
Optimized compiler for distributed quantum computing

DANIELE CUOMO∗, Department of Physics, University of Naples Federico II

MARCELLO CALEFFI∗2, DIETI, University of Naples Federico II

KEVIN KRSULICH, IBM Quantum, T.J. Watson Research Center

FILIPPO TRAMONTO3, Kyndryl Italia Innovation Services

GABRIELE AGLIARDI, Department of Physics, Politecnico di Milano and IBM Italia

ENRICO PRATI2, Department of Physics, Università degli Studi di Milano and IFN-CNR

ANGELA SARA CACCIAPUOTI∗2, DIETI, University of Naples Federico II

Practical distributed quantum computing requires the development of eicient compilers, able to make quantum circuits

compatible with some given hardware constraints. This problem is known to be tough, even for local computing. Here, we

address it on distributed architectures. As generally assumed in this scenario, telegates represent the fundamental remote

(inter-processor) operations. Each telegate consists of several tasks: i) entanglement generation and distribution, ii) local

operations, and iii) classical communications. Entanglement generations and distribution is an expensive resource, as it

is time-consuming. To mitigate its impact, we model an optimization problem that combines running-time minimization

with the usage of distributed entangled states. Speciically, we formulated the distributed compilation problem as a dynamic

network low. To enhance the solution space, we extend the formulation, by introducing a predicate that manipulates the

circuit given in input and parallelizes telegate tasks.

To evaluate our framework, we split the problem into three sub-problems, and solve it by means of an approximation

routine. Experiments demonstrate that the run-time is resistant to the problem size scaling. Moreover, we apply the proposed

algorithm to compile circuits under diferent topologies, showing that topologies with a higher ratio between edges and nodes

give rise to shallower circuits

CCS Concepts: ·Hardware→Quantum computation; ·Computer systems organization→Distributed architectures;

· Mathematics of computing→ Network optimization.

Additional Key Words and Phrases: Quantum Circuit Compilation, Integer Linear Programming

1 INTRODUCTION

Distributed architectures are envisioned as a long-term solution to provide practical applications of quantum
computing [12, 22, 40, 88]. The general trend [31, 40, 41, 50, 66, 86] shows a common belief in distributed (and

∗Also with FLY, Future communications Laboratory.
2Also with CNIT, National Inter-university Consortium for Telecommunications.
3Also with IBM Client Innovation Center during his contribution to this work.

Authors’ addresses: Daniele Cuomo, daniele.cuomo@unina.it, Department of Physics, University of Naples Federico II, Italy; Marcello Calei,

marcello.calei@unina.it, DIETI, University of Naples Federico II, Via Claudio 62, Italy, 80126; Kevin Krsulich, kevin.krsulich@ibm.com, IBM

Quantum, T.J. Watson Research Center, Yorktown Heights, New York, 10598; Filippo Tramonto, ilippo.tramonto@gmail.com, Kyndryl Italia

Innovation Services, Via Circonvallazione Idroscalo snc, Segrate (MI), Italy, 20090; Gabriele Agliardi, gabrielefrancesco.agliardi@polimi.it,

Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, Milano, 20133 and IBM Italia, Via Circonvallazione Idroscalo, Segrate

(MI), 20090; Enrico Prati, enrico.prati@unimi.it, Department of Physics, Università degli Studi di Milano, Via Celoria 16, Milano, 20133 and

IFN-CNR, Piazza Leonardo da Vinci 32, Milano, Italia, 20133; Angela Sara Cacciapuoti , angelasara.cacciapuoti@unina.it, DIETI, University of

Naples Federico II, Via Claudio 62, Italy, 80126.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2643-6817/2023/1-ART

https://doi.org/10.1145/3579367

ACM Trans. Quantum Comput.

HTTPS://ORCID.ORG/0000-0002-9361-5797
HTTPS://ORCID.ORG/0000-0001-5726-5489
HTTPS://ORCID.ORG/0000-0002-7222-5722
HTTPS://ORCID.ORG/0000-0003-4540-5004
HTTPS://ORCID.ORG/0000-0002-1692-9047
HTTPS://ORCID.ORG/0000-0001-9839-202X
HTTPS://ORCID.ORG/0000-0002-0477-2927
http://www.quantuminternet.it
https://orcid.org/0000-0002-9361-5797
https://orcid.org/0000-0001-5726-5489
https://orcid.org/0000-0002-7222-5722
https://orcid.org/0000-0003-4540-5004
https://orcid.org/0000-0002-1692-9047
https://orcid.org/0000-0001-9839-202X
https://orcid.org/0000-0002-0477-2927
https://doi.org/10.1145/3579367
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579367&domain=pdf&date_stamp=2023-01-17

2 • D. Cuomo et al.

quasi-distributed, or multi-core) architectures as physical substrate, allowing a modular and horizontal scale-up
of computing resources, rather than relying on vertical scale-up, coming from single hardware advancement. On
the lip side, by linking distributed quantum processors, several new challenges arise [12, 15, 22, 30, 51, 78, 90].
Here we consider the compilation problem, which is generally tough to solve, even on single processor, and
for which an NP-hardness proof is available [10]. An ever growing literature arises with a variety of proposals
for local computing [9, 11, 34, 45, 46, 49, 61, 67, 68, 70, 74, 83, 91, 93, 98] and for distributed computing [8, 23ś
25, 35, 39, 76, 80, 81, 96, 97].
Even if quantum processors are already available, distributed architectures are at an early stage and must

be discussed from several perspectives. A key concept is that of telegates as the fundamental inter-processor
operations [22, 86, 88]. Each telegate can be decomposed into several tasks, that we group as follows: (i) the
generation and distribution of entangled states among diferent processors, (ii) local operations and (iii) classical
communications. Such tasks make the telegate an expensive resource, especially in terms of running time1. As a
consequence, they have critical impact on the performance of the overall computation. In contrast to such a limit,
telegates ofer remarkable opportunities of parallelization. In fact, much circuit manipulation is possible to keep
computation independent from telegate tasks. Therefore, we aim to model an optimization problem that embeds
such opportunities.

1.1 Contribution

Fig. 1. Manuscript overview. Blue blocks denote the steps in the problem modeling, scanned by blue arrows. Red blocks are

the main ingredients to the entry blue blocks.

The overall objective of our work is to deeply analyse strategies to reduce the overhead caused by telegates,
which are the main bottleneck in the computation on distributed architectures. Fig. 1 gives a step by step overview
of the paper, with particular attention to the problem modeling.

1Refer to [60, 94] for the state of the art on experimental implementations.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 3

Sec. 2 and 3 are devoted to detailing and justifying our assumptions. As computation model we consider
quantum circuits with a universal operator set. The set is based on local operations and on telegates as fundamental
inter-processor operations. Here, we optimize telegates to eiciently scale with inter-processor connectivity
restrictions.
We move on by deining rigorously the problem (Sec. 4). To come up with our formulation we rely on a

wide literature from the Operation Research ield, dealing with network scenarios. Speciically, we notice several
analogies between our problem and those on dynamic networks, especially the group of multi-commodity low

problems [16ś21, 36ś38, 79, 84, 85]. The resulting formulation is particularly remarkable, as it is suitable for
run-time minimization together with the minimization of resource usage, as a side objective. In an early step, the
formulation is deliberately abstract, as it relies on binary relations that are not fully characterized at this stage.
We believe that this enhances the modularity of the work and its readability. In fact, exploring the solution space
requires to perform costly circuit manipulation, that deserve a dedicated discussion. Nevertheless, right after the
abstract description of the problem structure, we proceed with the full characterization of the aforementioned
binary relations (Sec.s 5.1 and 5.4). These relations deine which circuit manipulations are feasible. At irst, we
use relations to model operations that can run in parallel, and in this context we introduce a relaxed version of
parallelism, that we call quasi-parallelism. This relation is based on (automated) circuit manipulation which aims
to gather telegates within the same time step. Sec. 5.1 contains a discussion on how to transform the graph, in
order to adapt the model to the kind of circuit group one is tackling. After that, we relate all the operations to the
partial order set induced by circuits expressed in normal forms ś see Sec. 5.3.
We then describe our implementation (Sec. 6) and evaluate it by means of numerical experiments on

diferent lattices (Sec. 7), showing that a square lattice gives rise to shallower circuits than a hexagon lattice,
and that the compiler is able to process square lattices faster. We relate such a result to ratio between edges and
nodes, which becomes an important index when choosing a topology for distributed quantum computation. Sec.
8 contains the summary of the indings and the conclusions.

2 DISTRIBUTED QUANTUM COMPUTING ESSENTIALS

In this section we describe the main elements, featuring a distributed quantum architecture.
One can encode a quantum processor as a set of qubits and a set of sparse tuneable couplings among qubits.

If two qubits are coupled it means that they can interact. We will refer to such couplings as local couplings, to
emphasize they belong to the same node in distributed architectures, as opposed to entanglement links, that are
couplings between qubits in diferent processors. As detailed in next sub-section, two remote qubits coupled
through an entanglement link cannot be used for computation: consequently, it is useful to classify qubits as
either computation qubits or communication qubits, respectively2. While computation qubits process information
during the computation, the communication qubits couple distinct processors through the entanglement. Fig. 2
shows a toy architecture. The purple lines represent the couplings among distributed processors.

2.1 The entanglement link

To couple two processors, a communication protocol, known as entanglement generation and distribution [12, 13,
22], is necessary. We describe it here as three main steps:

(1) generating a two-qubits maximally entangled state3;
(2) distributing the state between diferent processors4;
(3) storing the partial states in the communication qubits.

2A similar classiication is available in Refs. [12, 59]
3The two-qubits assumption is general and can be extended to multi-qubits protocols.
4This step implies communication. The interested reader can ind in Ref. [13] three diferent protocols achieving the task.

ACM Trans. Quantum Comput.

4 • D. Cuomo et al.

When the protocol succeeds, the distributed qubits are correlated and can be exploited to perform non-local
operations. For this reason we consider this correlation as a virtual link, which we refer to as entanglement

link5. Entanglement links extend the possible interactions to any distributed computation qubits. Speciically,
since the communication qubits are locally coupled with computation qubits, with entanglement links one can
perform operations between remote computation qubits, referred to as telegates. More details on the functioning
of telegates are reported in Sec. 3.2. However it is important to keep in mind that, to perform a remote operation,
one has to measure the states stored in the communication qubits. As a consequence, an entanglement link is a
depletable resource, assigned to a single remote operation. After the measurement, a new round of entanglement
generation and distribution takes place.
We now give a mathematical description of a distributed architecture, in order to formally describe the

functioning of telegates.

2.2 Mathematical description

Fig. 2. Toy distributed quantum architecture with 3

processors.

So far, we presented the main elements occurring in a dis-
tributed quantum architecture, which we can now represent
mathematically. Formally, let N = (� , �, �) be a network
triple representing the architecture. � = � ∪ � is a set of
nodes describing qubits, therefore it is the disjoint union of
computation qubits � = {�1, �2, . . . , � |� | } and communica-
tion qubits � = {�1, �2, . . . , � |� | }. We can represent � proces-
sors by partitioning � into � = {�1, �2, . . . , ��}. Therefore, a
sub-set �� characterizes a processor as its set of qubits/nodes.

� = � ∪ � is as a set of undirected edges. � represents the local couplings, therefore

� ⊆
⋃

�

�� × �� .

Notice that there is no particular assumption on connectivity nor cardinality within processors. This keeps the
treating hardware-independent and it allows for heterogeneous architectures.
� represents entanglement links. Since entanglement links connect only communication qubits, we introduce,

for each processor, a set of those qubits only; i.e., �� = � ∩ �� . Therefore, we have

� ⊆
⋃

�, � : �≠�

�� ×� � .

