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ABSTRACT Entanglement represents ‘‘the’’ key resource for several applications of quantum informa-
tion processing, ranging from quantum communications to distributed quantum computing. Despite its
fundamental importance, deterministic generation of maximally entangled qubits represents an on-going
open problem. Here, we design a novel generation scheme exhibiting two attractive features, namely,
i) deterministically generating different classes – particularly, GHZ-like, W-like and graph states – of
genuinely multipartite entangled states, ii) not requiring any direct interaction between the qubits. Indeed, the
only necessary condition is the possibility of coherently controlling – according to the indefinite causal order
framework – the causal order among the unitaries acting on the qubits. Through the paper, we analyze and
derive the conditions on the unitaries for deterministic generation, and we provide examples for unitaries
practical implementation. We conclude the paper by discussing the scalability of the proposed scheme
to higher dimensional genuine multipartite entanglement (GME) states and by introducing some possible
applications of the proposal for quantum networks.

INDEX TERMS Entanglement generation, indefinite causal ordering, graph states, genuine multipartite
entanglement, quantum internet.

I. INTRODUCTION
One of the most fundamental concepts within the quantum
realm is the notion of quantum entanglement. It is well
established that entangled states – even in the simplest form
of two-qubit entangled states – are essential to enable the
marvels of quantum information processing [1], [2], [3], [4],
[5], [6] within the Quantum Internet. And, as a matter of
fact, both the theory of entanglement and its experimental
generation have been a topic of intensive research.

Indeed, several applications of quantum information pro-
cessing – ranging from quantum communications through
distributed quantum key distribution to distributed quan-
tum computing – rely on the generation and the remote
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distribution of entangled flying qubits [7], [8], [9], [10],
with a wide consensus within the research community on
light being the ideal substrate for quantum information car-
riers. Nevertheless, given the limitations of current schemes
for photonic entanglement generation, the research is still
ongoing. In fact, some of the available schemes are proba-
bilistic [11], [12], [13], relying as instance on some form of
parametric down conversion. Other schemes require a tight
matter-flying interaction [14], [15]. Clearly, when it comes to
multi-partite entanglement, both the approaches hardly scale
to large systems. This has driven a recent interest in designing
all-photonic deterministic sources of entanglement [16], [17].

In this work, we contribute toward this research direction
by resorting to a recently proposed framework for quantum
information processing, namely, the superposition of causal
orders [18], [19], [20], [21], [22], [23], [24], [25], [26],
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[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. Specifically, we design an entanglement generation
scheme where a superposition of causal orders between local
unitaries, acting on qubits in pure product states, determin-
istically generates genuinely multipartite entangled (GME)
states. Interestingly, the proposed scheme efficiently scales
to higher dimensional GME states, due to the simplicity
and the modularity of the protocol architecture. Furthermore,
the scheme does not require any direct interaction among
the input qubits or between the input qubit and the qubit
governing the quantum control of the causal order between
the unitaries. Indeed, the only requirement is the possibil-
ity of coherently controlling the causal order among the
unitaries.

It is worthwhile to note that – by exploiting the super-map
formalism – the design of the proposed scheme has been
conducted without any specific assumption on the particulars
of the underlying qubit technology. However, when it comes
to practical implementation, we can recognize that the pro-
posed scheme for deterministic entanglement generation is
achievable in near-term quantum networks, as coherent con-
trol of causal orders is affordable by current technology level
and it has been successfully implemented for flying qubits
[28], [29], [36]. From a resource theoretic point of view [21],
[39], we are assuming that single qubit unitaries are given
as a free resource. Furthermore, we are assuming coherent
control of unitaries – with CNOT representing the pivotal
example – not as a free resource, but rather as unavailable
since it may be very difficult to implement with the available
quantum technology, as it happens with photonic platforms.
In this light, through the paper, we discuss some possible
applications of the proposal to quantum networks. Specifi-
cally, we recognize that the coherent control of the causal
order of collective single qubit unitaries – either locally on
particular nodes or globally on some given cluster of nodes –
constitutes a novel paradigm to generate and distribute multi-
partite entangled states among remote nodes and in a scalable
way. Importantly, wewill show that our scheme can be used to
establish resourceful states for measurement based quantum
computation [40] remotely within the quantum network.

II. BACKGROUND AND NOTATION
With a series of recent works, researchers have shown that
quantum placement of quantum channels – namely, placing
quantum channels in a coherent superposition of alternative
configurations – can provide significant advantages for a
number of problems, ranging from quantum computation
[27], [41], [42] and quantum information processing [43],
[44] through non-local games [45] to communication com-
plexity [46], [47], [48], [49], [50], [51], [52]. Instances of
this quantum placement range from superposition of alterna-
tive quantum channels, traversed by the information carrier,
to superposition of alternative causal orders between the
quantum channels. With reference to the superposition of
causal orders between quantum channels, the placement is

realized through an higher-order map known as quantum
switch [27].

