remark. As already mentioned, the two state are LU-

equivalent, since
∣∣∣C̃3

〉
= XiZi

∣∣C3
〉

= Xi

n∏
j=1
j ̸=i

Zj

∣∣C3
n

〉
,

∣∣C3
〉
= ZpXp

∣∣∣C̃3
〉
= Xp

n∏
p=1
p ̸=q

Zq

∣∣∣C̃3
n

〉
, where i, j is arbitrary

particle belongs to
∣∣C3

〉
, and p, q is arbitrary particle belongs

to
∣∣∣C̃3

〉
state. Hence C̃3 owns the same properties as C3 state.

To simplify description, we will introduce the properties of C3

regardless of C̃3 in the following parts.

Lemma 1. (Recursive generation) A n-qubit
∣∣C3

n

〉
state can

be generated from k-qubit
∣∣C3

k

〉
state with |−⟩⊗(n−k) by

recursively performing (n− k) times of CU operation.

From Definition 1, it follows that a n-qubit state
∣∣C3

n

〉
can

be obtained from a (n − 1)-qubit state
∣∣C3

n−1

〉
by simply

performing a CU operation between qubit An initialized in
state |−⟩ with Ai, an arbitrary qubit of state

∣∣C3
n−1

〉
, with the

former acting as control and the latter acting as target of the
CU gate given by:

CU = CNOT ⊗ CZ =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 (3)

More in detail, it results:

∣∣C3
n

〉
= CUAn,Ai

|−⟩An
⊗
∣∣C3

n−1

〉
A1,...,Ai,...,A(n−1)

(4)

In same way,
∣∣C3

n−1

〉
state can be generated from

∣∣C3
n−2

〉
with |−⟩ by performing a CU operation. Therefore n-qubit∣∣C3

n

〉
state can be generated from k-qubit

∣∣C3
k

〉
state with

|−⟩⊗(n−k) by recursively performing (n − k) times of CU
operation.

Remark. (Adding local qubit) Given a n-qubit state
∣∣C3

n

〉
,

one qubit n+1, located in same node with an arbitrary qubit
in

∣∣C3
n

〉
, can be entangled into a (n + 1)-qubit state

∣∣C3
n+1

〉
by local operation CU .

In order to add one local qubit into Quantum Internet, we
can use C3 state to realize it with lowest communication
overhead. Suppose a n-qubit C3 state is distributed among
different nodes, the new qubit is just located the same node
with an arbitrary qubit in C3 state. From Equation 4, after
performing CU operation on the new qubit with same located
qubit, it obtains (n+ 1)-qubit C3 state.

Fig. 3: Adding local qubit from C3
4 to C3

5 state. (1) New
qubit (denoted in blue solid dot without link) is located
at the same quantum node with an arbitrary qubit in C3

4

state. (2) Performing CU operation, denoted as a black dash
bidirectional arrow, on the new qubit with same located qubit.
(3) Obtaining C3

5 state denoted by 5-vertex full-connected
graph.

More detail, we give an example of adding one local qubit
from C3

4 to C3
5 state in Fig 3. Specifically, We uniformly use

a black dash bidirectional arrow to represent CU operation in
following figures.

Remark. (Adding remote node) Given a n-qubit state
∣∣C3

n

〉
,

one qubit n+1 located in remote node can be entangled to a
(n+ 1)-qubit state

∣∣C3
n+1

〉
by consuming one EPR pair.

In order to add remote one node into Quantum Internet,
we can use C3 state to realize it with lowest communication



overhead. Suppose a n-qubit C3 state is distributed among
different nodes, the new qubit (n + 1) is located at remote
node been neighbour with a quantum node equipped at least
one qubit in C3 state.