Fig. 2 shows an exemplary architecture, with three processors in � , six computation qubits in � , six communi-
cation qubits in � , three entanglement links in � and ten local couplings in �.
Concerning minimal assumptions, we only care about architectures actually able to perform any operation.

This translated into a simple connection assumption.

3 OPERATORS

In the following, the gate model architecture of quantum computers is considered. There, a circuit describes
a time-ordered quantum evolution as a sequence of quantum gates consisting of unitary operators. The set of
available operators depends on the physical implementations.

5The interested reader can ind a discussion about how to achieve practical entanglement generation and distribution, via heralded-based

protocols, at Ref. [59].

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 5

3.1 Computation operators

In order to achieve universal quantum computing, one may rely on a universal set of quantum logic gates capable
to approximate any possible unitary operator. In the following, we consider a representative universal set of
quantum gates, without loss of generality. A suicient set for local universal quantum computing consists of
the three operators {CX, H, T}, where CX is the conditioned bit-lip operator, H is the Hadamard operator and T is
the �

4 -phase shift. Indeed, with a polynomial number of repetitions of H and T one can approximate any unitary
operator with arbitrary precision [54, 75]. Another suicient set is also {CZ, H, T}, where CZ is a conditioned
phase-lip, thanks to the equivalence CZ�,� ≡ H�CX�,�H�

6.
Nevertheless, for practical reasons that will be clear in Sec. 5.2, we ind convenient in the current paper to rely

on the extended gate set {CX, CZ, H, T}.
Other choices of universal sets are possible, such as those based on trapped ions in a cavity [3], suitable for

quantum interfaces where the photonic state is transferred to the cavity mode, and then to the electronic state of
the ion via laser pulses [30, 86].

3.2 Universal set

To extend the universality also to distributed architectures, we need at least one remote operator. Since in our
gate set ś {CX, CZ, H, T} ś one gate acting on two qubits (namely, CX or CZ) is suicient, then it is also enough to
have one remote operator. In other words, w.l.o.g. we can show a protocol performing only a CX (or CZ) between
remote computation qubits. To represent such a protocol we use the notation RCX (or RCZ). With the diferent
nomenclature we highlight their physical diference. Speciically, while CX represents a local gate, RCX represents
a sequence of operations that involves distant qubits. Therefore, in general, implementations of CX and RCX come
with diferent idelity, latency and required resources.

Speciically to the RCX functioning, this is based on a several fundamental steps, which we describe, in turn, by
using operators. The irst operator models the entanglement link creation; we refer to that as E or, more explicitly,
as E�,� . It sets qubits �� and �� to the maximally entangled state

�

�Φ
+
〉

=
1
√
2
(|00⟩ + |11⟩).

The second operator models a measurement for a communication qubit �� , over the computational basis.
Namely, the measurements outputs a classical binary variable �� ∈ {0, 1}. We refer to that as M� and with circuit
component represented in Fig. 3.

�� ��

Fig. 3. Circuit component representing a

measurement M� .

Fig. 4 shows a possible realization of a generic RCX�,� . Here, there
are two qubits ��, �� ∈ �� and two qubits ��, �� ∈ � � . Let us separate
the protocol in three diferent steps. The irst one is the creation of the
entanglement link between �� and �� , i.e., applying E�,� . After that, the
second step is the pre-processing: a few local operations occur and
then qubits ��, �� are measured, getting �� and �� respectively. The inal
step is the post-processing. The binary variables are used to assert
whether further operations are required. Speciically, if �� = 1, a Pauli Z
operator applies to �� and, if �� = 1, a Pauli X operator applies to �� . This phase can be compactly referred with

the Z��� , X
��
� operators. Notice that �� is local to processor �� and �� is local to � � . But �� uses �� and � � uses �� .

In other words, a cross classical communication occurs between �� and � � .
Let us now give a look to some exemplary applications of RCX�,� over the toy architecture of Fig. 2.

6Here and throughout the paper, when an operator is subscripted, we are denoting the qubits it is operating on, e.g., CX�,� is a CX operator

with control qubit �� and target qubit �� .

ACM Trans. Quantum Comput.

6 • D. Cuomo et al.

Example 1. Assume one wants to run an RCX with control qubit �2 and target �3 ś i.e., RCX2,3. Just run circuit in
Fig. 4, with � = 2, � = 3,� = 2, � = 4.

Example 2. Now assume one wants to run RCX1,3. In this case we can still use the entanglement link between �2
and �4. However, qubit �1 is not coupled with �2. To use that link we need to swap the states stored in �1 and �2
before and after running CX.

What happens if one wants to run, say, RCX1,4? In such a case, the qubits belong two processors having no
entanglement link coupling them. There is a really eicient protocol to overcome this problem: it is called
entanglement swap and we describe it within the next section.

3.3 The entanglement swap

As pointed out before, it might be the case where one wants to run an RCX operator between a couple of qubits
belonging processors with no entanglement link. Formally, let �� and � � such processors and � ∩ (�� ×� �) = ∅. In
the basic scenario, there exists an intermediate processor �� which has an entanglement link with both �� and � � ,
say via four communication qubits such that �� ∈ �� , ��, �� ∈ �� and �� ∈ � � . As Fig. 5 shows, we exploit �� to
entangle �� and �� .

��

� �

�� Z��

��
E

��

�� H ��

�� X��

≡

��

� �

��

��

Fig. 4. Protocol performing an RCX�,� . From an operator point of view, this is equivalent to perform CX�,� . However � and �

belong diferent processors and that is why we use notation RCX.

�� �� � �

��

E

Z��

�� H ��

��
E

��

�� X��

≡

��

� �

��
E

��

Fig. 5. Entanglement swap protocol. This scenario has three processors �� , �� , � � . �� has an entanglement link both with ��
and with � � , created respectively by E�,� and E�,� . At the end of the protocol �� and �� are in the maximal entangled state
�

�Φ
+〉. From an operator point of view, this is equivalent to perform E�,� .

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 7

The entanglement swap protocol can be generalized to an arbitrary sequence of intermediate processors. To
this aim we introduce the concept of entanglement path.

3.3.1 The entanglement path. Coherently with the standard deinition of path of a graph, an entanglement path
is a sequence of entanglement links connecting two processors. Formally, an entanglement path is a sequence
{��1 , ��2 , . . . , ��� } of� processors such that, for any � in 1 ≤ � < �, there is an entanglement link between �� �
and �� �+1 .

We can therefore entangle two communication qubits �� ∈ ��1 and �� ∈ ��� by applying a generalization of the
entanglement swap ś showed in Appendix A ś to {��1 , ��2 , . . . , ��� }.

Since at the end of the protocol �� and �� are in the entangled state |Φ+⟩, an entanglement path is a generalization
of an entanglement link.

3.3.2 RCX with entanglement path. In our scenario, the purpose of applying entanglement swap is to perform
RCX. For this reason it is interesting to note that we can combine the entanglement swap protocol together with
the protocol for RCX. The result is showed in Fig. 6. This result generalizes to every path, no matter the length ś
see Appx. A. We further discuss within next section the latency implications coming from this result.

4 DISTRIBUTED QUANTUM CIRCUIT COMPILATION PROBLEM

Usually, in the literature dealing with compiler design [35, 46, 91, 98], a circuit is encoded as a set of layers.
Formally, a layer is a set ℓ of independent operators, meaning that each operator in ℓ acts on a diferent collection
of qubits. A circuit is an enumeration of layers L = {ℓ1, ℓ2, . . . , ℓ| L | }, where the cardinality is also commonly
referred as circuit depth.

A quantum programmer writes a logical circuit, abstracting from the real architecture and assuming that qubits
are fully connected, i.e., any couple of qubits can perform a CX operation directly. Such an abstraction holds also
when stepping to distributed architectures7.

However, NISQ architectures do not provide full coupling. As a consequence, there must be a software interface
ś namely, a compiler ś able to map an abstract circuit to an equivalent one, but meeting the real coupling. In
general, such a mapping implies overhead in terms of circuit depth. Therefore, inding a mapping with minimum
depth overhead is an optimization problem. We refer to it as the quantum circuit compilation problem (QCC),

7Recall that, from a user perspective, CX ≡ RCX.

�� �� � �

��1 Z��2⊕��4

��1

E

��1

��2 H ��2

��3
E

��3

��4 H ��4

��2 X��1⊕��3

≡

��

� �

��1

��2

Fig. 6. RCX�1,�2 with entanglement swap.

ACM Trans. Quantum Comput.

8 • D. Cuomo et al.

which is proved to be NP-hard [10]. Its version on distributed architectures, which we refer to as the distributed
quantum circuit compilation problem (DQCC), is likely to be at least as hard as QCC. In fact, while in QCC we deal
with local connectivity restrictions, in DQCC local connectivity stands alongside with remote connectivity ś i.e.,
the entanglement links ś, which is less dense than the local one8. Furthermore, performing a remote operation is
much more time consuming than a local operation. Just consider that a remote operation relies on communication
of both quantum and classical information.

Notation Description

[�] An enumeration set {1, 2, . . . , �}
O Font mainly used to denote operators
ΔO Time to run operator O
Q Quotient graph
L Circuit encoding
LO Circuit where only O operators occur
� Discrete time step
≺, q Binary relations
A Predicate used to characterize q
� Boolean variable
� Flow function
�� �-th quantum processor
s, t sources and targets vector
� Circuit depth

The above reasons make telegates the bottleneck
in distributed computing. Therefore, they are worth
of dedicated analysis to minimize their impact.

4.1 Objective function

To optimize a circuit, the irst thing we need to do is
choosing an objective function to rate the expected
performance of a circuit. A common approach is to
evaluate only those operators which are somehow a
bottleneck to computation. Considering the gate set
{CX, CZ, H, T}, in the context of fault-tolerant quantum
computing [42], the bottleneck is the T operator [4,
82] since error correction protocols are designed for
{H, CX}. Conversely, on current NISQ technologies,
the bottleneck lies in the CX and CZ operators, that are
more noisy as they operate on two qubits. The relevant
metric can either be the number of occurrences of the
subject operator O, namely the O-count, or the number
of layers containing O at least once, namely the O-
depth. To rate a compiled circuit on distributed architectures, we do something along the lines of this latter
approach. Speciically, the bottleneck is the RCX and the RCZ operators, and each RCX or RCZ implies one occurrence
of E. Therefore, we will rate a circuit by means of its E-depth.

T

H T

H

Fig. 7. Exemplary logical circuit, expressed in

the universal gate set {CX, CZ, H, T}.

As simple example of E-depth, consider an instance of the problem:
a logical circuit where some RCX operators occur. Fig. 7 shows an
exemplary one. Let us put in the worst-case scenario, i.e., all the
four qubits belong9 to diferent processors. Consequently, all the
two-qubits operators are RCX. Without considering the tasks which
RCX relies on, there is not much optimization to do and the E-depth
is 5.

4.2 Modeling the time domain

It should be clear that E has central interest in our treating. In fact,
we are also going to model the time by scanning it as E occurs.
Speciically, notice that link generations among diferent couples
of qubits are independent. For this reason we assume that all the

8Because the more communication qubits there are, the less computing resources are available.
9Assigning logical qubits to physical ones ś i.e., qubit mapping ś is another critical step for compilation and it deserves dedicated analysis

[5, 26], out of the scope of this work.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 9

possible links generate simultaneously and, as soon as all the states are measured, a new round of simultaneous
generations begins.
Clearly, after that a measurement M generates a boolean �, there is at least one post-processing operator that

need to wait for that boolean to arrive. Generally speaking, the longer the path the more time � takes to reach its
destination. We need to account for that by a proper model. To this aim, we do some observations.

