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Abstract—The quantum switch has been witnessing growing
attention in the last years due to its advantage in several
quantum technologies applications. In particular, it has been
proven that the quantum switch can significantly improve the
communication rates beyond the limits of conventional quantum
Shannon theory. In this paper, we theoretically prove that the
quantum switch can be interpreted as a particular instance of the
Environment-assisted quantum communication paradigm. The
developed analysis is crucial to better understand the limitations
of the quantum switch. Furthermore, the analysis is key to shed
the light on control strategies within the Environment-assisted
communication paradigm.

Index Terms—Quantum communication, Quantum switch,
Environment-assisted communication.

I. INTRODUCTION

An important non-trivial approach for quantum commu-
nication protocols is based on quantum feedback control
[1]. This approach relies on monitoring the environment, by
measuring it after interaction with the considered quantum
system, and accordingly it performs some corrections on the
state of the information carrier, to retrieve it or completely
restore it, by enhancing the communication rates. This is
known as Environment-Assisted (EnA) quantum communica-
tion paradigm. Extensive work [2]–[7] has been done in this
direction, both for discrete and continuous variable quantum
systems, determining the optimal capacity of a given channel
linking a sender (Alice) and a receiver (Bob).

Another important approach that has been witnessing grow-
ing attention in the last few years, is the one exploting the
quantum switch [8]–[16]. Such a quantum switch is described
mathematically by a supermap, which takes two (or more)
channels and places them in a superposition of causal orders
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[17]. The information carrier in this setup propagates through
the channels in an unusual quantum configuration, that differs
from the known classical configurations where usually the
channels are placed sequentially or in parallel. This is depicted
in Fig. 1. This new configuration has been proved to provide
advantages in many quantum applications such as quantum
metrology [18], quantum computing [19] and quantum com-
munication [15], [16], [20]. In particular with reference to the
communication realm, it has been proved that the quantum
switch can significantly improve the communication rates
beyond the limits of conventional quantum Shannon theory.
The advantage of the quantum switch is due to the genuinely
quantum coherence between different operations, which does
not exist in the classical realm.

In this paper, we analyze the quantum switch from a
different perspective. Specifically, we theoretically prove that
the quantum switch can be interpreted as a particular instance
of the EnA quantum communication paradigm. To the best of
our knowledge this is the first work addressing this issue.

The developed analysis is crucial to better understand the
limitations of the quantum switch. Furthermore, the analysis
is key to shed the light on control strategies within the EnA
communication paradigm.

The paper is structured as follows. In Sec. II, we provide
some preliminaries, needed for the developed analysis. In
Sec. III we prove that the quantum switch can be seen as
a particular instance of the Environment-assisted quantum
communication paradigm. Finally in Sec. IV, we conclude the
paper.

II. PRELIMINARIES

In this section, we provide the preliminaries needed for the
developed analysis.
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Fig. 1. (A) Classical configuration of channels N1(·) and N2(·) placed
sequentially. (B) Classical configuration of the channels placed in parallel.
(C) A quantum configuration realized by the quantum switch, where the
information traverses the two channels in a coherent superposition of different
orders.

A. Quantum channels

A quantum channel N (·) can be described mathematically
by a completely positive trace preserving map (CPTP) from the
set of the input states belonging to the the input Hilbert space
HA to the set of the output states over the output Hilbert space
HB . Specifically it is described by the Kraus decomposition
as [21]:

N (ρ) =
∑
i

NiρN
†
i (1)

where {Ni} are known as Kraus operators, satisfying the
equality

∑
iN

†
i Ni = I.

The quantum channel can also be described by its Stine-
spring dilation by some isometry V satisfying [22]

N (ρ) = TrE(V ρV ) (2)

where V is a map from HA to HB ⊗HE , where E is called
the environment. Such an isometry can be constructed from
the Kraus decomposition of the channel as

V =
∑
i

Ni ⊗ |i〉E (3)

where {|i〉}E forms an orthogonal basis for the environment
E.