Mathematically, the quantum switch is described by a
supermap S taking two channels U (·) and Ũ (·) as inputs, and
giving as output a channel resulting from the combination of
U (·) and Ũ (·) in a superposition of causal orders, controlled
by a quantum degree of freedom |ϕc⟩. Its action on quantum
states is defined by the Kraus operators [18], [27] Sij =
UiŨj⊗ |0⟩⟨0|c+ ŨjUi⊗ |1⟩⟨1|c, where {Ui} and {Ũj} denote
the Kraus operators of the primitive channels U (·) and Ũ (·),
and {|0⟩c , |1⟩c} denotes the orthogonal states of the control
system. Accordingly, the resultant channel implemented by
the quantum switch is given by:

S(U , Ũ )(ρ ⊗ ρc) =
∑
ij

Sij(ρ ⊗ ρc)S
†
ij, (1)

with ρ and ρc denoting the density matrix of the input and
the control, respectively. Indeed, many channels, beyond the
two channels scenario, can be fed into the quantum switch
supermap as we will see in the next sections [18], [21].

In the following, giving that we aim at generating max-
imally entangled states, we focus on pure input states and
unitary channels, therefore it is needless to go through the
density matrix formalism of Eq. 1. Furthermore, we set the
control |ϕc⟩ to |+⟩, i.e., we place the primitive channels in an
even superposition of causal orders, accordingly to [20], [21],
[22], [27], [36], and [48]. Accordingly, the quantum switch
supermap in (1) exhibits a single unitary Kraus operator S =
UŨ ⊗ |0⟩⟨0|c + ŨU ⊗ |1⟩⟨1|c, with U and Ũ denoting the
(single) Kraus operators of the primitive channels, leading to
the overall operation on the input state |ϕ⟩ given by1:

S(|ϕ⟩ ⊗ |ϕc⟩) =
1
2

(
UŨ + ŨU

)
|ϕ⟩ ⊗ |+⟩c

+
1
2

(
UŨ − ŨU

)
|ϕ⟩ ⊗ |−⟩c (2)

After performing a measurement on the control qubit in the
coherent basis, the following outcome states – highlighting
the superposition of causal orders between the unitaries –
emerge:

|ψ±⟩ =
1
√
L±

(
UŨ ± ŨU

)
|ϕ⟩ =

1
√
L±

(−→
U ±
←−
U

)
|ϕ⟩ (3)

where L± is a normalization constant, depending on both
the unitaries U , Ũ and on the postselected state. In (3),

we introduced
−→
U ,
←−
U as a shorthand notation, with

−→
U
△
=

UŨ denoting the order where Ũ is applied before U and
←−
U
△
= ŨU denoting the alternative order. This is schematized

in Fig. 1 where we omitted – as extensively done whenever
possible through the rest of the paper – the normalization
constant for the sake of simplicity. Indeed, from Fig. 1b, it is
intuitive to grasp that, once the control qubit is measured, the
output is a coherent superposition of two contributions, where

1The notation has been simplifiedwith respect to the one in (1) to highlight
the focus on pure input states and unitary channels.
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FIGURE 1. Quantum switch implementing an even superposition of the two alternative causal orders between two unitaries U and Ũ operating on the
input state |ϕ⟩.

in each contribution the unitaries process the input according
to one of the two alternative causal orders, namely, either

←−
U

or
−→
U .
It is worth mentioning that Eq. (3) can be easily simulated

by a quantum circuit with fixed causal order, as long as a
coherent control among unitaries acting on different qubits
– as instance, a CNOT gate – is available [45], [53]. Nev-
ertheless, controlled gates are not easy to realize in photonic
platforms, in contrast to superconducting technologies among
other ones. Accordingly, the aim of our manuscript is to rather
do the opposite of assuming the availability of CNOT gates.
In fact, it aims at investigating whether indefinite causal order
of local unitaries can generate some sort of entanglement.

III. RESULTS
A. BELL STATES GENERATION
Let us now consider two local unitary operators V (2)

= U0⊗

U1 and Ṽ (2)
= Ũ0 ⊗ Ũ1 and a 2-qubit input system in the

separable state |ϕ0⟩ ⊗ |ϕ1⟩.
Being the input in a product state and given the assumption

of local unitaries, the resulting outcome, for any causal order
between the local unitaries such as V (2)Ṽ (2) or Ṽ (2)V (2), will
be a product state as well. Furthermore, no entanglement can
be distilled from such a state in the asymptotic limit with two-
way local operations and classical communication (LOCC)
assistance [54].

Conversely, if we process the separable input through an
even superposition of causal orders between the two uni-
taries – similarly to the scheme shown in Fig. 1a – by
measuring the control in the coherent basis, the following
output emerges:

|ψ
(2)
± ⟩ =

1
√
L±

(
V (2)Ṽ (2)

± Ṽ (2)V (2))
|ϕ0ϕ1⟩ (4)

From (4) we note that, once the control qubit is measured, the
output is a coherent superposition of two contributions, where

in each contribution the unitaries process the separable input
according to one of the two alternative – i.e., eitherV (2)Ṽ (2) or
Ṽ (2)V (2) – causal orders. This can be schematized in a similar
way to Figure 1b with a bipartite separable initial state and
bipartite local unitaries.

Now, the main question arises: is there any entanglement
within the quantum state |ψ (2)

± ⟩ emerging out of the controlled
superposition of causal orders? The answer to this question is
definitely yes. Indeed, the output state is maximally entangled
if and only if the following condition on the local unitaries
{Ui , Ũi}i=0,1 holds (see Theorem 1 in Appendix. B):

⟨ϕ0|
←−
U0

†−→U0 |ϕ0⟩ = 0 ∧ ⟨ϕ1|
←−
U1

†−→U1 |ϕ1⟩ = 0 (5)

with ∧ denoting the Boolean operator AND, and with←−· ,−→·
being the introduced shorthand notations for the alternative

causal orders among the unitaries, i.e.,
−→
Ui
△
= UiŨi and

←−
Ui
△
=

ŨiUi for i ∈ {0, 1}.
Stemming from this result, we derive a lighter condition

assuring the separability of the output state (see Proposition 1
in Appendix. B). Specifically, if there exists at least one i ∈
{0, 1} so that ⟨ϕi|

←−
Ui†
−→
Ui |ϕi⟩ = 1, the output state in (4) is

separable.
Clearly, one could wonder which are the requirements

in terms of unitaries and input state so that condition (5)
can be satisfied. Namely, how ‘‘easily’’ entanglement can be
obtained out of a superposition of causal orders.