Remark. Consider a generic single-qubit unitary operator U. The time required to perform U� is largely dominated

by the travel time of �, whilst the actual time taken by U can be neglected. Furthermore, the travel of � is independent

from computation. Hence, we can compactly refer to the post-processing waiting-time as ΔU� . A second observation is

that the travel of � is also independent by entanglement link creations, which we assume to take time ΔE. It is also

logical to assume ΔU� ≲ ΔE for the following reasoning: even if � need to cover a longer distance than the one covered

by E, � relies on classical technologies, which are way more eicient10 than entanglement generation and distribution

protocols. For this reason, in our treating we neglect ΔU� , since it happens in parallel with ΔE.

Stemming from this, we can model the time domain as a discrete set of steps � ∈ {1, 2, . . . , �}, where � is
an unknown time horizon, which is also the E-depth. At the beginning of each time step � , the whole set of
entanglement links is available for telegates. Notice that most of the local operators are expected to run during
the creation of the links. Because we relate them to the following inequality

ΔE ≫ ΔCX,ΔCZ,ΔH,ΔT, (1)

where, for a generic operator O, ΔO is the time to run O. Therefore, since E is independent from local operators,
we can always attempt to run these while E is running ś and also while classical bits � are traveling, as explained
in Sec. 3.3.2.

4.3 Modeling the distributed architecture

In light of the above observations, it is reasonable and convenient to consider the whole processor as a network
node, and deine a function � that provides the number of available links between two processors. Speciically, we
irst formalized a distributed architecture as the network graph N = (� , �, �) introduced in subsection 2.2; this
step was important to understand the interior behavior of remote operations from a qubit perspective. However,
now it is useful to re-state it to a more compact encoding, which highlights the main bottleneck of a distributed
quantum architecture, the entanglement links. Formally speaking, we will consider a quotient graph of N .

Fig. 8. uotient graph derived from toy net-

work of Fig. 2. The processors become the nodes,

the entanglement links between a couple of

processors gather into one edge, with capacity

equal to the number of original links.

To not further weigh down the formalism, we re-model the in-
stance, by considering as main nodes, the processors, corresponding
to an enumeration for the partition � , i.e., � = {�1, �2, . . . , ��}. All
the entanglement links connecting the same couple of processors,
now collapse two a single edge with integer capacity � , describing
how many parallel entanglement links the two processors supplies.
We refer to this sets of edges as

� ⊆
⋃

�, � : �≠�

�� × � � .

Hence, the new undirected graph is Q = (�, �, �). With this reformulation a remote operation will refer to a
control processor and a target processors ś i.e., RCX�,� with ��, �� ∈ � .

In Fig. 8 we show the quotient graph related to the toy architecture of Fig. 2.

10The design of a distributed quantum architecture can easily adapt to satisfy requirements coming from assumptions on classical technologies,

since these are very advanced.

ACM Trans. Quantum Comput.

10 • D. Cuomo et al.

4.4 Single layer formulation

Consider a basic circuit expressed as the singleton L = {ℓ}. Assume that in ℓ there occur � RCX operators. From a
logical perspective, all the � operators can run in parallel ś by deinition of layer. In other words, if the architecture
connectivity had ininite capacity ś i.e., �(�) = ∞, ∀� ∈ � ś we could run L with E-depth 1, that is optimal. As
the capacity values decrease, the optimal E-depth value grows, up to E-depth � in the worst-case.

Let us formulate an optimization problem for the single-layer case ś we will introduce a generalization to any
circuit in subsection 4.5. Speciically, the quickest multi-commodity low [36] wraps this basic scenario.
In brief, the goal is to ind a low over time which satisfy the constraints imposed by a set of so-called

commodities, which are going to represent the RCX of a quantum circuit. The less time the low takes, the better.
To formalize this problem one can directly model an objective function that evaluates a low by the time it takes.
This is an approach employed in Ref. [63], but for single commodity. Alternatively, authors in Ref. [36] propose to
start from a formulation of the multi-commodity low problem over time MCF� , where � is a given time horizon11,
namely a maximal number of time steps in which the low is constrained. We prefer this latter way because
dynamic lows like MCF� has been deeply studied since long time ago [37, 38]. Furthermore, even if this approach
has an important drawback, explained at the end of this sub-section, it does not apply to our scenario.

4.4.1 Commodities. To formulate MCF� , irst, we enumerate the occurrences of RCX in L as a set of commodities
[�] = {1, 2, . . . , �}. A set of couples source-sink nodes associates to the commodities. To do that, let s = (�1, �2, . . . ��)
and t = (�1, �2, . . . ��) be two vectors induced by the operators RCX in L12 such that,

RCX�� ,�� ∈ ℓ ⇐⇒ ∃� ∈ [�] : ��� , ��� ∈ � .

Namely, ��� (���) is the processor where the control (target) qubit of operation � occurs.

4.4.2 Decision variables. The decision variables of the optimization problem are the time-dependent functions
��,� (�) ∈ {0, 1}, indicating the low on edge � ∈ � dedicated to operation � ∈ [�] at time � . The function has a
binary co-domain because an operation � uses at most one entanglement link.

4.4.3 Constraints. As usual, the irst constraint we introduce is the low conservation constraint. Formally,
∀� ∈ [�], ∀� ∈ [�] and ∀� � ∈ � ∖ {��� , ��� } the following holds:

︁

�∈�− (� �)

��,� (�) −
︁

�∈�+(� �)

��,� (�) = 0 (2)

where �−, �+ : � → � are the standard functions outputting the set of entering and exiting edges of the input
node, respectively.

Since a low ��,� (�) = 1 identiies the usage of an entanglement link in � to perform � , we need to guarantee that
the low going through intermediate links of a path does not stop there. Conversely, whenever an end point of
the path occurs in the control or target processor ś i.e., ��� or ��� ś, the operation demand ś or commodity demand

ś constraint holds instead of the conservation constraint. Namely, ∀� ∈ [�], this can be written as:

︁

�∈�− (���)

︁

�∈[�]
��,� (�) −

︁

�∈�+(���)

︁

�∈[�]
��,� (�) = −1 (3)

︁

�∈�− (���)

︁

�∈[�]
��,� (�) −

︁

�∈�+(���)

︁

�∈[�]
��,� (�) = +1 (4)

11The choice of using letter � should highlight that the time horizon is going to be the E-depth.
12We need to use vector notation to admit repetitions.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 11

The above constraint explicitly requests that a low dedicate to � reaches its target ��� , without exiting. Symmetri-
cally, it leaves its control processor ��� without returning.
Notice that constraint (2) forces the operation demand to be satisied within a single time-step.
The last constraint ensures that, at any time step, the number of operations does not exceed the entanglement

resources. Hence, ∀� ∈ � and ∀� ∈ [�], we introduce a capacity bound:
︁

�∈[�]
��,� (�) ≤ �(�) (5)

Ultimately, the objective function is the total low � =
∑

�∈�
∑

�∈[�]
∑

� ��,� (�).
By gathering the above equations, we obtain the Integer Linear Programming formulation (6), which models

MCF� . A low � perfectly matches a set of entanglement paths used by the telegates.

minimize � =

︁

�∈�

︁

�∈[�]

︁

�∈[�]
��,� (�)

subject to
︁

�∈�− (� �)

��,� (�) −
︁

�∈�+(� �)

��,� (�) = 0 ∀� ∈ [�],∀� ∈ [�],∀� � ∈ � ∖ {��� , ��� },

︁

�∈�− (���)

︁

�∈[�]
��,� (�) −

︁

�∈�+(���)

︁

�∈[�]
��,� (�) = −1 ∀� ∈ [�],

︁

�∈�− (���)

︁

�∈[�]
��,� (�) −

︁

�∈�+(���)

︁

�∈[�]
��,� (�) = +1 ∀� ∈ [�],

︁

�∈[�]
��,� (�) ≤ �(�) ∀� ∈ �,∀� ∈ [�]

(6)

Notice that solutions with cycles are in general feasible, but are senseless in our scenario. By expressing the
problem as a minimization of � , a solver will avoid any cycle and will try to use as few entanglement links as
possible.

Algorithm 1: Quickest multi-commodity low

Input: Q, [�]
Output: �

1 � ← 1, � ← �

2 while � ≤ � do

3 �̄ ← ⌊ �+�2 ⌋
4 � ← MCF�̄ (Q, [�])
5 if � is feasible then

6 � ← �̄

7 � ← �̄ − 1
8 else

9 � ← �̄ + 1

Once deined a solver for MCF� , we just need to use it
as proposed in Ref. [36], namely the solver occurs as sub-
routinewithin a binary research on theminimum timewhere
a feasible solution exists. Since the research space is over
time, the algorithm is, in general, pseudo-logarithmic. Specif-
ically to our case, we already know that the worst solution
is where all the operations run in sequence ś i.e., E-depth
equal to � . Therefore, the time horizon is upper-bounded
by � and the binary search has log� calls to the sub-routine.
Algorithm 1 shows the steps. Notice that the algorithmmake
use of an undetermined solver for MCF� . Since we are facing
an NP-hard problem, this means that a real implementation
would generally look for sub-optimal solutions.

Unfortunately, standard MCF� cannot catch the whole fea-
tures of DQCC when L = {ℓ1, ℓ2, . . . , ℓ| L | }; we need to con-
sider that operations in [�] are somehow related each other
by a logic determined by L. Hence in the following sub-
section we are going to model such relations by introducing extra constraints.

ACM Trans. Quantum Comput.

12 • D. Cuomo et al.

4.5 Any layer formulation

� �

Fig. 9. RCX in logical con-

flict as both � and � operate

on second qubit.

As mentioned, the formulation we just gave is not enough to model the DQCC problem
to any L = {ℓ1, ℓ2, . . . , ℓ| L | }, because a circuit generally follows a logic which is related
on the order of occurrence given by L. Therefore, even if it might happen that two
operations could run in any order, in general this is not true. One needs to deine an
order relation which is consistent with the logic of the circuit. From an optimization
point of view, a critical matter is to choose an order relation that either wraps most of
the good solutions or is prone to optimization algorithms. For this reason and for the
sake of clarity, we here refer to a generic, irrelexive, order relation ≺ deined over [�],
without giving it a unique deinition. Formally, for any �, � ∈ [�], � ≺ � means that to
run � we need to ensure that � already ran. Starting from ≺, we can deine a constraint
to add to formulation (6). Namely, ∀� ∈ [�],∀� ∈ �−(���) the following holds:

��,� (�) ≤ min
�≺�

︁

�̄<�

��,� (�̄) (7)

The right part of the inequality is a value in {0, 1} and takes value 1 only if all the operations logically preceding
� already ran. Notice that constraint (7) is linear, as it takes the minimum value among linear functions, and it
can be easily mapped to a set of independent constraints ��,� (�̄) ≤

∑

�̄<� ��,� (�̄), ∀� : � ≺ � .
The formulation now models DQCC. But, within next section, we reine inequality (7) to get a better solution

space.

5 ENHANCING PARALLELISM

Z�2

E

�1

H �2

X�1 Z�4

E

�3

H �4

X�3

� �+1 �+2

≡

Z�2

E

�1

H �2

Z�4X�1

E

�3

H �4

X�1⊕�3

� �+1

Fig. 10. Example of how to achieve quasi-parallelism for two RCX in logical conflict.