B. The quantum switch

Mathematically, the quantum switch is described by a
supermap taking two channels N1(·) and N2(·) as inputs, and
outputs a channel in a superposition of orders of the original
ones. Its action on quantum states is defined by the Kraus
operators [8], [17]:

NQS
ij = N1

i N
2
j ⊗ |0〉〈0|+N2

jN
1
i ⊗ |1〉〈1| (4)

where {N1
i } and {N2

i }, are the Kraus operators of the
considered channels N1(·) and N2(·). The causal order of
the communication channels is controlled by a quantum
degree of freedom, represented by a control qubit ω. Ac-
cording to the quantum switch supermap, the output state
NQS(N1,N2, ω)(ρ) is given by:

NQS(N1,N2, ω)(ρ) =
∑
ij

NQS
ij (ρ⊗ ω)

(
NQS

ij

)†
, (5)

where ρ is the input informational quantum state.

C. Environment-Assistance

In EnA communication protocols, it is assumed that the
sender (Alice) and the receiver (Bob) have no access to the
environment. Nevertheless, a third party (Charlie) who has
access to it, can perform measurements {Πx}, and com-
municate the obtained classical information x to Bob, who
accordingly performs a correcting operation {Rx} to recover
the information sent by Alice. This constitutes a one way
LOCC (Local Operation and Classical Communication) from
Charlie to Bob and is described by the map:

LC→B =
∑
x

Πx ⊗Rx (6)

where {Πx}x is a set of CP maps, i.e., quantum instrument,
performed by Charlie on the state of the environment, such
that

∑
x Πx = I, and {Rx}x is a set of CPTP maps performed

by Bob according to the received measurement outcome ”x”.
This approach is depicted in Fig. 2.

According to the EnA paradigm, the output state
NEnA(N )(ρ) is given by

NEnA(N )(ρ) = (LC→B ◦ V )(ρ), (7)

where V is the isometric extension of the channel N (·).

III. FROM THE ENVIRONMENT-ASSISTANCE PARADIGM
TO THE QUANTUM SWITCH

As mentioned in the previous section, in an EnA protocol
it is assumed that the environment is controlled by a third
party, Charlie, who is able to measure it in some bases and
to communicate the outcomes to Bob. In turn, Bob tries
to retrieve the information encoded in the quantum system
by performing quantum maps conditioned on the received
classical information from Charlie.

In order to show that the quantum switch can be seen
as a special type of an environment-assisted communication
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Fig. 2. A scheme depicting an environment-assisted communication protocol.
Alice (A) wants to communicate quantum information to Bob (B) through
a channel described by its isometric extension V . Charlie (C) who has
access to the output environment of the communication channels performs
a measurement Πx on a given basis and communicated the classical outcome
”x” to Bob, who performs a quantum operation Rx accordingly, to recover
the state of the system.
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Fig. 3. A scheme depicting the channel Λ(·) in the text. The channel Λ(·) is
a probabilistic mixture of different orders of the channels N1(·) and N2(·),
with weighting probabilities p1 and p2

protocol, let us consider the convex combination of different
orders of the channels N1(·) and N2(·), depicted in Fig. 3:

Λ(ρ) = p1N1 ◦ N2(ρ) + p2N2 ◦ N1(ρ), (8)

where N1 ◦N2(·) and N2 ◦N1(·) denote the concatenation of
the two channels in different orders, and

∑
i=1,2 pi = 1. This

constitutes a classical configuration of channel placements.
This channel along with precise measurement strategies on
its environment will lead to a complete equivalence to the
quantum switch map in (5).

By accounting for (8) it is possible to show the following
result:

Proposition 1: There exists a measurement on a sub-
space E′ of the Environment such that the EnA output state
NEnA(N1,N2)(ρ) is given by:

NEnA(N1,N2)(ρ) =

1

2

∑
ij

{N1
i , N

2
j }ρ{N1

i , N
2
j }† ⊗ |+〉〈+|E′

+
1

2

∑
ij

[N1
i , N

2
j ]ρ[N1

i , N
2
j ]† ⊗ |−〉〈−|E′ , (9)

where {N1
i } and {N2

i } are the Kraus operators of the
considered channels N1(·) and N2(·) .

Proof 1: See Appendix A
The following corollary could be derived from this proposition.

Corollary 1: The EnA output state NEnA(N1,N2)(ρ)
given in Proposition 1 coincides with the output state
NQS(N1,N2, ω)(ρ) of the quantum switch supermap for the
considered quantum channels N1(·) and N2(·), when the
control qubit is initiated in the state ω = 1√

2
(|0〉+ |1〉).