To address this crucial aspect, we note that the sufficient
and necessary condition in (5) consists of two separate con-
straints, with the former constraint operating only on U0, Ũ0
and |ϕ0⟩ whereas the latter one depends only on U1, Ũ1 and
|ϕ1⟩. This separability feature allows us to design unitaries
U0 and Ũ0 independently fromU1, Ũ1. Furthermore, the con-
dition in (5) can be satisfied with practical unitaries, as shown
in the following.

VOLUME 11, 2023 73865
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FIGURE 2. 3D plot for the concurrence of the output states |ψ
(2)
±

⟩ given in (4) as function of: i) the y-rotation parameter λ controlling the unitaries Ũ0
and Ũ1, and ii) the superposition parameter α controlling the input state |ϕ0ϕ1⟩, assumed real. Unitaries U0 and U1 both set to a Pauli-z gate. Maximally
entangled states exhibit unitary concurrence.

To this aim, let us assume as input state |ϕ0ϕ1⟩ = |ηη⟩, with
|η⟩ =

√
α |0⟩ +

√
1− α |1⟩ being an arbitrary superposition

of basis states. Furthermore, let us assume both U0 and
U1 representing the popular Pauli-z gate, i.e., Ui = σz.
Finally, let us assume both Ũ0 and Ũ1 being the y-rotation
gate Ry(2λ) = e−iσyλ, with σy denoting the Pauli-y gate.
Let’s now consider the two possible events, namely, control
qubit measured either as |+⟩ or as |−⟩. In the former case,
the condition for entangled output state given in (4) translates
to λ ̸= 0, π2 . In fact, only when the unitary parameter
λ is either equal to 0 or π

2 , the output state generated by
the quantum switch is separable. Furthermore, the condition
for maximally entangled output given in (5) is translated to
λ = π

4 . This is shown in Figure 2a by plotting the concur-
rence (see Appendix. A), which is an entanglement measure
that can fully characterize the entanglement content of the
output state |ψ (2)

+ ⟩ as a function of the parameters, i.e., the
concurrence is maximum and equals one when the state is
maximally entangled, and it decreases monotonically with
the decrease of the entanglement content of the state until
reaching its vanishing point.. As regards to the latter case –
namely, whenever the control qubit is measured as |−⟩ – the
output is either separable or maximally entangled. And the
state is separable only if λ is either equal to 0 or π2 , whereas
it is maximally entangled for any λ in (0, π2 ), as shown in
Figure 2b. It is worth-noting that another important feature
that the concurrence in Figure 2b is highlighting, is the fact
that even if the single qubit unitaries fails to meet the opti-
mality requirement for deterministic Bell pairs generation,
i.e., λ = π

4 , probabilistic Bell pair generation is always
possible within the range 0 < λ < π

2 .
We have shown that the scheme can be implemented

through a coherent control of straightforward unitaries: the
Pauli-z gate and the y-rotation gate Ry(π2 ). It is important to
note that an equivalent example has been given independently

[55], [56], by studying different foundational contexts of the
indefinite causal order framework.

B. GHZ-LIKE STATES GENERATION
Similarly to the bipartite case, we consider an even superposi-
tion of the two alternative causal orders between two 3-qubit
local unitaries V (3)

= U0⊗U1⊗U2 and Ṽ (3)
= Ũ0⊗Ũ1⊗Ũ2

acting on an initially pure product tripartite state |ϕ0ϕ1ϕ2⟩,
similarly to the scheme shown in Figure 1a. By measuring the
control qubit in the coherent basis and according to eq. (3),
we obtain the following output state:

|ψ
(3)
± ⟩ =

1
√
L±

(
V (3)Ṽ (3)

± Ṽ (3)V (3))
|ϕ0ϕ1ϕ2⟩ (6)

Indeed, as in the bipartite case, the output is a superposition of
two different input processing, with the two processes differ-
ing for the causal order between the unitaries. This similarity
maps as well into the necessary and sufficient condition for
the output in (6) being a GHZ-like state, which is given by
(see Theorem 2 in Appendix. C-A):

⟨ϕi|
←−
Ui†
−→
Ui |ϕi⟩ = 0 ∀ i = 0, 1, 2 (7)

and←−· ,−→· being the usual shorthand notations for the alter-
native causal orders among the unitaries. Hence, the output
in (6) is a legitimate GHZ-like state if and only if

←−
Ui |ϕi⟩ is

orthonormal to
−→
Ui |ϕi⟩. Indeed, there exists a lighter condition

(see Proposition 2 in Appendix. C-A assuring the separability
of the output state (6), given by:

∃ i ∈ {0, 1, 2} :
←−
Ui |ϕi⟩ =

−→
Ui |ϕi⟩ (8)