As before, from an optimization point of view, we are interested in considering as many good solutions as
possible. To this aim, we propose an interesting approach which should enlarge the space of good solutions.
Speciically, we notice that even if two operations �, � ∈ [�] are such that � ≺ � , this does not necessarily mean
that they must run at diferent time steps. They, indeed, may run at the same time step and still respecting the
logic imposed by ≺.
Consider the example from Fig. 9. Since operations � and � operates over a common qubit, they are in logical

conlict. Hence, it is reasonable to think that � ≺ � should hold. However, when considering � and � in their
extended form ś i.e., where communication qubits are explicit ś, we notice that their logical conlict does not

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 13

map over all the operations involved. As Fig. 10 shows, the left part of the equivalence is a naive implementation
of � followed by � , where the extended form completely inherits the logical conlict. Instead, the right part of the
equivalence is way more eicient and it is still an implementation of circuit of Fig. 9.
As consequence, even if � and � are in logical conlict, they can run at the same time step. We refer to this

property as quasi-parallelism. For this reason we introduce a new binary relation between operations in [�],
which we refer to with the intuitive symbol q. As before, we do not give here a unique deinition of q. Speciically,
for any �, � ∈ [�], we write � q � to mean that operations � and � can run at the same time step, but we did not
ix a criterion to establish when q holds. Clearly, operations �, � ∈ [�] which can run in full parallelism, are a
special case of quasi-parallelism and � q � holds. We can now split the constraint (7), by discriminating between
operations which can run in quasi-parallelism and the ones which cannot. Formally, ∀� ∈ [�],∀� ∈ �−(���) we
introduce two new constraints

��,� (�) ≤ min
�≺�∧�/�

︁

�̄<�

��,� (�̄) (8)

��,� (�) ≤ min
�≺�∧�q�

︁

�̄≤�
��,� (�̄) (9)

To sum up, we propose (10) as Integer Linear Programming formulation of the DQCC problem. C is the set of
constraints coming from the standard MCF formulation given in (6). In what follows we propose a characterization
for relation q.

minimize � =

︁

�∈�

︁

�∈[�]

︁

�∈[�]
��,� (�)

subject to C,

��,� (�) ≤ min
�≺�∧�/�

︁

�̄<�

��,� (�̄) ∀� ∈ [�],∀� ∈ �−(���),∀� ∈ [�],

��,� (�) ≤ min
�≺�∧�q�

︁

�̄≤�
��,� (�̄) ∀� ∈ [�],∀� ∈ �−(���),∀� ∈ [�]

(10)

5.1 Characterization

� � �

Fig. 11. Three RCX operators in logical

conflict.

Our goal is to model q to catch as many solutions as possible, while keeping
them feasible to the hardware. With this in mind, we propose the following
criterion: given any �, � , � q � holds whenever � and � can run within a
certain “small enough" time lapse. Speciically, the time lapse depends on
the coherence time of communication qubits, which are assumed to be
much more afected by noise than computing qubits.
Notice that, when two operations �, � run in quasi-parallelism, the life-

time of the employed communication qubits might grow. Therefore, we need
to ensure that it does not exceed the coherence time of the entanglement.
Formally, let us assume ΔΦ being the coherence time of the entanglement
ś hence, it starts from the moment E ends, up to the beginning of the
measurements M.

A complication arises from the fact that q is, in general, an intransitive relation. To understand why this is true,
consider the circuit in Fig. 11. In such a scenario we are faced with multiple choices. Namely, running

(1) all �, �, � at diferent time steps;

ACM Trans. Quantum Comput.

14 • D. Cuomo et al.

(2) all �, �, � at the same time step;
(3) �, � together and � afterwards;
(4) � only, followed by �, � together.

�

� �

Fig. 12. Two independent RCX ś i.e., �

and � ś belonging diferent layers.

Case (1) is not of interest, because it is the worst solution and no op-
timization applies. Case (2) is the best solution, but it is not necessarily
feasible. In fact, for ΔΦ small enough, we are forced to split the operations,
as in one of the cases (3) and (4). This explains the non-transitivity, since
� q � and � q � , but � / � .

We still need to characterize q, hence, we introduce a predicate method
which aims to bring RCX closer to each other, so that quasi-parallelism is
achievable.

5.2 A recursive predicate for the quasi-parallelism relation

As said above, we are now going to introduce a method which veriies if
any two telegates can run in quasi-parallelism. Therefore, this method, say
A(�, �,ΔΦ), is a predicate, which is true whenever the operations in input
can run in quasi-parallelism. We can inally characterize q:

� q � ⇐⇒ A(�, �,ΔΦ).

A works in a recursive fashion with three diferent scenarios as base case.
Base case (i): given two operations �, � , if they belong to the same layer, clearly they can run in full parallelism,

therefore A(�, �,ΔΦ) is true.
Base case (ii): similarly to (i), if �, � belong to diferent layers and they are completely independent13,A(�, �,ΔΦ)

is true. Circuit of Fig. 12 gives an example with �, � in contiguous layers.
Base case (iii): assume �, � contiguous ś i.e., in contiguous layers ś and both operating on, at least, one common

qubit. We want to introduce, with this base case, the possibility that multiple operators may run simultaneously,
as exempliied in Fig.s 10. For this reason, algorithm A considers all the operators involved to perform an RCX ś
recall protocol from Fig. 4. Namely, A pushes forward the post-processing of � ś i.e., the Pauli operations Z� or
X� ś after the pre-processing of � ś i.e., the CX operations. One can do that by using the following transformation
rules:

• CX(X� ⊗ I) ≡ (X� ⊗ X�)CX
• CX(I ⊗ Z�) ≡ (Z� ⊗ Z�)CX
• CX(I ⊗ X�) ≡ (I ⊗ X�)CX
• CX(Z� ⊗ I) ≡ (Z� ⊗ I)CX

Similarly, when a CZ occurs, the following rules apply:

• CZ(X� ⊗ I) ≡ (X� ⊗ Z�)CZ
• CZ(Z� ⊗ I) ≡ (Z� ⊗ I)CZ

After the application of these rules, some post-processing operation, might have been propagated also to
communication qubits. Speciically, it may happen that an operation X� should precede a measurement. However,
one can always reduce the depth of the circuit by sending � to the target(s) of the measurement. This is indeed
what happens in our irst example ś Fig. 10 ś, where, instead of performing X�1 in the communication qubit,
we opt to put it in combination with X�3 , achieving a single operation X�1⊕�3 ś see also Fig. 13 for a circuit

13Namely, what � does to its qubits does not afect the qubits � operates on.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 15

representation. At the end of the circuit manipulation, the life-time of the communication qubits may have risen.
If it does not exceed ΔΦ, then A(�, �,ΔΦ) is true; otherwise, A(�, �,ΔΦ) is false.

X� �̄

X�̄

≡ �̄

X�⊕�̄

Fig. 13. Propagation of X� . First wire no longer need

information of �. Second wire need information given

by � ⊕ �̄. Notice that measured �̄ is not the same value

in the two cases.

Recursion: consider now the case where � and � are sepa-
rated by a sequence of local operations O1, . . . , O�

14, assumed
to be conined to the universal set {CX, CZ, H, T}. In this case,A
applies, recursively, transformations for both � and � . Specii-
cally, as long as possible, it pushes forward the post-processing
of � by using former rules together with:

• TZ� ≡ Z�T

• HX� ≡ Z�H

Ultimately, as long as possible, A pushes backward the pre-
processing of � by using the following standard rules:

• CX(T ⊗ I) ≡ (T ⊗ I)CX
• CZ(T ⊗ I) ≡ (T ⊗ I)CZ
• CZ(I ⊗ T) ≡ (I ⊗ T)CZ
• (CX�,� ⊗ I)(I ⊗ CX�,�) ≡ (I ⊗ CX�,�)(CX�,� ⊗ I)
• (CX�,� ⊗ I)(I ⊗ CX�,�) ≡ (I ⊗ CX�,�)(CX�,� ⊗ I)
• CX�,�(H ⊗ H) ≡ (H ⊗ H)CX�,�
• CZ(I ⊗ H) ≡ (I ⊗ H)CX
• CX(I ⊗ H) ≡ (I ⊗ H)CZ

If A manages to make � post-processing and � pre-processing contiguous, the validity check reduces to the base
case scenario. Otherwise, A(�, �,ΔΦ) is false.

H

H

A↦−→

X�2

E

H �1

�2

H X�1Z�4

E

H �3

�4

H X�1⊕�3Z�6

E

�5

H �6

X�1⊕�3⊕�5

Fig. 14. An expansion, obtained by applying rules from A. In this example scenario, RCX and RCZ are interspersed with

single-qubit local operators. Notice that boolean variables travel simultaneously. Hence, the assumption we made in Sec. 4.2

ś i.e., Δ
U�
≲ ΔE ś holds also for complex evaluations as Z�1⊕�4 and X�6Z�3 .

14Namely, operations O1, . . . , O� belong to layers between the ones of � and �

ACM Trans. Quantum Comput.

16 • D. Cuomo et al.

So far, we deined A only for �, � without any other remote operation in between. Before generalizing the
method to any � and � we prove that our deinition of A can be implemented so that it runs in polynomial time.
We need this requirement to keep things tractable.

Theorem 1. A has O(�) complexity, with � being the number of operations A considers.

Proof. Assume there occur � local operations, say O1, . . . , O� , between � and � . IfA manages to push � forward
O1, it means that its post-processing run after O1 and it may only propagate vertically, over diferent qubits ś
by construction of the rule set. As consequence, the depth of the circuit has not increased. Furthermore, the
post-processing is still composed by Pauli operations of the kind Z� or X� . Hence, this holds for any O1≤�̄≤� and
the recursion is upper-bounded by O(�).

Symmetrically, ifA manages to push � backward O� , it means that the pre-processing can run before O� . Also in
this case, the depth has not increased and the pre-processing is still composed by two independent CX operations
ś again, by construction of the rule set. Hence, this holds for any O1≤�̄≤� and the recursion is upper-bounded by
O(�). □

We can now move on to the general case. Formally, between � and � a remote operation � may occur, which is
also in logical conlict with both. For such a scenario, we just add a recursive rule. Namely, A(�, �,ΔΦ) holds if
the following holds:

∃� ∈ [0, 1] : A(�, �, � · ΔΦ) ∧ A(�, �, (1 − �) · ΔΦ).

Take a moment to appreciate why this kind of recursion is feasible. Speciically, one might think that validity of
A(�, �, � ·ΔΦ) andA(�, �, (1− �) ·ΔΦ) are not independent, because they both operate on � . However, in the former
function, A evaluates the pre-processing of � , while, in the latter, it evaluates its post-processing. Therefore they
can be evaluated independently.

Theorem 2. Generalized A has O(�) complexity, with� being the number of operations A considers.

Proof. Assume there occur �1, . . . , �� between � and � . For the purpose of the proof let� being a power of 2.
A(�, �,ΔΦ) can choose any of the �1, . . . , �� operations for the recursion. To keep symmetry, let A(�, ��

2
, � · ΔΦ)

and A(��
2
, �, (1 − �) · ΔΦ) be the recursive call. Notice that operations considered by A(�, ��

2
, � · ΔΦ) are

�
2 , as

well as the ones considered by A(��
2
, �, (1 − �) · ΔΦ). The result is a recursive binary tree of height log� and,

therefore, O(�) calls toA. The leaves correspond to the base case of the recursion, which is proved to be tractable
in Theorem 1. □

Fig. 14 shows an example scenario where we used rules as inA ś in addition to the irst one of Fig. 10. Clearly,
our modular architecture is prone to modiications or extensions ofA, if future research highlighted more reined
requirements.