We can pre-share one EPR pair |Φ−⟩i′n+1 =
1√
2
(|00⟩ − |11⟩)i′n+1 between the remote node with its

neighbouring node which equipped at least one qubit i in∣∣C3
n

〉
state. The initial state is:

|ΦinitADDR⟩ =
∣∣C3

n

〉
1,...i,...,n

∣∣Φ−〉
i′n+1

(5)

After performing CUi′,i on qubit i′ and an arbitrary qubit
i of C3 that located in neighbour node, the state becomes:

|ΦADDR⟩ =
1√
2n+1

(∣∣C3
n

〉
|0⟩n+1 −

∣∣∣C̃3
n

〉
|1⟩n+1

)
|+⟩i′

+
1√
2n+1

(∣∣C3
n

〉
|0⟩n+1 +

∣∣∣C̃3
n

〉
|1⟩n+1

)
|−⟩i′

(6)

Finally, performing quantum measurement on qubit i′ under
X-basis, the final state can be obtained as

∣∣C3
n

〉
|0⟩n+1 −∣∣∣C̃3

n

〉
|1⟩n+1, which is

∣∣C3
n+1

〉
proved in Lemma 2, by I or

Z operation.
Here we give an example of adding remoter node from C3

4

to C3
5 state in Fig 4. Specifically, we uniformly use a pair

of linked solid red dots to represent EPR state |Φ−⟩ and use
dash rectangle surrounding solid dot(s) to represents quantum
measurement on that qubit(s) in the following figures.

Fig. 4: Adding remote node from C3
4 to C3

5 state. (1) A pair
of EPR distributed among new node (denoted in the right
red dot located) and its neighbour quantum node (denoted in
the left red dot with an arbitrary qubit in C3

4 state located).
(2) Performing CU operation on the qubit (denoted by left
solid red dot) in EPR state with one qubit (denoted by solid
blue dot in upper right corner) in C3

4 , which both at same
node. Then Performing X-basis quantum measurement on the
former qubit (denoted by left solid red dot). (3) Obtaining∣∣C3

5

〉
by I or Z operation.

Remark. (Joining) Given a n-qubit state
∣∣C3

n

〉
and a m-

qubit state
∣∣C3

m

〉
, a (n + m)-qubit state

∣∣C3
n+m

〉
can be

deterministically obtained by consuming one EPR pairs.
In order to join quantum network, we firstly find a pair of

neighbour nodes respectively located in two pre-joined net-
works. Then we can pre-share one EPR pair |Φ−⟩12 between
these two neighbouring nodes, which respectively equipped at
least one qubit i in

∣∣C3
n

〉
state and one qubit j in

∣∣C3
m

〉
. The

initial state is:

|ΦinitJoin⟩ =
∣∣C3

n

〉 ∣∣Φ−〉
12

∣∣C3
m

〉
(7)

Then we perform CU1,i operation on qubit 1 and a qubit
i of C3

n in one quantum node as well as CU2,j operation on
qubit 2 and a qubit j of C3

m in anther one node. Then the state
becomes:

|ΦJoin⟩ =
1√

2n+m+1

(∣∣C3
n

〉 ∣∣C3
m

〉
−

∣∣∣C̃3
n

〉 ∣∣∣C̃3
m

〉)
|+⟩1 |+⟩2

+
1√

2n+m+1

(∣∣C3
n

〉 ∣∣C3
m

〉
+

∣∣∣C̃3
n

〉 ∣∣∣C̃3
m

〉)
|+⟩1 |−⟩2

+
1√

2n+m+1

(∣∣C3
n

〉 ∣∣C3
m

〉
+

∣∣∣C̃3
n

〉 ∣∣∣C̃3
m

〉)
|−⟩1 |+⟩2

+
1√

2n+m+1

(∣∣C3
n

〉 ∣∣C3
m

〉
−

∣∣∣C̃3
n

〉 ∣∣∣C̃3
m

〉)
|−⟩1 |−⟩2

(8)

When we measure qubits 1,2 with X-basis, reminds (n+m)-
qubits will be joined as

∣∣C3
n+m

〉
state, from Lemma 3, as the

measure results are |+⟩1|+⟩2 or |−⟩1|−⟩2. While the measure
results are |+⟩1|−⟩2 or |−⟩1|+⟩2, from Remark III, reminds
(n+m)-qubits can be joined as

∣∣C3
n

〉 ∣∣∣C̃3
m

〉
+
∣∣∣C̃3

n

〉 ∣∣C3
m

〉
by

local operation, that is
∣∣∣C̃3

n+m

〉
mentioned in Lemma 3. We

also can transform it into
∣∣C3

n+m

〉
by local operation.