It is crucial to note that this straightforwardly extends to
n-partite GHZ-like states by considering two n-qubit local
unitaries V (n) and Ṽ (n) acting on a n-partite separable state. In
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FIGURE 3. 3D plot for the GME concurrence of the output state |ψ
(3)
±

⟩ given in (6) as function of: i) the y-rotation parameter λ controlling the unitaries
{Ũi }, and ii) the superposition parameter α controlling the input state |ϕ0ϕ1ϕ2⟩, assumed real. Unitaries {Ui } set to Pauli-z gate. GHZ-like states exhibit
unitary GME concurrence.

such a case, the output is a legitimate GHZ-like state as long
as (see Remark following Theorem 2 in Appendix. C-A):

⟨ϕi|
←−
Ui†
−→
Ui |ϕi⟩ = 0 ∀ i = 0, . . . , n− 1 (9)

Clearly, the higher is the dimension of the GHZ-like state to
be generated, the higher is the number of constraints in (9)
that must be simultaneously satisfied. However, this is not an
issue, given that the set of constraints are separable, namely,
the design of the i-th unitaries Ui, Ũi depends only from the
i-th input |ϕi⟩ and it is completely independent from the other
inputs as well as the other unitaries. Indeed, as long as all the
separable input qubits are all set to the same state |η⟩ (which
is reasonable), the condition for deterministically generating
GHZ states2 reduces to a single constraint regardless of the
dimension of the state to be generated. Namely, the unitaries
acting on the different qubits can be the same. This key feature
makes the protocol highly scalable.

This pivotal separability feature of the necessary and suf-
ficient conditions derived in (9) (as well as in (7)) allows us
to easily address the issue of designing unitaries and input
state for generating a GHZ-like state. Indeed, similarly to the
bipartite case, by assuming |ηηη⟩ as input state, with |η⟩ =
√
α |0⟩ +

√
1− α |1⟩, as well as Ui = σz and Ũi = Ry(2λ)

for any i, we have that the condition for GHZ-like output state
given in (7) translates to λ = π

4 . This is shown in Figure 3
by plotting the GME concurrence (see Appendix. A), which
can characterize the entanglement content of the tri-partite
output state |ψ (3)

± ⟩ as a function of the parameters.3 We can
appreciate that the GME concurrence vanishes for λ = 0, and
reaches its maximum when λ = π

4 . Importantly, we notice
that in both ranges of the parameter λ given by λ ∈]0, π4 [ and

2It worthwhile to note that this consideration holds also for Bell andW-like
states generation.

3The GME concurrence characterizes entanglement in tri-partite states. It
is an entanglement monotone, it has a maximum of one in GHZ-like states
and a maximum of 0.9 for W-like states, and it decreases with the decrease
of entanglement content in the corresponding state.

λ ∈]π4 ,
π
2 [ we have a non-vanishing probability of generating

a GHZ-state with a valuable entanglement content.

C. W-LIKE STATES GENERATION
To generate W-like states, a coherent control of two alter-
native evolutions – as previously done for both Bell and
GHZ-like states – is not sufficient due to distinguishing pecu-
liarities of W-like states.

Basically, the (minimum, for a proper basis choice) number
of superpositions grows linearly with the number of parties
in the state, in contrast to GHZ states where the (minimum)
number of superpositions is two regardless of parties. This is
expected, as the W-like states are from a nonequivalent class
with respect to GHZ-like states, also by means of stochastic
LOCC. For this, to generate W-like states from a coherent
superposition of causal orders we need to adjust our coherent
control strategy.

Let us consider the scheme shown in Figure 4, where the
i-th individual qubit of an initially pure product 3-partite state
|ϕ0ϕ1ϕ2⟩ evolves through a superposition of two alternative
causal orders between local unitaries Ui and Ũi controlled by
a degree of freedom |ϕc⟩ so that the quantum switch supermap
exhibits the unitary Kraus operator S = Ũ0U0 ⊗ U1Ũ1 ⊗

U2Ũ2⊗|0⟩⟨0|c+U0Ũ0⊗ Ũ1U1⊗U2Ũ2⊗|1⟩⟨1|c+U0Ũ0⊗

U1Ũ1 ⊗ Ũ2U2 ⊗ |2⟩⟨2|c. Accordingly, the overall unitary
operation on the input state is given by:
S(|ϕ0ϕ1ϕ2⟩ ⊗ |ϕc⟩)

=
1
√
3
[
(
Ũ0 ⊗ U1 ⊗ U2 · U0 ⊗ Ũ1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ2⟩ ⊗ |0⟩c

+

(
U0 ⊗ Ũ1 ⊗ U2 · Ũ0 ⊗ U1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ1⟩ ⊗ |1⟩c

+

(
U0 ⊗ U1 ⊗ Ũ2 · Ũ0 ⊗ Ũ1 ⊗ U2

)
|ϕ1ϕ1ϕ2⟩ ⊗ |2⟩c]

(10)

Upon measuring the control degrees of freedom according
to an appropriate measurement setup (see Remark following
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FIGURE 4. W-like state through a superposition of two alternative causal orders between two 1-qubit local unitaries Ui and Ũi operating on the
i -th qubit of a separable input state |ϕ0⟩ ⊗ |ϕ1⟩ ⊗ |ϕ2⟩.