Remark. Notice that we managed to deineA to be independent by the connectivity of Q. This was possible thanks
to the way we modeled telegates via eicient entanglement paths ś see Appx. A. In other words, A(�, �,ΔΦ) works for
any solver and regardless of the path this chooses to perform � and � . As consequence, the characterization of A ś

and therefore also of q ś is static and depends only by the logical circuit and global factors, i.e., ΔΦ. Furthermore,

we may relate coherence time and entanglement link creation to ΔE + ΔΦ ≈ ΔE. As consequence, whatever ΔΦ is, A
does not signiicantly afect the duration of each time step. This makes the E-depth a particularly good index for the

running time of the overall computation.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 17

5.3 The role of the Cliford group in distributed quantum computing

In our algorithm, we tried to postpone the post-processing as much as possible, to allow classical information to
travel across remote computers in the meantime. An ideal result would be to push it to the end of the circuit:
indeed, since the post-processing is made only of Pauli gates, if it were located at the end of the circuit, it could be
eiciently replaced by a classical computation, removing the need of the quantum state to remain coherent while
the information travels. We show in the next subsection that pushing the post-processing to the end is possible if
the circuit belongs to a particular class, namely the Cliford group, generated by the operators {CX, CZ, H, T2} (or
by the minimal sets {CX, H, T2} and {CZ, H, T2}). Let us introduce here some basic facts about such a group.

|� ⟩ T2� T |� ⟩

|� ⟩ �

Fig. 15. Example of T gate injection.

The interest in the Cliford group derives from the fact that it covers
a wide spectrum of circuits, but does not include the complexities of the
T gate. The Cliford group can also be eiciently simulated on a classical
computer. We already discussed that the T gate represents the most error-
prone gate in the fault-tolerant context. On the other hand, it is obvious
that the Cliford group together with the T gate is universal [75]. For this
reason, it makes sense to represent an arbitrary circuit in terms of a Cliford
circuit plus as little T gates as possible. This was attempted in literature
in two ways:

• decompose circuits, with the goal of minimizing the number of T gate occurrences [4, 82];
• inject T gates into a Cliford circuit, by means of state preparation [62, 92, 95].

A basic example of T injection is shown in Fig. 15, where injection is performed through one auxiliary qubit,
prepared in the state

|�⟩ = TH |0⟩ = 1
√
2
(|0⟩ + � i�

4 |1⟩). (11)

Other facts about the Cliford group are worth being reported. Speciically, distributed architectures based on
trapped ions [50, 73, 86] are well itted to work with state injection on Cliford circuits. Indeed, experimental
results show that single-qubit gates can run with 99.9999% idelity [43] and that CX (or CZ) operators, can achieve
a 99.9% idelity [7]. Furthermore the local connectivity for such a processor is complete [64]. This means that
a T injection would give a idelity of ∼ 99.8997%, if prepared as in equation (11) and circuit of Fig. 15, without
the need of distillation nor of local routing. As a consequence, future architectures relying on entanglement
generation and distribution, are likely to supply some T injection module too.

5.4 Circuit normal forms for the Cliford group and implications on the post-processing

As said at the beginning of Sec. 5.3, important beneits could be achieved by postponing the post-processing to
the end of the circuit, where they can be computed classically. An attempt in this direction is available in Ref. [65],
where authors delay Pauli operations together with non-Pauli ones. Instead, our approach is to show that the
result can always be achieved on the Cliford group, by relying on the normal forms [1, 27, 29, 71]. Such a form
results particularly useful for distributed computing and, more in general, for measurement-based computation.

It was shown [29] that any Cliford gate acting on a Pauli state, can be represented in the normal form depicted
in Fig. 16. This normal form is of practical interest as it can be obtained starting from any Cliford circuit, which
is in general not in normal form. Such a result comes from the employment of a ZX-calculus reasoner ś e.g.
[53]. ZX-calculus [29, 87] is a graphical language arisen as an optimizer for quantum circuits, that translates a
quantum circuit into a ZX-diagram. The main diference between the diagram and the original circuit is that the
former works with ZX-rules, which serve as a reasoning tool to smartly generate a new circuit, equivalent to
the original one. ZX-calculus was recently introduced in the literature, with the main objective of minimizing a

ACM Trans. Quantum Comput.

18 • D. Cuomo et al.

circuit gate-depth, and its potentiality is still being explored, raising increasing interest for its versatility. In fact,
we use it here to perform architecture-compliant optimization.

Let us describe the few tools and properties we need to benchmark our compiler, while the interested reader
can refer to the bibliography for a more extended dissertation. Coming back to Fig. 16, we use the circuit symbol

to express a generic Pauli state preparation. Similarly, the symbol expresses a generic Pauli

measurement. LO is a set of layers where only the O operator occurs. For example LCZ encodes a circuit composed
by CZ operators15.

L(1)
CZ

L
CX

L
H

L(2)
CZ...

...

Fig. 16. Normal form coming from the ZX-rules applied in Ref. [29].

The following remark is a consequence of dealing with Cliford circuits in normal form.

Remark. While predicate A is running, only Pauli and Hadamard operations concur to its evaluation. Hence, all

the post-processing operations can be pushed forward, up to end of the circuit and can be computed eiciently by a

classical computer. Furthermore, since no post-processing occurs during quantum computation, the entanglement

path length has a negligible impact.

The normal form suggests that the problem can be separated into three parts, corresponding to L(1)
CZ
, LCX and

L(2)
CZ
. For two of them ś i.e., L(1)

CZ
and L(2)

CZ
ś the order relation is trivial (as all CZ commute), and therefore we

can use any quickest multi-commodity low solver to get a feasible compilation. On the contrary, the optimal

characterization of the order relation for L
CX

is a conceptually complex task. Indeed, a set of relations with
minimal size may not be the best characterization from a practical point of view, if many of the relations involve
remote qubits. The topic of optimal CX order relations deserves a dedicated analysis and is the subject of future
work.

Let us emphasize the importance of LCZ circuits, by pointing out some facts from Ref. [71]. The authors therein
introduce the Boolean degrees of freedom as a way to count how many diferent algorithms can be implemented
with a class of gates, and show that a generic LCZ “has roughly half the number of the degrees of freedomž
compared to a generic LCX, and roughly a quarter compared to the Cliford group. We validate our compiler
performance by solving LCZ circuits on diferent architectures in Sec. 7. So, being able to exploit normal forms to

isolate two highly expressive blocks L(1)
CZ

and L(2)
CZ

that can be compiled without recurring to order relations, is a
very relevant result.

Before discussing the implementation details, let us make a inal remark on ZX-calculus. We introduced it in the
context of the Cliford group, but it is designed to work more broadly with any circuit [6, 14, 47, 52]. Therefore, we
aim to expand our analysis in future works, by investigating normal forms for universal circuits. An interesting
result in this sense is available in Ref. [44], where authors show that a universal circuit can be split into three
steps:

15Notice that CZ�,� ≡ H�CX�,�H� . Thus, we do not need to expand our assumptions on the gate set.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 19

(1) the system is prepared in a non-Cliford state, this involves auxiliary qubits which will do the work of
injecting non-Cliford phases ś e.g. the T gate;

(2) an LCX circuit;
(3) a measurement-based sequence of Cliford operations (which can still be treated with ZX-calculus [28]).

6 IMPLEMENTATION TECHNIQUES

6.1 Time-expansion

Formulation (10) is a particular case of MCF� , as it slightly recedes from the standard formulation. As expected,
the problem is still intractable. To understand that, consider this simple scenario: an instance [�] with � = 2 such
that 1 q 2. We can restate the problem as follows: assert if there exists a solution at irst time step. If not, just
put operation 2 at second time step. Unfortunately, asserting if such a solution exists is NP-hard. Indeed, in Ref.
[32], authors proved the hardness of such a decision problem, even for single capacity edges. Therefore, it is
reasonable to look for approximations of DQCC. To this aim, we think a good line of research would be to follow
a common technique for tackling MCF� : the time-expansion [38]. Namely, a re-deinition of the instance graph,
from Q to a new graph Q� . Such a technique is useful because, instead of tackling MCF� over Q, one can tackle its
static version MCF over Q� . Let us introduce it formally for our scenario.
A time-expansion of Q is a graph Q� = (�� , ��). Accordingly to this criterion, an edge (�� , � �) ∈ � taking

discrete travel time � would translate into directed edges (�� (�), � � (� + �)), (� � (�), �� (� + �)) ∈ �� , with a shared
constraint on the capacity. Nevertheless, edges in Q are assumed to have null travel time. Hence, a time-expansion
of Q is particularly eicient, since one just needs to introduce a repetition of Q for each time-step � , which we
refer to as Q(�) = (� (�), �(�)). As consequence, time-dependent sets s(�) and t(�) replace s and t. We keep using
s and t as the nodes encoding the commodities, non-localized in time. For each � and � , we introduce edges
(��� , ��� (�)) and (��� (�), ���), both with unit capacity.

Fig. 17. Time-expanded graph of 4 processors,

for an instance [�] with � = 3 and time horizon

� = 2.

Since only integral low are allowed and the demand is exactly
1, for any operation � , only one of the edges {(��� , ��� (�))}� ś as well
as only one in {(��� (�), ���)}� ś will have a non-zero low.

Now that we gave a irst intuitive way to encode the sources of the
problem, let us optimize it. Notice that operation 1 can always run at
time 1, and it is a waste of time and space considering other options.
As consequence, for operation 1, we only introduce (��� , ��� (1)) and
(��� (1), ���). This extends to any operation, which can always run in
a time between 1 and min{�, �}, by assuming that a solution exists
with time horizon � . Therefore, for each operation � , we introduce
the sets of edges {(��� , ��� (�)) : ∀1 ≤ � ≤ min{�, �}} and {(��� (�), ����) : ∀1 ≤ � ≤ min{�, �}}. Fig. 17 shows the
inal graph for instance [�] with � = 3, time horizon � = 2 on an architecture with 4 processors.

As said, the time expansion Q� is a common way to tackle MCF� as a static low problem and it is particularly
eicient in our scenario. Speciically, we could model Q� by simply introducing � repetitions of Q and, especially,
without the need of edges connecting diferent time-steps Q(�), Q(�̄). Because of this result, we are also able to
implement a time-expansion at a logical level, without actually allocating space for � repetition of Q. This is
detailed in Sec. 6.3.

To the best of our knowledge, even if approximation algorithms for MCF [20, 85] and variants [16, 18, 19, 79, 84]
have been extensively studied, there seems to be no proposal relatable to ours, modeling DQCC. More formally, no
eicient reduction seems possible from our problem to standard formulations, while approximation algorithms
proposed in literature usually rely on LP-relaxation, or on greedy criteria. Theses proposals do not guarantee

ACM Trans. Quantum Comput.

20 • D. Cuomo et al.

that constraints (8) and (9) are satisied. Hence, further studies along this line would be useful to (i) place the
problem within its most proper complexity class and to (ii) guarantee approximation ratio.

6.2 Transformation to direct graph

Since the literature dealing with MCF usually assume a directed graph, we here report a mapping method from an
undirected graph to an equivalent one with direct edges. This would bring just a constant overhead in the space,
while it would not afect any approximation factor which a solver would rely on. Fig. 18 comes from [2]. It is a fast
approach to map an undirected multi-commodity low problem to a directed one. Speciically, for each couple of
nodes �� , � � connected by an edge with capacity � , one have to introduce two extra nodes, say ��′ , � � ′ and connect
them with the direct edge (��′ , � � ′) of capacity � . The last step is creating directed cycles of ininite capacity, where
the only bottleneck is � .