Fig. 5: Joining C3
3 into C3

4 quantum network. (1) A pair of
EPR state is distributed among neighbouring nodes, respec-
tively located in C3

4 and C3
3 quantum system. (2) Neighbouring

nodes respectively perform local operation CU on the qubit in
pre-shared EPR state with the local qubit in C3 state. Then X-
basis quantum measurement performed on two qubits initiated
in EPR pair respectively. (3) Obtaining the completing C3

7

quantum networks consisted of C3
4 and C3

3 quantum networks.

Here we give an example of joining C3
3 , C3

4 into C3
7

quantum network in Fig. 5.

Lemma 2. (Iteration) A n-qubit state
∣∣C3

n

〉
or

∣∣∣C̃3
n

〉
can be

entangled by (n-1)-qubit state
∣∣C3

n−1

〉
,
∣∣∣C̃3

n−1

〉
with one qubit,

which satisfies following iterative formula.


∣∣C3

n

〉
= 1√

2n−1

(
|0⟩Aj

∣∣C3
n−1

〉
− |1⟩Aj

∣∣∣C̃3
n−1

〉)∣∣∣C̃3
n

〉
= 1√

2n−1

(
|0⟩Bj

∣∣∣C̃3
n−1

〉
+ |1⟩Bj

∣∣C3
n−1

〉) (9)

and



Fig. 6: Deleting one qubit from C3
5 to C3

4 . Performing Z-basis
quantum measurement (denoted by dash rectangular) on the
target qubit (solid blue dot surrounded by dash rectangular),
while remaining qubits maintains C3

4 state.


∣∣C3

n

〉
= 1√

2n−1

(∣∣C3
n−1

〉
|0⟩Aj

−
∣∣∣C̃3

n−1

〉
|1⟩Aj

)∣∣∣C̃3
n

〉
= 1√

2n−1

(∣∣∣C̃3
n−1

〉
|0⟩Bj

+
∣∣C3

n−1

〉
|1⟩Bj

) (10)

where n ≥ 2 and qubit Aj , Bj is an arbitrary qubit
belonging to the original state

∣∣C3
n

〉
,
∣∣∣C̃3

n

〉
respectively. For

n = 1,
∣∣C3

1

〉
= |0⟩,

∣∣∣C̃3
1

〉
= |1⟩.

Proof:
For n = 2,

∣∣C3
2

〉
= 1√

2

(
|0⟩

∣∣C3
1

〉
− |1⟩

∣∣∣C̃3
1

〉)∣∣∣C̃3
2

〉
= 1√

2

(
|0⟩

∣∣∣C̃3
1

〉
+ |1⟩

∣∣C3
1

〉)
If n = k,

∣∣C3
k

〉
= 1√

2k−1

(
|0⟩

∣∣C3
k−1

〉
− |1⟩

∣∣∣C̃3
k−1

〉)∣∣∣C̃3
k

〉
= 1√

2k−1

(
|0⟩

∣∣∣C̃3
k−1

〉
+ |1⟩

∣∣C3
k−1

〉)
is supposed to be corrected.
Then n = k + 1, from Lemma 1,

∣∣C3
k+1

〉
= CUk+1,1 |−⟩k+1

∣∣C3
k

〉
1,2,...,k

= 1√
2k

(
|0⟩

∣∣C3
k

〉
− |1⟩

∣∣∣C̃3
k

〉)∣∣∣C̃3
k−1

〉
= CUT

k+1,1 |+⟩k+1

∣∣∣C̃3
k

〉
1,2,...,k

= 1√
2k

(
|0⟩

∣∣∣C̃3
k

〉
+ |1⟩

∣∣C3
k

〉)
is correct.
Therefore, ∀n for Equation 9 can be valid. Similarly,

Equation 10 can be proved too.

Remark. (Deleting) Deleting arbitrary m qubits in n-qubit
C3

n state, remaining (n−m)-qubit maintains C3
n−m state.

In order to delete node or qubit in n-parties Quantum
Internet entangled by C3

n state, we can easily perform Z-basis
measurement on the quantum target. From Equation 9 10, any
qubit in

∣∣C3
n

〉
state can be deleted with remain (n− 1) qubits

in
∣∣C3

n−1

〉
state.