FIGURE 5. 3D plot for the GME concurrence of the output state |ψ
(3)
±±

⟩ given in (11) as function of: i) the y-rotation parameter λ controlling the
unitaries {Ũi }, and ii) the superposition parameter α controlling the input state |ϕ0ϕ1ϕ2⟩, assumed real. Unitaries {Ui } set to Pauli-z gate. W-like
states exhibit GME concurrence equal to 0.9.

Theorem 3 in Appendix. D), the following state emerges:

|ψ
(3)
±±⟩ =

1
√
L±±

(
←−
U0 ⊗

−→
U1 ⊗

−→
U2

±
−→
U0 ⊗

←−
U1 ⊗

−→
U2 ±

−→
U0 ⊗

−→
U1 ⊗

←−
U2

)
|ϕ0ϕ1ϕ2⟩

(11)

with L±± being the appropriate normalization constant, with
←−
· ,−→· being the usual shorthand notations for the alternative
causal orders among the unitaries, and with ± being equal
to+ or− depending on themeasurement output of the control
qubit. Regardless of the particular expression of |ψ (3)

±±⟩, the
state is a superposition of three different input processing,
differing for the causal order between the unitaries acting on

each qubit. And, regardless of the particular expression, the
necessary and sufficient condition for the output in (11) being
a W-like state is (see Theorem 3 in Appendix. D):

⟨ϕi|
←−
Ui†
−→
Ui |ϕi⟩ = 0 ∀ i = 0, 1, 2 (12)

Furthermore, similarly to the GHZ-like state, there exists a
lighter condition for the separability of the output state in
(11), given by (see Proposition 3 in Appendix. D)

∃i ∈ {0, 1, 2} :
←−
Ui |ϕ⟩ =

−→
Ui |ϕ⟩ (13)

It is worthwhile to note that the scheme in Figure 4
straightforwardly extends to n-partite W-like states by simply
extending condition (12) to any i = 0, . . . , n − 1, by rea-
soning as highlighted in the Remark following Theorem. 2
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in Appendix. C-A. Furthermore, the same considerations
in terms of unitaries design made for the GHZ-like states
continue to hold. This is confirmed by assuming – as done
for the GHZ-like states – as input state |ηηη⟩, with |η⟩ =
√
α |0⟩+

√
1− α |1⟩, as well asUi = σz and Ũi = Ry(2λ) for

any i. With this setting, the necessary and sufficient condition
for the output being a W-like state translates to λ = π

4 .
This can be clearly seen from the visualization of the GME
concurrence of the states in (11) given in Fig. 5, where the
GME concurrence for all states reaches the maximum at the
critical value of λ = π

4 , whereas it vanishes for λ = 0, π2
when the output state becomes separable. It is clear from
the plots that W-like states generation is different from the
previous cases of GHZ-like and Bell states, in the sense that
the GME concurrence, namely, the entanglement content,
of the output states falls down vary rapidly when moving
away from the optimality point λ = π

4 .

D. GRAPH STATES GENERATION
An important class of resourceful states in many quantum
information protocols are graph states. Their generation and
distribution in quantum networks would be considered as
a fundamental network function. Indeed, graph states will
increase the power of communication networks in terms of
security and performance. In particular, many communica-
tion bottlenecks can be outpassed – i.e., on demand extraction
of multiple EPR pairs – and measurement-based quantum
computing can be achieved.

Unlike the cases analyzed in the previous sections, dif-
ferent considerations might be taken into account for the
generation of graph states. More into details, depending on
different descriptions – full or partial – of the considered
graph state, one can have different superposition of local
causal orders strategies. Indeed, if one has full knowledge
of the targeted multipartite entangled state to be generated,
a strategy following our previous discussions of GHZ- and
W-like states, can be established. Although, this strategy
is not optimal in general in terms of the control overhead,
whenever the state description is not given in its opti-
mal (canonical) form. Differently, if one is limited to the
knowledge of the graph state in terms of its adjacency matrix,
careful tailing of the underlying graph topology is necessary.

Hence, the question that we may ask is: can we design an
indefinite causal strategy of local unitaries based on the graph
topology underlying a targeted graph state? If the adjacency
matrix of the targeted graph state is known, we can design a
corresponding indefinite causal order of local unitaries acting
on single qubit unitaries, which generates a state equivalent
to the targeted graph state up to a local unitary. Specifically,
let G = (V ,E) be the graph corresponding to the targeted
graph state |G⟩. The indefinite causal order of local unitaries
strategy generating such a state is given by:

S = ⊗(i,j)∈E

[
V (i,j)Ṽ (i,j)

⊗ |0⟩⟨0|c + Ṽ (i,j)V (i,j)
⊗ |1⟩⟨1|c

]
(14)

with V (i,j)
= Ui ⊗ Uj and Ṽ (i,j)

= Ũi ⊗ Ũj denoting local
unitary operators acting on qubits i and j, and satisfying the
constraints given in (5).