Fig. 18. Mapping from an undirected graph to a

directed one working for any multi-commodity

flow problem. The transformation undergoes

with a constant overhead in the number of

nodes and edges.

6.3 Compilation through approximation

We already discussed in Sec. 4.4 how to tackle DQCC as a particular
case of quickest multi-commodity low. In this way we managed to
reduce the problem on the resolution of one or more static instance
of the MCF. In Refs. [55, 56] it has been shown that whenever each
commodity is a source (or a target) for any other node, than solving
it through LP-relaxation outputs an optimal solution to MCF. This
result can be of interest when treating fully entangling circuits.

To keep the compiler more general, we opted to investigate algo-
rithms with approximation boundary guaranteed [57, 58, 69]. Specif-
ically, we implemented the pseudo-code outlined in Ref. [33]. This
is followed by a proof on the approximation quality for the case of
capacity � = 1 and � > 1. We focus on the case � = 1, but it can be
extended to � > 1.

By using our formalism, the approximation algorithm aims to run as many non-local operators ś i.e. satisfying
commodities demand ś as possible. A computed solution is a sub-set � ⊆ [�]. The optimal solution is �∗ ⊆ [�]
and |� | ≤ |�∗ |. It follows the (optimal) approximation boundary [33, 69]:

|� | ≥ |�∗ |
O(
√
�)

, � = |� | (12)

Notice that the solution quality is inversely proportional to the number of entanglement links. It means that
we cannot estimate an optimal solution to the DQCC, as for a given time horizon, this afects the quality of the
solution space. Furthermore, the time-expansion increases the number of edges and so does the distance |�∗ | − |� |.
Ultimately, even if the allocated space by the time-expansion grows at most linearly with the number of non-local
operations ś see Sec. 4.4 ś, this can seriously afect the performance when such an amount is very big16. On
contrary, it is possible to keep the time-expansion abstract and compiling iteratively as many operations as
possible at each time-step. This method is detailed in Algorithm 2. Notice that each iteration guarantees the
boundary of equation (12) and, above all, since the instance decreases in size, the distance |�∗ | − |� | tends to
decrease as well.

7 EVALUATION

16Better upper-bounds for the worst-case solution should be investigated.

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 21

Algorithm 2: Iterative compiler

Input: Q, [�]
Output: �

1 � ← [�]

2 � ← 0

3 while � ≠ ∅ do
4 �̄ ← MCF(Q, �)
5 � ← � ∖ �̄

6 � ← � + 1

As distributed quantum architectures are still at an early stage, it
is hard to predict with conidence what kind of connectivity and
resources they will supply. Furthermore, it is worth mentioning that
distributed computing, by its nature, presents features coming from
routing models as well as compiling models. Hence, we here report
and compare an interesting work available in literature dedicated
on routing entangled states [77]. In such a manuscript, authors deal
with unreliable optical links to create entanglement and dynamically
choose a multi-path solution in order to maximise the entanglement
success-rate. Even if our network topology relies on the same ar-
chitecture, we model the linkage through a single path which is
dedicated to the entanglement generation and distribution for a time
ΔE, taken big enough to guarantee a high idelity. This is a fundamental diference, making the two models
diicult to compare.
Here we evaluate the square lattice topology proposed in Ref. [77] by comparing it with an hexagon lattice

topology. We therefore verify the compiler performance for both the lattices in terms of:

• solution quality;
• robustness to scale-up.

We conclude the comparison with the possible implications of the results.

7.1 Set-up

To compare the compiler performance on diferent topologies, we make use of a generator factor �. The number
of nodes and edges of each lattice will be expressed as a function of �. Because the two lattices difer by deinition,
it is not trivial to settle a fair comparison. To do that, we irst generate a sample of hexagon latticesH such that

|� | = 1/2 · �2 + 3� + O(1), |� | = 3/4 · �2 + 7/2 · � + O(1). (13)

We compareH with two square lattices, say S
▼
and S

▲
, that have sizes respectively lower and higher thanH for

each � ś see Fig. 19. Hence, S
▼
is such that

|� | = 1/4 · �2 + 3/2 · � + O(1), |� | = 1/2 · �2 + 2� + O(1). (14)

while S
▲
is such that

|� | = 2�2 + 2�, |� | = �2 + 2� + O(1). (15)

We show in the next subsection that S
▲
and S

▼
perform better thanH in terms of resulting E-depth. This implies

that the square lattice is a better design for distributed quantum computers, assuming that our compiler performs
equally well on diferent topologies.

(a) Square latice S
▼
. (b) Hexagon laticeH . (c) Square latice S

▲
.

Fig. 19. Example of latices used for the experimental evaluation; they all come from generator � = 4.

ACM Trans. Quantum Comput.

22 • D. Cuomo et al.

Since we use Algorithm 2, capacities are assumed to be 1. We already pointed out that such an algorithm can
be extended to the case � > 1.

Notice that diferent node degrees imply diferent assumptions on the processor units �� . The hexagon lattice
has node degree upper-bounded by 3 and lower-bounded by 2, which means that �� has 2 to 3 communication
qubits. Similarly, the square lattice has degree upper-bounded by 4. Hence, the communication qubits per unit
are 2 to 4. Since our focus here is on distributed compilation, we will assume that �� has 1 computation qubit.
This is especially reasonable when considering that real implementation of distributed architecture may use most
of their local resources as auxiliary qubits, meant to keep the computation fault-tolerant.
Concerning the life-time of the entanglement ΔΦ, this comes after that the operator E succeeded to store the

state in the distributed system. While performing E is the hardest part ś as it takes a long time ΔE [48] ś, once
it succeeds, the storage on matter qubits is quite performing [89]. For this reason, we can just assume that the
coherence time is long enough to satisfy ΔΦ > 4 · ΔCZ; where the factor 4 is an upper-bound for the node degrees
of lattices.

For the numerical evaluation we use a generating vector g = (1, 2, . . . , 11). Hence, when the generator is ixed
to 11, the size ofH reaches |� | = 96 and |� | = 131, S

▼
reaches |� | = 49 and |� | = 84, while S

▼
reaches |� | = 144

and |� | = 264.
Ultimately, regarding the circuits, we have already discussed in Sec. 5.4 that from any Cliford circuit we can

extract 3 separated sets of 2-qubits gates and focus on LCZ circuits. For this reason, we here consider LRCZ circuits.
We generate three samples classiied by their size (or number of occurring operators). Each sample is composed
by 10 random circuits in order to average the results. The size of the samples are 256, 512 and 1024.

7.2 Results

To evaluate the results we used the matlab environment [72]. The employed architecture is a MacBook Air (M1,
2020, 8GB RAM).

The irst result ś shown in Fig. 20 ś is a comparison on the solution quality, a.k.a. the E-depth. As anticipated,

0 2 4 6 8 10 12

Generator

0

20

40

60

80

100

D
e
p
th

Hexagon lat.

(a) 256 RCZ

0 2 4 6 8 10 12

Generator

0

50

100

150

200

D
e

p
th

Hexagon lat.

(b) 512 RCZ

0 2 4 6 8 10 12

Generator

0

100

200

300

400

D
e

p
th

Hexagon lat.

(c) 1024 RCZ

Fig. 20. uality scale comparison.

the plots show that a square lattice gives better solutions, for any problem size. We can relate this behavior to the

ratio edges-to-nodes. Formally, let �Q =
|� |
|� | be such a ratio for a graph Q. Then it results that square lattices have

ratio:

lim
�→∞

�S = 2. (16)

Instead hexagon lattices have a lower ratio:

lim
�→∞

�H = 3/2. (17)

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 23

This suggests that the bigger the ratio, the better the solutions. The plots also show that the depth achieved by
the diferent lattices may be ruled by the same polynomial function (up to some constant factor). This is in line
with the intuition that a more connected topology allows for shorter depth. Furthermore, we already mentioned
in Sec. 6.3 that, even if the approximation algorithm depends on the edges size, this is called as a subroutine that
performs better and better at each iteration. All this may mean that the compiler has a convergence to an optimal
depth. On contrary, if the compiler was afected by the number of edges, the functions should swap at some
point, but we never observed such phenomenon.
To conclude our evaluation, we took the average times for each sample. The results are shown in Fig. 21.

Diferently from what we got in the solution quality evaluation ś where we noticed a similar behaviour for each
architecture ś, the time-scale gives new perspectives in the lattices comparison. In fact,H and S▲ seems to need
approximately the same time to compile any circuit, with S▲ performing slightly worse ś which is coherent with
the size diference between the twos. Instead, S▼ outperforms the others lattices. Furthermore, it seems that it is
more resistant to scale-up as the scaling seems to follow a lower degree function.

0 2 4 6 8 10 12

Generator

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
e

c
o

n
d

s

Hexagon lat.

(a) 256 RCZ

0 2 4 6 8 10 12

Generator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
e

c
o

n
d

s

Hexagon lat.

(b) 512 RCZ

0 2 4 6 8 10 12

Generator

0

1

2

3

4

5

6

S
e
c
o
n
d
s

Hexagon lat.

(c) 1024 RCZ

Fig. 21. Time scale comparison

8 CONCLUSION

To conclude this manuscript, let us highlight the main beneits of our framework for treating DQCC, as well as the
key indings.
(i) By expressing the problem as a quickest low problem, we could give a formulation corresponding to a

multi-commodity low problem over ixed time. This approach is particularly well itting with our goals, because
a quickest low expresses the need to run a circuit as fast as possible, while a low over ixed time brings a side
interest into the minimization of resource usage, which is clearly a desideratum, but still secondary to the overall
running-time.

(ii) Quasi-parallelism, represented by constraints (8) and (9), gives the possibility to consider a wider solution
space. Quasi-parallelism is grounded on the idea of gathering logically sequenced telegates within the same time
step, by means of an eicient circuit manipulation ś see predicate A.

(iii) We built our model step by step, each of which rigorously explained. The result is an highly modular work.
For example, if one can consider only circuits where operations can all commute each other, formulation (6) is
enough and approximation bounds are available. Instead, when considering any circuit, one can easily shape the
extra constraints of formulation (10). Consider, for example, the quasi-parallelism relation q, we characterized it
as the predicate A. By just extending the way A works, the space of good solutions gets larger.

(iv) Since we modeled the problem as a network low problem, one can also exploit the huge related literature
to get inspiration in the way of tackling the problem.

ACM Trans. Quantum Comput.

24 • D. Cuomo et al.

(v) We deeply investigated the literature on quantum circuits and logic in order to tackle big groups of circuits
with a form which would be well itting with the constraints coming from the architecture. This led us to focus
on circuits expressed in normal forms. By tackling individual normal forms, the compiler can be modulated to
a form chosen and take advantage from the properties coming from a normal form. We started by outlining a
normal form for Cliford circuits up to one for universal circuits. From this step-by-step analysis of the circuit,
we will be able to improve the compiler in future works, while at the same time being able to evaluate our model
by means of a restricted group of circuits.

(vi) We applied our compiler on diferent topologies. We focused on square and hexagon lattices and showed
that square lattices outperforms hexagon ones, both in terms of solution quality (E-depth) and running-time. We
gave some perspective on why we obtained such results, showing that the ratio edges-to-nodes is a representative
metric.