Here we give an example of deleting one qubit from C3
5 to

C3
4 in Fig 6.

Lemma 3. (Complete bipartite state) A (n +m)-qubit state∣∣C3
n+m

〉
and

∣∣∣C̃3
n+m

〉
can be expanded as completed bipartite

state:
∣∣C3

n+m

〉
= 1√

2n+m−1

(∣∣C3
n

〉 ∣∣C3
m

〉
−
∣∣∣C̃3

n

〉 ∣∣∣C̃3
m

〉)∣∣∣C̃3
n+m

〉
= 1√

2n+m−1

(∣∣C3
n

〉 ∣∣∣C̃3
m

〉
+
∣∣∣C̃3

n

〉 ∣∣C3
m

〉)
(11)

Fig. 7: Splitting C3
7 into C3

4 and C3
3 state. Performing joint

quantum measurement (denoted by dash rectangular) on target
qubits (solid blue dots surrounded by dash rectangular), while
remaining qubits maintains C3

4 state.

Proof:
For n = 1,m = 1,

∣∣C3
2

〉
= 1√

2

(∣∣C3
1

〉 ∣∣C3
1

〉
−

∣∣∣C̃3
1

〉 ∣∣∣C̃3
1

〉)∣∣∣C̃3
2

〉
= 1√

2

(∣∣C3
1

〉 ∣∣∣C̃3
1

〉
+
∣∣∣C̃3

1

〉 ∣∣C3
1

〉)
If n = k,m = l,

∣∣C3
k+l

〉
= 1√

2k+l−1

(∣∣C3
k

〉 ∣∣C3
l

〉
−

∣∣∣C̃3
k

〉 ∣∣∣C̃3
l

〉)∣∣∣C̃3
k+l

〉
= 1√

2k+l−1

(∣∣C3
k

〉 ∣∣∣C̃3
l

〉
+
∣∣∣C̃3

k

〉 ∣∣C3
l

〉)
is supposed to be corrected.
Then n = k + 1,m = l, from Lemma 2,

∣∣C3
k+l+1

〉
= 1√

2k+l

(∣∣C3
1

〉 ∣∣C3
k+l

〉
−

∣∣∣C̃3
1

〉 ∣∣∣C̃3
k+l

〉)
= 1√

2k+l

(∣∣C3
k+1

〉 ∣∣C3
l

〉
−

∣∣∣C̃3
k+1

〉 ∣∣∣C̃3
l

〉)∣∣∣C̃3
k+l+1

〉
= 1√

2k+l

(∣∣C3
1

〉 ∣∣∣C̃3
k+l

〉
+

∣∣∣C̃3
1

〉 ∣∣C3
k+l

〉)
= 1√

2k+l

(∣∣C3
k+1

〉 ∣∣∣C̃3
l

〉
+

∣∣∣C̃3
k+1

〉 ∣∣C3
l

〉)
is correct.
Therefore, ∀n,m for Equation 11 can be valid.

Remark. (Splitting) Splitting m-qubit C3
m state from (n+m)-

qubit C3
n+m state, remaining n-qubit maintain C3

n state.
In order to split two arbitrary subnetwork from a complete

Quantum Internet consisted of (n + m)-qubit C3
n+m state,

with n,m ≥ 2, we can perform joint measurement on
arbitrary n qubits under quantum basis consists of

∣∣C3
n

〉 〈
C3

n

∣∣,∣∣∣C̃3
n

〉〈
C̃3

n

∣∣∣ and other n-dimensional orthometric observables.
From Lemma 3, the n-qubits system is deterministically col-
lapsed in

∣∣C3
n

〉
or

∣∣∣C̃3
n

〉
state, which can be transformed each

other by X,Z operation based on Remark III. While remain
m-qubit system also deterministically transforms to

∣∣C3
n

〉
or∣∣∣C̃3

n

〉
as required. Here we give an example of splitting two

quantum systems (C3
4 and C3

3 ) from C3
7 in Fig. 7.

Remark. (Replacing) Given a n-qubit state
∣∣C3

n

〉
, replace

arbitrary qubit with new particle can be determistically per-
formed by consuming only one EPR pair.