It is easy to note that the dimension dc of the control
degree of freedom is given by dc = 2|E| with |E| denoting
the cardinality of the set of edges E . Differently from the
previous cases, the single qubit unitaries overhead needed
in this process is equal to 4|E|. Namely, by optimizing the
number of edges over a the local Clifford equivalence class
of the target state – i.e, by finding the graph with least
number of edges – we can find an effective sub-optimal
control strategy, knowing that the optimal strategy is the
one corresponding to the finest Schmidt rank of the state.
Indeed, the state generated by the strategy given in (14) is
equivalent to the graph state |G⟩ described by the graph
G = (V ,E) up to a local unitary, i.e, it belongs to the LU
equivalence class of the targeted graph state as detailed in
Appendix. E.
Importantly, the previous indefinite causal order strategy

in (14) exploits a composition of many quantum switches in
parallel, making it a general operational strategy for all graph
states. Nevertheless, one can design non-operational strate-
gies, for specific classes of graph states, which are optimal in
terms of the dimension of the control degree of freedom. For
instance, one can focus on the class of graph states for which
the bipartite maximal entanglement rank r∗ = maxk rk is
equal to the Schmidt rank of their finest cut [57]. Indeed, this
class encompasses bi-colorable cluster states, constituting
resourceful states for one-way quantum computing. Namely,
if an indefinite causal order strategy of single qubit unitaries

S =
∑2r

∗

j=1⊗
n
i=1U

(j)
i ⊗ |j⟩⟨j|c is claimed to be generating

a target graph state |G⟩ =
∑2r

∗

j=1⊗
n
i=1U

(j)
i |0⟩i, with entan-

glement ranks {rk}
p
k=1 on different bipartitions, conditions

verifying its validity can be designed. These conditions are
necessary for the certification of a given S and they are given
by as in (15), shown at the bottom of the next page, where

|G⟩ =
∑2r

′

h=1 |φ⟩h |ψ⟩h is the schmidt decomposition of the
state |G⟩ in the bipartition {A,B}, and the parameters r ′, l, k
should satisfy l + k + r ′ = r∗ with r∗ being the maximum
entanglement rank of the state, as is detailed in Appendix. E.
One can easily verify that the conditions given in (9) for
GHZ states can be directly derived from the conditions in
(15), as GHZ states are a particular instance of graph states.
Conversely, the conditions for the generation of W states
cannot be derived from the conditions given in (15) as W
states do not have a graph representation being a class of
Dicke states.

IV. DISCUSSION
In the previous section, we have shown that the genera-
tion of GME states belonging to different non-equivalent
classes of states is deterministically achievable through a
proper superposition of causal order between local unitaries.
We discuss now the possible applications of the proposed
scheme under two complementary perspectives, namely,
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entanglement generation and entanglement distribution, for
the Quantum Internet [1], [3], [4].

A. LOCAL ENTANGLEMENT GENERATION
We first consider the case where the entanglement generation
is local rather than distributed. Namely, the local unitaries
Ui, Ũi as well as the controlling degree of freedom |ϕc⟩ are
all located within the same quantum node, which locally
implements the proper supermap – such as (6) illustrated
in Figure 1a with many-partite local single qubit unitaries.
or (10) illustrated in Figure 4a – for generating GME states.
In this scenario, the entangled states are thus deter-

ministically generated in a (some) network node – acting
as entanglement generator – and they are subsequently
distributed within the network through proper quantum com-
munication links.

Hence, the network node acting as entanglement generator
implements a coherent control strategy on the local unitaries
processing some initial product state – with both the unitaries
and the input state considered as free resources – for generat-
ing the GME states. Clearly, as discussed within the paper, the
coherent control strategy depends on the desired GME output
state. Although it is still technologically unclear whether a
node can dynamically change the coherent control strategy
for generating entangled states belonging to different non-
equivalent classes, the proposed scheme for deterministic
entanglement generation is achievable in near-term quantum
networks, as the coherent control of orders of operations is
affordable by current technology level and it has been suc-
cessfully implemented for single-qubit channels [19], [28],
[29], [36], [37].

Regardless the control strategy being dynamic or fixed
a-priori, three are the crucial properties of the proposed
scheme for deterministic GME state generation. i) First, the
individual input qubits don’t interact each others or with the
control in any way. Indeed, they only traverse their respec-
tive local unitaries U,Ũi in a coherent superposition of two
alternative causal orders. ii) Second, the (sufficient and nec-
essary) condition for deterministically generating GHZ- and
W-like states consists of separable constraints. Namely, the
design of the i-th unitaries is completely independent from
the other unitaries as well as any input qubit different from
|ϕi⟩. iii) Third, as long as all the separable input qubits are
all set to the same state |η⟩ (which is reasonable), the condi-
tion for deterministically generating GHZ- and W-like states
reduces to a single constraint regardless of the dimension of

the state to be generated. Namely, the unitaries acting on
the different qubits can be the same. These crucial features
make the protocol highly scalable. These features make the
proposed framework an ideal candidate for the design of
multi-qubit gates on photonic platforms. Interestingly, this
design would be achieved through single-qubit-only gates.
In contrast, building multi-qubit photonic gates is usually a
hard task to achieve as photons barely interact with each other.
This stands as a major obstacle for the design of all-photonic
quantum computing.

B. DISTRIBUTED ENTANGLEMENT GENERATION
When it comes to multipartite entanglement distribution in a
quantum network, several issues arises. First, as the number
of parties to be entangled increases, the number of required
multi-qubit gates increases as well. This not only implies
severe error propagation effects, but it also hardly scales –
as instance, in W-like states – with the number of parties.
Furthermore, regardless of the number of parties, whenever
the size of the quantum network grows to moderate- or large-
scale [58], direct entanglement distribution is not feasible
anymore due to photon noise and losses. In this context,
quantum repeaters [4], [59], [60] are commonly accepted
as the strategy for increasing the entanglement distribution
range. Unfortunately, regardless of the repeater particulars
that roughly depend on the repeater generation [61], quan-
tum repeaters require some sort of Bell state measurements
for Bell pairs distribution or other projective measurements
for multipartite entangled states, which are usually hard to
implement and very noisy in practice.