Proof 2: see Appendix B
From Corollary 1, it results that in the case of the quantum

switch, the role of the residual environment E′ is played by
the control qubit, leading to different effective channels, which
result in the same form (9) if the control qubit is set to be
in the maximally coherent state in the computational basis.
Changing the initial state of the control qubit the switch is
equivalent to different measurements on particular subspaces
of the environment.

From the developed analysis, one can argue that the con-
sidered EnA-protocol substitutes the superposition of orders,
characterizing the quantum switch supermap, with a classical
combination of the orders (convex combination), combined
with a full knowledge of the considered channels. On the
contrary, the quantum switch supermap does not rely on a full
knowledge of the considered channels but on the capabilities
of the quantum particles to propagate according to quantum
trajectories.

As a numerical example illustrating Proposition 1 and
Corollary 1, let us consider the entanglement breaking channel
described, analytically, by

NXY (ρ) =
1

2
(XρX + Y ρY ), (10)

with Kraus operators { 1√
2
X, 1√

2
Y }. It was proved in [13] that

the output of the quantum switch in presence of entanglement
breaking channels is given by:

NQS(NXY ,NXY , ω) =
1

2
ρ⊗ |+〉〈+|ω +

1

2
ZρZ ⊗ |−〉〈−|ω

(11)
leading to perfect correction of the entanglement-breaking
channel after the measurement outcomes on the coherent basis
of the control qubit. The same correction can be performed
by exploiting the considered EnA protocol in Proposition 1.
To better see this, replacing the Kraus operators of the
entanglement-breaking channel in (9) leaves us with the output
state:

NEnA(NXY ,NXY ) =
1

2
ρ⊗ |+〉〈+|E′ +

1

2
ZρZ ⊗ |−〉〈−|E′ .

(12)
If Charlie measures the outcome ”+”, it communicates such
outcome to Bob who accordingly performs an identity channel
on the system. If instead, Charlie measures outcome ”−”, it
communicates this to Bob, who should perform a unitary given
by the Z Pauli matrix. This results into a complete recovery
of the information state ρ.

A density plot comparing the two maps in the case of the
channel NXY is depicted in Fig. 4 in terms of fidelity between
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the obtained output states. We consider an arbitrary input state
ρ, given in the Bloch representation by

ρ =
I

2
+

1

2
(rxX + ryY + rzZ) (13)

The fidelity is given by [23]

F (ρ, σ) = Tr(
√√

ρσ
√
ρ)2 (14)

The fidelity reaches its maximal value for all the values of
the Bloch coefficients of the state, validating the results of the
theoretical analysis in Corollary 1.

The importance of this approach lies in the fact that it
facilitates to understand why does the switch provide perfect
correction of some channels which are unitarily equivalent to
the entanglement breaking channel given in (10), whereas it
fails to achieve such an advantage for other channels like the
bit flip and the phase flip channels. It can also be used as a
recipe for higher superposition of causal orders in the presence
of many channels, to easily obtain the outcoming states of
higher order quantum switches from simple fixed measurement
strategies on the environment.

IV. CONCLUSION

In this work, we have studied the quantum switch from the
dynamical point of view of channels, as an isometric evolution
of the quantum system together with its environment. We have
shown that, the quantum switch can be thought as a particular
instance of the environment-assisted communication paradigm.
This can be useful, from the quantum communication point of
view, to understand the reasons for which the quantum switch
corrects perfectly some channels and fails to do so for others.
It might also be of considerable importance for the study of
the capacity achievable via the quantum switch beyond the
single-shot capacity, and in different controlled orders beyond
the two orders.
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APPENDIX A
PROOF OF PROPOSITION 1

To prove Proposition.1, we let a quantum channel Λ′(·) be
given by the convex combination of two channels M1(·) and
M2(·) as is shown in Fig. 5, and given formally by

Λ′(ρ) =
∑
i=1,2

piMi(ρ) (15)

A possible Stinespring dilation of Λ′(·) can be given by the
isometry V

V =
∑
k

M1
k ⊗ |Γ1

k〉E +
∑
k′

M2
k′ ⊗ |Γ2

k′〉E (16)

where {|Γ1,2
k,k′〉E} are two independent degrees of freedom of

the environment of the channel Λ, satisfying

〈Γi
k|Γi′

k′〉E = δii′δkk′

It is easy to understand that each channel (noise) emerges dy-
namically from some coupling with the corresponding degrees
of freedom of the environment that is given by the direct sum