A ENTANGLEMENT SWAP GENERALIZATION

Within this section we show how to eiciently implement an entanglement path. In Sec. 3.3, we introduced
the entanglement swap as a circuit of depth 5. We also claimed that such a depth is ixed when generalizing
the entanglement swap to the entanglement path. To this aim, we give an inductive proof for such a statement,
starting from the base case with entanglement path of length 2.

Theorem 3. An entanglement path {��1 , ��2 , . . . , ��� } has an implementation with depth 5.

Proof. Consider, as base case, that we want to create a path of length 2. Clearly, we could do that by just
putting in strict sequence two entanglement swaps:

E

Z�1 Z�3

H �1

E

�2

X�2 H �3

E

�4

X�4

The colored operators are the only ones we are going to optimize; since the others are independent and no
optimization can be applied. What follows is the base case for the induction:

Z�1 Z�3

X�2 H �3

�4

X�4

≡

Z�1⊕�3

H �3

�4

X�2⊕�4

Speciically, circuit on the right of equation has post-processing composed by Z�1⊕�3 on irst qubit and X�2⊕�4 on
last qubit. Furthermore, now the measurements are independent from other operations.
By assuming that such a shape is preserved in the inductive step, we show that this transformation can be

applied to any length:

ACM Trans. Quantum Comput.

Optimized compiler for distributed quantum computing • 25

Z
�1⊕�3⊕···⊕�2(�−1)−1 Z�2�−1

X
�2⊕�4⊕···⊕�2(�−1) H �2�−1

�2�

X�2�

≡

Z�1⊕�3⊕···⊕�2�−1

H �2�−1

�2�

X�2⊕�4⊕···⊕�2�

This proves that we can always consider an entanglement path {��1 , ��2 , . . . , ��� } to have circuit depth 5. □

We just showed an eicient implementation for the entanglement path. Now we do one last step to exploit
such a result and performing a generalized remote operation eiciently.

Theorem 4. An RCX of entanglement path {��1 , ��2 , . . . , ���+2 } has depth 5.

Proof. Theorem 3 allows us to assume that, to perform a remote operation by using a path of length �,
the computing qubits interact only with two communications qubits and depend only by Pauli operations
Z�1⊕�3⊕···⊕�2�−1 and X�2⊕�4⊕···⊕�2� . We can further propagate such operations as follows:

Z�2�+2

Z�1⊕�3⊕···⊕�2�−1 �2�+1

X�2⊕�4⊕···⊕�2� H �2�+2

X�2�+1

≡

Z�1⊕�3⊕···⊕�2�−1⊕�2�+2

�2�+1

H �2�+2

X�2⊕�4⊕···⊕�2�⊕�2�+1

In this way the measurements are independent and the depth of the circuit is not increased. □

REFERENCES

[1] Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Physical Review A 70, 5 (2004), 052328.

[2] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. 1988. Network lows. (1988).

[3] Nitzan Akerman, Nir Navon, Shlomi Kotler, Yinnon Glickman, and Roee Ozeri. 2015. Universal gate-set for trapped-ion qubits using a

narrow linewidth diode laser. New Journal of Physics 17, 11 (2015), 113060.

[4] Matthew Amy, Dmitri Maslov, and Michele Mosca. 2014. Polynomial-time T-depth optimization of Cliford+T circuits via matroid

partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (2014), 1476ś1489.

[5] Pablo Andres-Martinez and Chris Heunen. 2019. Automated distribution of quantum circuits via hypergraph partitioning. Physical

Review A 100, 3 (2019), 032308.

[6] Miriam Backens. 2014. The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of Physics 16, 9 (2014), 093021.

[7] CJ Ballance, TP Harty, NM Linke, and DM Lucas. 2014. High-idelity two-qubit quantum logic gates using trapped calcium-43 ions.

arXiv preprint arXiv:1406.5473 (2014).

[8] Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather. 2013.

Eicient distributed quantum computing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 2153

(2013), 20120686.

[9] Kyle EC Booth, Minh Do, J Christopher Beck, Eleanor Riefel, Davide Venturelli, and Jeremy Frank. 2018. Comparing and integrating

constraint programming and temporal planning for quantum circuit compilation. In 28th international conference on automated planning

and scheduling.

[10] Adi Botea, Akihiro Kishimoto, and Radu Marinescu. 2018. On the complexity of quantum circuit compilation. In Eleventh annual

symposium on combinatorial search.

[11] Lukas Burgholzer, Sarah Schneider, and Robert Wille. 2022. Limiting the Search Space in Optimal Quantum Circuit Mapping. In 2022

27th Asia and South Paciic Design Automation Conference (ASP-DAC). IEEE, 466ś471.

[12] Angela Sara Cacciapuoti, Marcello Calei, Francesco Tafuri, Francesco Saverio Cataliotti, Stefano Gherardini, and Giuseppe Bianchi.

2019. Quantum internet: networking challenges in distributed quantum computing. IEEE Network 34, 1 (2019), 137ś143.

[13] Angela Sara Cacciapuoti, Marcello Calei, Rodney Van Meter, and Lajos Hanzo. 2020. When entanglement meets classical communica-

tions: Quantum teleportation for the quantum internet. IEEE Transactions on Communications 68, 6 (2020), 3808ś3833.

ACM Trans. Quantum Comput.

26 • D. Cuomo et al.

[14] Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. 2021. Completeness of Graphical Languages for Mixed State

Quantum Mechanics. ACM Transactions on Quantum Computing 2, 4 (2021), 1ś28.

[15] Davide Castelvecchi. 2018. The quantum internet has arrived (and it hasn’t). Nature 554, 7690 (2018), 289ś293.

[16] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. 2007. Approximation algorithms for the unsplittable low

problem. Algorithmica 47, 1 (2007), 53ś78.

[17] Kaushik Chakraborty, David Elkouss, Bruno Rijsman, and Stephanie Wehner. 2020. Entanglement distribution in a quantum network: A

multicommodity low-based approach. IEEE Transactions on Quantum Engineering 1 (2020), 1ś21.

[18] Chandra Chekuri, Sanjeev Khanna, and Bruce Shepherd. 2004. The all-or-nothing multicommodity low problem. In Proceedings of the

36th annual ACM symposium on theory of computing. 156ś165.

[19] Chandra Chekuri, Sanjeev Khanna, and Bruce Shepherd. 2006. An O(
√
�) approximation and integrality gap for disjoint paths and

unsplittable low. Theory of computing 2, 1 (2006), 137ś146.

[20] Dae-Sik Choi and In-Chan Choi. 2006. On the efectiveness of the linear programming relaxation of the 0-1 multi-commodity minimum

cost network low problem. In International Computing and Combinatorics Conference. Springer, 517ś526.

[21] Claudio Cicconetti, Marco Conti, and Andrea Passarella. 2021. Request Scheduling in Quantum Networks. IEEE Transactions on Quantum

Engineering 2 (2021), 2ś17.

[22] Daniele Cuomo, Marcello Calei, and Angela Sara Cacciapuoti. 2020. Towards a distributed quantum computing ecosystem. IET

Quantum Communication 1, 1 (2020), 3ś8.

[23] Davood Dadkhah, Mariam Zomorodi, and Seyed Ebrahim Hosseini. 2021. A New Approach for Optimization of Distributed Quantum

Circuits. International Journal of Theoretical Physics 60, 9 (2021), 3271ś3285.

[24] Omid Daei, Keivan Navi, and Mariam Zomorodi. 2021. Improving the Teleportation Cost in Distributed Quantum Circuits Based on

Commuting of Gates. International Journal of Theoretical Physics 60, 9 (2021), 3494ś3513.

[25] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. 2020. Optimized Quantum Circuit Partitioning. International Journal of

Theoretical Physics 59, 12 (2020), 3804ś3820.

[26] Zohreh Davarzani, Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, and Mostafa Nouri-baygi. 2020. A dynamic programming

approach for distributing quantum circuits by bipartite graphs. Quantum Information Processing 19, 10 (2020), 1ś18.

[27] Jeroen Dehaene and Bart De Moor. 2003. Cliford group, stabilizer states, and linear and quadratic operations over GF (2). Physical

Review A 68, 4 (2003), 042318.

[28] Ross Duncan. 2012. A graphical approach to measurement-based quantum computing. arXiv preprint arXiv:1203.6242 (2012).

[29] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. 2020. Graph-theoretic Simpliication of Quantum Circuits

with the ZX-calculus. Quantum 4 (2020), 279.

[30] Wolfgang Dür, Raphael Lamprecht, and Stefan Heusler. 2017. Towards a quantum internet. European Journal of Physics 38, 4 (2017),

043001.

[31] Andrew Eddins, Mario Motta, Tanvi P Gujarati, Sergey Bravyi, Antonio Mezzacapo, Charles Hadield, and Sarah Sheldon. 2022. Doubling

the size of quantum simulators by entanglement forging. PRX Quantum 3, 1 (2022), 010309.

[32] Shimon Even, Alon Itai, and Adi Shamir. 1975. On the complexity of time table and multi-commodity low problems. In 16th Annual

Symposium on Foundations of Computer Science. IEEE, 184ś193.

[33] Li Fei. 2017. Multicommodity Flows and Disjoint Paths Problem. https://cs.gmu.edu/~lifei/teaching/cs684spring17/lec8.pdf.

[34] Davide Ferrari and Michele Amoretti. 2021. Noise-Adaptive Quantum Compilation Strategies Evaluated with Application-Motivated

Benchmarks. arXiv preprint arXiv:2108.11874 (2021).

[35] Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti, and Marcello Calei. 2021. Compiler Design for Distributed Quantum

Computing. IEEE Transactions on Quantum Engineering 2 (2021), 1ś20.

[36] Lisa Fleischer and Martin Skutella. 2002. The quickest multicommodity low problem. In International Conference on Integer Programming

and Combinatorial Optimization. Springer, 36ś53.

[37] Lester R Ford Jr and D.R. Fulkerson. 1958. A suggested computation for Maximal Multi-Commodity Network Flows. Management

Science 5, 1 (1958), 97.

[38] Lester R Ford Jr and Delbert Ray Fulkerson. 1958. Constructing maximal dynamic lows from static lows. Operations research 6, 3 (1958),

419ś433.

[39] Ranjani G Sundaram, Himanshu Gupta, and CR Ramakrishnan. 2021. Eicient Distribution of Quantum Circuits. In 35th International

Symposium on Distributed Computing. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[40] Jay Gambetta. 2022. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing.

[41] Alysson Gold, JP Paquette, Anna Stockklauser, Matthew J Reagor, M Sohaib Alam, Andrew Bestwick, Nicolas Didier, Ani Nersisyan,

Feyza Oruc, Armin Razavi, et al. 2021. Entanglement across separate silicon dies in a modular superconducting qubit device. npj

Quantum Information 7, 1 (2021), 1ś10.

[42] Daniel Gottesman. 1998. Theory of fault-tolerant quantum computation. Physical Review A 57, 1 (1998), 127.

ACM Trans. Quantum Comput.

https://cs.gmu.edu/~lifei/teaching/cs684spring17/lec8.pdf

Optimized compiler for distributed quantum computing • 27

[43] TP Harty, DTC Allcock, CJ Ballance, L Guidoni, HA Janacek, NM Linke, DN Stacey, and DM Lucas. 2014. High-idelity preparation,

gates, memory, and readout of a trapped-ion quantum bit. Physical review letters 113, 22 (2014), 220501.

[44] Luke E Heyfron and Earl T Campbell. 2018. An eicient quantum compiler that reduces T count. Quantum Science and Technology 4, 1

(2018), 015004.