Interestingly, our scheme for entanglement generation
could provide an alternative strategy for overcoming such
issues in distributing multi-partite entanglement, without the
need of multi-qubits gates or any other interaction among the
qubits. Let us better clarify this with an example. Specifi-
cally, as shown in Figure 6a, multiple quantum switches –
referred to as edge entanglers – are geographically distributed
through the network, so that each switch is closely located
(from the entanglement distribution perspective) to a cer-
tain group of nodes. Each edge entangler implements the
proper supermap -states - such as (6) illustrated in Figure 1a
for GHZ-like when many-parties local qubit unitaries are
considered- for generating GME states. But each edge entan-
gler uses, as control degree of freedom, the output of another
quantum switch – which acts as entangler coordinator –
in order to collectively generate the desired multi-partite

⟨ψ |h |ψ⟩h′ =

[ 2l∑
j′h′

[
⊗i∈A ⟨0|i U

(j′h′ )†
i

]][ 2l∑
jh

[
⊗i∈A U

(jh)
i |0⟩i

]]
= δhh

′

⟨φ|h |φ⟩h′ =

[ 2k∑
j′h′

[
⊗i∈B ⟨0|i U

(j′h′ )†
i

]][ 2k∑
jh

[
⊗i∈B U

(jh)
i |0⟩i

]]
= δhh

′

(15)
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FIGURE 6. Distributed multi-partite generation.

entangled state. Clearly, each edge entangler generates the
required k-partite GHZ-like state according to the number
k of nodes that are physically linked to it. As instance,
in Figure 6a, e1, e2 and e3 generate a tri-partite entangled state
by relying on the coherent control of the causal order between
unitaries V 3 and Ṽ 3 as illustrated in Figure 6b, where the
coherent control is provided as a 3-GHZ state generated by
the entanglement coordinator e0. The overall state distributed
through the network is a valid |GHZ ⟩9 state. It is worthwhile
to note that the proposed scheme can scale to large networks
through a proper hierarchical multi-tier architecture, where
additional intermediate entanglers are deployed between the
coordinator and the edge entanglers.

It is important to note that, in the above example, we have
only discussed the distributed multipartite entanglement gen-
eration when the coherent control of remotely located edge
entanglers is obtained through a proper multi-partite entan-
gled state, shared between the edge entanglers. However,
the scheme in Figure 6a requires only the availability of
a coherent control of the unitaries among remotely located
edge entanglers, regardless of the specific implementation of
such a control. And such a coherent control is considered the
genuine quantum feature of a quantum network [62], where
a genuine quantum coherence is an intrinsic property of the
communication network.

It is worth noting that by adopting an indefinite causal
order generating GHZ -like states in each entangler would
only establish a GHZ -like state between the client nodes.
Conversely, an interesting feature of our scheme is the ability
to distributing graph states in the network. In fact, these states
constitutes the fundamental resource for measurement-based
quantum computing, and their distribution in future quantum
networks plays an essential role.

In the following, let us provide an example of graph state
distribution, by following a scheme similar to Figure 6a.

Specifically, the entangler coordinator e0 generates a Bell
state, which is distributed to the two intermediate entanglers
e1 and e2 as control degree of freedom. We refer to these
controls as ϕ1c and ϕ

2
c , respectively. Indeed, an additional con-

trol degree of freedom is required at one of the intermediate
entangles – says e2– and it is referred to as ϕ2c̃ and initialized
in |+⟩. By denoting with ϕi0 and ϕi1 the two inputs to the
i-th intermediate entangler, the overall global state is given
by:

1
√
2
|0⟩ϕ1c |0⟩ϕ2c |00⟩ϕ10 ,ϕ11

|+⟩ϕ2c̃
|00⟩ϕ20 ,ϕ21

+
1
√
2
|1⟩ϕ1c |1⟩ϕ2c |00⟩ϕ10 ,ϕ11

|+⟩ϕ2c̃
|00⟩ϕ20 ,ϕ21

(16)

The intermediate entangler e1 uses its share ϕ1c as a control
of indefinite causal order process to establish entanglement
between the inputs ϕ10 and ϕ11 . Similarly, the intermediate
entangler e2 uses its share ϕ2c along with ϕ2c̃ as a two-qubit
control degree of freedom of the appropriate indefinite causal
order process, to create entanglement between the inputs ϕ20
and ϕ21 . After separable measurement on the controls in the
appropriate maximally coherent bases, the following graph
state is obtained:
1
2
|00⟩ϕ10 ,ϕ11

(|00⟩± |11⟩)ϕ20 ,ϕ21
+
1
2
|11⟩ϕ10 ,ϕ11

(|10⟩ ± |01⟩)ϕ20 ,ϕ21
(17)

Upon the sequential distribution of ϕ10 , ϕ
1
1 and ϕ20 , ϕ

2
1 to

the corresponding clients n1,n2,n3 and n4 respectively, the
above emerging graph state is deterministically distributed.
We should note that the same strategy establishes linear and
ring four-partite cluster states.