E = ⊕iΓ
i. The action of the isometry V on a given state of

a quantum system is

V ρV † =
∑
k

M1
kρM

1†
k ⊗ |Γ

1
k〉〈Γ1

k|E

+
∑
k′

M2
k′ρM

2†
k′ ⊗ |Γ2

k′〉〈Γ2
k′ |E

+
∑
kk′

M1
kρM

2†
k′ ⊗ |Γ1

k〉〈Γ2
k′ |E

+
∑
kk′

M2
k′ρM

1†
k ⊗ |Γ

2
k′〉〈Γ1

k|E (17)

We can see that tracing out the degrees of freedom of the
environment leaves us with the channel Λ′(·).

The isometry describing the channel is unique up to an
isometry on the environment, that is, for an appropriate
isometry V given by (16), and a given isometry U on the
environment defined by

U |Γ1
k〉E = |Γ1

k〉E ⊗ |0〉E′

U |Γ2
k′〉E = |Γ2

k′〉E ⊗ |1〉E′ (18)

the map

V ′ =
∑
k

M1
k⊗|Γ1

k〉E⊗|0〉E′ +
∑
k′

M2
k′⊗|Γ2

k′〉E⊗|1〉E′ (19)

is also an isometry of the channel Λ′. The isometry U on the
environment is well defined and always exists. Let’s assume
that there is an agent who can control coherently the output
environment of the channel Λ, in such a way he can measure
E in the coherent basis given by

∑
kk′ ck|Γ1

k〉E + ck′ |Γ2
k′〉E ,

where ck,k′ = ±c, with c an appropriate overall normalisation
factor. The post-selected evolutions on each measurement
outcome, are equivalent up to an isometry on E (up to minus
signs), therefore the effective post-selected evolution of the
system and the residual environment E′ should be

NEnA(M1,M2) =
∑
k

M1
k ⊗|0〉E′ +

∑
k′

M2
k′ ⊗|1〉E′ (20)

The action of this postselected map is given by

NEnA(M1,M2)(ρ) =

1

2

∑
kk′

(M1
k +M2

k′)ρ(M1
k +M2

k′)† ⊗ |+〉〈+|E′

+
1

2

∑
kk′

(M1
k −M2

k′)ρ(M1
k −M2

k′)† ⊗ |−〉〈−|E′ (21)

If a helper, Charlie for instance, controlls the residual environ-
ment, he can perform a coherent measurement in the coherent
basis { 1√

2
(|0〉±|1〉)}, upon which, the post-selected evolutions

on the system are given by

ρ→
∑
kk′

(M1
k +M2

k′)ρ(M1
k +M2

k′)†

ρ→
∑
kk′

(M1
k −M2

k′)ρ(M1
k −M2

k′)† (22)
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Let the channels M1(·) and M2(·) refer to the concatenation
of two subsequent channels N1(·) and N2(·) in different
orders, as is shown in Fig. 3 that is

M1(·) = N2 ◦ N1(·)
M2(·) = N1 ◦ N2(·) (23)

Replacing their explicit Kraus operators in Eq.(21), we get
exactly the same form of Proposition.1

NEnA(N1,N2)(ρ) =

1

2

∑
ij

{N1
i , N

2
j }ρ{N1

i , N
2
j }† ⊗ |+〉〈+|E′

+
1

2

∑
ij

[N1
i , N

2
j ]ρ[N1

i , N
2
j ]† ⊗ |−〉〈−|E′ (24)

APPENDIX B
PROOF OF COROLLARY 1

By accounting for (4), and by assuming ω = 1√
2
(|0〉+ |1〉),

with some algebraic manipulations, it is possible to re-write
eq. (5) as:

NQS(N1,N2, ω) =

1

2

∑
ij

{N1
i , N

2
j }ρ{N1

i , N
2
j }† ⊗ |+〉〈+|ω

+
1

2

∑
ij

[N1
i , N

2
j ]ρ[N1

i , N
2
j ]† ⊗ |−〉〈−|ω (25)

with the subscript ω refering to the state of the control qubit.
This is equivalent to Eq.(9), by exchanging the state of the
residual environment in the case of the EnA protocol, with
the control qubit in the quantum switch.
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