In order to replace an arbitrary qubit with new one in
remote node into Quantum Internet, we can use C3 state to
realize it with lowest communication overhead. Suppose a n-
qubit C3

n state is distributed among different nodes. The new
remote pre-replaced node is neighbour with the quantum node
equipped replaced qubit i in

∣∣C3
n

〉
1,2,...i...n

state. Here we give
an example of replacing a qubit in C3

4 with a new qubit located
at remote node in Fig. 8.



Fig. 8: Replace one node in C3
4 state with a new qubit located

at remote node. (1) A pair of EPR state is distributed among
replaced and target nodes. (2) Performing Bell measurement
on replaced qubit with one of qubit in given EPR state at the
replaced node. (3) Replacing new node into C4 state.

Firstly, we preshare a pair of EPR state |Φ−⟩0i′ among these
two nodes. The initial state is:

|ΦinitRep⟩ =
∣∣C3

n

〉
1,...i...n

∣∣Φ−〉
0i′

=
1√
2n+1

∣∣Φ+
〉
i0

(∣∣C3
n−1

〉
|0⟩i′ +

∣∣∣C̃3
n−1

〉
|1⟩i′

)
+

1√
2n+1

∣∣Φ−〉
i0

(∣∣C3
n−1

〉
|0⟩i′ −

∣∣∣C̃3
n−1

〉
|1⟩i′

)
− 1√

2n+1

∣∣Ψ+
〉
i0

(∣∣∣C̃3
n−1

〉
|0⟩i′ +

∣∣C3
n−1

〉
|1⟩i′

)
− 1√

2n+1

∣∣Ψ−〉
i0

(∣∣∣C̃3
n−1

〉
|0⟩i′ −

∣∣C3
n−1

〉
|1⟩i′

)
(12)

We can perform Bell measurement on i with the qubit 0 in
given EPR pair |Φ−⟩. From Equation 12 and Lemma 2, new∣∣C3

n

〉
state replaced by qubit i′ can be obtained.

Remark. (Calculating) The sum of a set of values, which
randomly assigned on one or multi entangled qubits in C3

state, can be calculated by an arbitrary entangled node in a
distributed way.

In order to calculate the sum of a set of values, which
randomly assigned on one or multi entangled nodes in the
Quantum Internet, we can use C3 to achieve it in a distributed
way.

Suppose a n-qubit C3
n state is distributed among different

nodes and randomly choose a aggregation node Ak equipped
with qubit k from them. A set of values θ1, θ2, ..., θn, which
randomly assigned on each entangled nodes, can be encoded
into C3 state by rotation operation:

Rθi =

[
cos θi − sin θi
− sin θi − cos θi

]
(13)

After performing Rθi on each qubit 1, 2, ..., n, the whole
quantum system becomes:

|ΦCal⟩ =
1√
2n−1

[
cos (θ1 + θ2 + ...+ θn) |0⟩

− sin (θ1 + θ2 + ...+ θn) |1⟩

]
k

∣∣C3
n−1

〉
− 1√

2n−1

[
sin (θ1 + θ2 + ...+ θn) |0⟩

+cos (θ1 + θ2 + ...+ θn) |1⟩

]
k

∣∣∣C̃3
n−1

〉
(14)

Since
∣∣C3

n−1

〉
and

∣∣∣C̃3
n−1

〉
are mutually orthogonal state,

after Z-basis measurement on each qubit except qubit k,

the sum of θ1, θ2, ..., θn can be determinately collapsed at
aggregation node in the form of trigonometric functions.

Here we give an example in Fig. 9, to illustrate that one
qubit 5 in C3

5 state can obtain the sum of values θ1, θ2, θ3, θ4
assigned at other qubits.

Fig. 9: Calculate the sum of θ1, θ2, θ3, θ4 assigned at four
qubits in C3

5 state by a aggregation node where qubit 5 located.

IV. DISCUSSION AND CONCLUSIONS

Multipartite entanglement is a fundamental resource in the
Quantum Internet. In this paper, we identify four key func-
tionalities for managing multipartite states non-locally with
the communication overhead in view. A specific multipartite
entangled state is proposed, which exhibits the attractive
feature of consuming at most one EPR for the aforementioned
management. And it also owns an active computing property
for quantum distributing network.
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