[45] Stefan Hillmich, Alwin Zulehner, and Robert Wille. 2021. Exploiting quantum teleportation in quantum circuit mapping. In 2021 26th

Asia and South Paciic Design Automation Conference (ASP-DAC). IEEE, 792ś797.

[46] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and Andrew W Cross. 2019. Quantum circuit compilers using gate

commutation rules. In Proceedings of the 24th Asia and South Paciic Design Automation Conference. 191ś196.

[47] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. 2018. A complete axiomatisation of the ZX-calculus for Cliford+T quantum

mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 559ś568.

[48] Norbert Kalb, Andreas A Reiserer, Peter C Humphreys, Jacob JW Bakermans, Sten J Kamerling, Naomi H Nickerson, Simon C Benjamin,

Daniel J Twitchen, Matthew Markham, and Ronald Hanson. 2017. Entanglement distillation between solid-state quantum network

nodes. Science 356, 6341 (2017), 928ś932.

[49] Peter J Karalekas, Nikolas A Tezak, Eric C Peterson, Colm A Ryan, Marcus P da Silva, and Robert S Smith. 2020. A quantum-classical

cloud platform optimized for variational hybrid algorithms. Quantum Science and Technology 5, 2 (2020), 024003.

[50] David Kielpinski, Chris Monroe, and David J Wineland. 2002. Architecture for a large-scale ion-trap quantum computer. Nature 417,

6890 (2002), 709ś711.

[51] H Jef Kimble. 2008. The quantum internet. Nature 453, 7198 (2008), 1023ś1030.

[52] Aleks Kissinger and John van de Wetering. 2019. Reducing T-count with the ZX-calculus. arXiv preprint arXiv:1903.10477 (2019).

[53] Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated Diagrammatic Reasoning. In Proceedings 16th

International Conference on Quantum Physics and Logic, Vol. 318. Open Publishing Association, 229ś241.

[54] Aleksei Yur’evich Kitaev. 1997. Quantum computations: algorithms and error correction. Uspekhi Matematicheskikh Nauk 52, 6 (1997),

53ś112.

[55] D Kleitman, A Martin-Löf, B Rothschild, and A Whinston. 1970. A matching theorem for graphs. Journal of Combinatorial Theory 8, 1

(1970), 104ś114.

[56] Daniel J Kleitman. 1971. An algorithm for certain multi-commodity low problems. Networks 1, 1 (1971), 75ś90.

[57] Petr Kolman and Christian Scheideler. 2002. Improved bounds for the unsplittable low problem. In SODA, Vol. 2. 184ś193.

[58] Bernhard Korte and Jens Vygen. 2006. Multicommodity Flows and Edge-Disjoint Paths. In Combinatorial Optimization: Theory and

Algorithms. Springer.

[59] Wojciech Kozlowski, Stephanie Wehner, Rodney Van Meter, Bruno Rijsman, Angela Sara Cacciapuoti, and Marcello Calei. 2021.

Architectural Principles for a Quantum Internet. Internet-Draft draft-irtf-qirg-principles-03. Internet Engineering Task Force. Work in

Progress.

[60] Stefan Krastanov, Hamza Raniwala, Jefrey Holzgrafe, Kurt Jacobs, Marko Lončar, Matthew J Reagor, and Dirk R Englund. 2021. Optically

Heralded Entanglement of Superconducting Systems in Quantum Networks. Physical Review Letters 127, 4 (2021), 040503.

[61] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the 24th

International Conference on Architectural Support for Programming Languages and Operating Systems. 1001ś1014.

[62] Ying Li. 2015. A magic state’s idelity can be superior to the operations that created it. New Journal of Physics 17, 2 (2015), 023037.

[63] Maokai Lin and Patrick Jaillet. 2014. On the quickest low problem in dynamic networks ś A parametric min-cost low approach. In

Proceedings of the 26th annual ACM-SIAM symposium on discrete algorithms. SIAM, 1343ś1356.

[64] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A Landsman, Kenneth Wright, and

Christopher Monroe. 2017. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of

Sciences 114, 13 (2017), 3305ś3310.

[65] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing with lattice surgery. Quantum 3 (2019), 128.

[66] Yehan Liu, Zlatko Minev, Thomas G McConkey, and Jay Gambetta. 2022. Design of interacting superconducting quantum circuits with

quasi-lumped models. In American Physical Society (March Meeting).

[67] Liam Madden and Andrea Simonetto. 2022. Best approximate quantum compiling problems. ACM Transactions on Quantum Computing

3, 2 (2022), 1ś29.

[68] Marco Maronese, Lorenzo Moro, Lorenzo Rocutto, and Enrico Prati. 2022. Quantum compiling. In Quantum Computing Environments.

Springer, 39ś74.

[69] Maren Martens. 2009. A simple greedy algorithm for the k-disjoint low problem. In International Conference on Theory and Applications

of Models of Computation. Springer, 291ś300.

[70] Dmitri Maslov, Sean M Falconer, and Michele Mosca. 2008. Quantum circuit placement. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27, 4 (2008), 752ś763.

[71] Dmitri Maslov and Martin Roetteler. 2018. Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations.

IEEE Transactions on Information Theory 64, 7 (2018), 4729ś4738.

ACM Trans. Quantum Comput.

28 • D. Cuomo et al.

[72] MATLAB. 2021. R2021b. The MathWorks Inc., Natick, Massachusetts.

[73] C Monroe, R Raussendorf, A Ruthven, KR Brown, P Maunz, L-M Duan, and J Kim. 2014. Large-scale modular quantum-computer

architecture with atomic memory and photonic interconnects. Physical Review A 89, 2 (2014), 022317.

[74] Lorenzo Moro, Matteo GA Paris, Marcello Restelli, and Enrico Prati. 2021. Quantum Compiling by Deep Reinforcement Learning. Nature

Communications Physics 4, 178 (2021).

[75] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.

[76] Eesa Nikahd, Naser Mohammadzadeh, Mehdi Sedighi, and Morteza Saheb Zamani. 2021. Automated window-based partitioning of

quantum circuits. Physica Scripta 96, 3 (2021), 035102.

[77] Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund, and Saikat Guha. 2019. Routing

entanglement in the quantum internet. npj Quantum Information 5, 1 (2019), 1ś9.

[78] Stefano Pirandola and Samuel L Braunstein. 2016. Physics: Unite to build a quantum Internet. Nature News 532, 7598 (2016), 169.

[79] Julian Rabbie, Kaushik Chakraborty, Guus Avis, and Stephanie Wehner. 2022. Designing quantum networks using preexisting infrastruc-

ture. npj Quantum Information 8, 1 (2022), 1ś12.

[80] Mohammad Beheshti Roui, Mariam Zomorodi, Masoomeh Sarvelayati, Moloud Abdar, Hamid Noori, Paweł Pławiak, Ryszard

Tadeusiewicz, Xujuan Zhou, Abbas Khosravi, Saeid Nahavandi, et al. 2021. A novel approach based on genetic algorithm to speed up the

discovery of classiication rules on GPUs. Knowledge-Based Systems 231 (2021), 107419.

[81] Moein Sarvaghad-Moghaddam and Mariam Zomorodi. 2021. A general protocol for distributed quantum gates. Quantum Information

Processing 20, 8 (2021), 1ś14.

[82] Peter Selinger. 2013. Quantum circuits of T-depth one. Physical Review A 87, 4 (2013), 042302.

[83] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintão Pereira. 2018. Qubit allocation.

In Proceedings of the 2018 International Symposium on Code Generation and Optimization. 113ś125.

[84] Aravind Srinivasan. 1997. Improved approximations for edge-disjoint paths, unsplittable low, and related routing problems. In

Proceedings 38th Annual Symposium on Foundations of Computer Science. IEEE, 416ś425.

[85] Anand Srivastav and Peter Stangier. 2000. On complexity, representation and approximation of integral multicommodity lows. Discrete

Applied Mathematics 99, 1-3 (2000), 183ś208.

[86] LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota, TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, and CJ Ballance. 2020.

High-rate, high-idelity entanglement of qubits across an elementary quantum network. Physical review letters 124, 11 (2020), 110501.

[87] John van de Wetering. 2020. ZX-calculus for the working quantum computer scientist. arXiv preprint arXiv:2012.13966 (2020).

[88] Rodney Van Meter and Simon J Devitt. 2016. The path to scalable distributed quantum computing. Computer 49, 9 (2016), 31ś42.

[89] Pengfei Wang, Chun-Yang Luan, Mu Qiao, Mark Um, Junhua Zhang, Ye Wang, Xiao Yuan, Mile Gu, Jingning Zhang, and Kihwan Kim.

2021. Single ion qubit with estimated coherence time exceeding one hour. Nature communications 12, 1 (2021), 1ś8.

[90] Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet: A vision for the road ahead. Science 362, 6412 (2018).

[91] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum circuits to IBM QX architectures using the minimal

number of SWAP and H operations. In 2019 56th ACM/IEEE Design Automation Conference. IEEE, 1ś6.

[92] Mithuna Yoganathan, Richard Jozsa, and Sergii Strelchuk. 2019. Quantum advantage of unitary Cliford circuits with magic state inputs.

Proceedings of the Royal Society A 475, 2225 (2019), 20180427.

[93] Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang, and Dong-Ling Deng. 2020. Topological quantum compiling with reinforcement learning.

Physical Review Letters 125, 17 (2020), 170501.

[94] Changchun Zhong, Zhixin Wang, Changling Zou, Mengzhen Zhang, Xu Han, Wei Fu, Mingrui Xu, S Shankar, Michel H Devoret, Hong X

Tang, et al. 2020. Proposal for heralded generation and detection of entangled microwaveśoptical-photon pairs. Physical review letters

124, 1 (2020), 010511.

[95] Xinlan Zhou, Debbie W Leung, and Isaac L Chuang. 2000. Methodology for quantum logic gate construction. Physical Review A 62, 5

(2000), 052316.

[96] Mariam Zomorodi-Moghadam, Zohreh Davarzani, Ismail Ghodsollahee, et al. 2021. Connectivity matrix model of quantum circuits and

its application to distributed quantum circuit optimization. Quantum Information Processing 20 (2021).

[97] Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, and Monireh Houshmand. 2018. Optimizing teleportation cost in distributed

quantum circuits. International Journal of Theoretical Physics 57, 3 (2018), 848ś861.

[98] Alwin Zulehner and Robert Wille. 2019. Compiling �� (4) quantum circuits to IBM QX architectures. In Proceedings of the 24th Asia and

South Paciic Design Automation Conference. 185ś190.

ACM Trans. Quantum Comput.

	Abstract
	1 Introduction
	1.1 Contribution

	2 Distributed quantum computing essentials
	2.1 The entanglement link
	2.2 Mathematical description

	3 Operators
	3.1 Computation operators
	3.2 Universal set
	3.3 The entanglement swap

	4 Distributed quantum circuit compilation problem
	4.1 Objective function
	4.2 Modeling the time domain
	4.3 Modeling the distributed architecture
	4.4 Single layer formulation
	4.5 Any layer formulation

	5 Enhancing parallelism
	5.1 Characterization
	5.2 A recursive predicate for the quasi-parallelism relation
	5.3 The role of the Clifford group in distributed quantum computing
	5.4 Circuit normal forms for the Clifford group and implications on the post-processing

	6 Implementation techniques
	6.1 Time-expansion
	6.2 Transformation to direct graph
	6.3 Compilation through approximation

	7 Evaluation
	7.1 Set-up
	7.2 Results

	8 Conclusion
	A Entanglement swap generalization
	References