The proposed protocol for distributed entanglement gener-
ation opens a new research direction based on the advantage
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FIGURE 7. Scheme for entanglement mapping between different
quantum degrees of freedom. By implementing a coherent control of
three different quantum switches through a proper 3-partite GME state
and by measuring each control qubit in the coherent basis, an initially
pure product tripartite state |ϕ0ϕ1ϕ2⟩ is deterministically transformed
into a 3-partite GME state.

of the indefinite causal order framework for future communi-
cation networks. Besides, the applicability of such a protocol
relies on the ability of distributing pure entangled states which
might be achieved by different multipartite entanglement
distillation protocols [62]. Nevertheless, careful investigation
of the robustness and resilience of the proposed scheme to
noise would have significant importance for the building of
fault tolerant quantum communication networks. These con-
siderations might be treated in different layers of a quantum
protocol stack [2], aiming at harnessing the full quantum
potential of future quantum networks in an efficient way.

C. ENTANGLEMENT MAPPING
Here we consider a scenario where entanglement – rather
then generated – must be mapped between different quan-
tum degrees of freedom. As an example, let us consider
deterministic generation of photonic GME states, which may
benefits from a matter-photonic interface with a quantum
degree of freedom – such as superconducting-circuit based
qubits [14] – where entanglement can be generated easier
than in photonic-circuits. Another example is represented
by matter-flying interfaces per-se, which represent a critical
component for quantum networks [1], [63], [64], [65], where
matter qubits for information processing/storing – based on
heterogeneous technologies ranging from transmons through
quantum dots to ion traps – must be interfaced to flying
qubits – generally implemented with photons – acting as
information carriers.

Regardless of the specific applications for an entangle-
ment mapper, the proposed scheme based on superposition
of causal orders provides an interesting approach toward
deterministic entanglement mapping, worthwhile of further
investigation. As an example, let us consider the scheme
shown in Figure 7. The initially-entangled quantum degree
of freedom, say4 in a GHZ state, is used to implement a
coherent control among different quantum switches. Each
quantum switch implements the superposition of causal

4Clearly, the proposed scheme applies to the deterministic mapping of
W -like states as well.

orders between two unitaries given in (3) and shown in
Figure 1a, by acting on the individual qubit |ϕi⟩ of a second
quantum degree of freedom, initially in a separable state.
As long as the condition for deterministic generation of
GHZ-like state in (7) is satisfied, the GHZ state is deter-
ministically mapped from the control degree of freedom
to the initially separable second degree of freedom, which
becomes maximally entangled. In a nutshell, the scheme har-
nesses the quantum correlation embedded within the control
degree of freedom to generate – through multiple switch
instances – a coherent evolution of the input degree of free-
dom, which eventually exhibits a correlation of the same
nature (i.e., class) of the original entanglement.

It is worthwhile to note that the proposed mapping scheme
does not require any interaction between the input qubits or
between the input qubit and the control qubit, which repre-
sents a key feature whenever the input qubits weakly interact
each others or with the environment, as in the mentioned case
of photonic qubits. We should point that the entanglement
mapping from the control degrees of freedom of quantum
switches placed in parallel to the corresponding target states
has been independently studied in a different framework [56].

V. CONCLUSION
In conclusion, the present paper has explored the tremen-
dous potential of utilizing the framework of supermaps,
specifically the superposition of causal orders of single
qubit unitaries, to achieve deterministic generation of mul-
tipartite entanglement. By investigating the sufficient and
necessary conditions on the unitaries, we have successfully
achieved deterministic generation of various target states,
such as Bell states, GHZ states, W states, and general Graph
states with diverse topologies. One notable observation is
that the conditions for deterministic generation scale per-
fectly for GHZ-like states and W states, which highlights
the robustness and scalability of our approach. In particular,
we have highlighted the significance of the bipartite quan-
tum switch, which can effectively serve as a deterministic
CNOT gate in photonic platforms. It is worth noting that the
deterministic nature of the quantum switch in linear optics
is a well-established fact. Furthermore, we have discussed
several potential applications of our protocol in quantum
networks, ranging from entanglement mapping from mat-
ter qubits to flying qubits to the distribution of multipartite
entanglement. These applications demonstrate the versatility
and broad utility of our approach in various quantum infor-
mation processing tasks. It is important to acknowledge that
future studies should address the impact of noisy hardware
on the proposed approach. While our investigation has laid
a solid foundation for deterministic multipartite entangle-
ment generation, the presence of noise and imperfections
in practical implementations must be considered and con-
fronted in order to fully assess the feasibility and reliability of
our protocol. The presented results contributes significantly
to the understanding and application of supermaps in the
generation of multipartite entanglement. Importantly, they
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provide a valuable framework for future research and pave
the way for the realization of deterministic entanglement
generation in quantum systems, impacting the performance
of both quantum computing and quantum communications
schemes relying on the resource of multipartite entanglement.

APPENDIX A
ENTANGLEMENT MEASURES
Quantum correlations has always been considered as a
resource to perform tasks that are unachievable through
classical resources, or to enhance other ones. Hence, a charac-
terization and quantification of quantum correlations, in par-
ticular entanglement, has been widely studied [54], [66].

For a two-qubit state with densitymatrix ρ, quantum entan-
glement is completely characterized by concurrence [6], [54]
C(ρ)) = max{0, µ1 − µ − µ3 − µ4}, where {µi} denotes
the set eigenvalues – in decreasing order – of the operator
ρρ̃, with ρ̃ = (σy ⊗ σy) ρ (σy ⊗ σy). Concurrence C(·) is
an entanglement monotone metric, with value equal to 1 for
maximally entangled states and value equal to 0 for separable
states.

For tripartite systems, entanglement measures are more
intricate, and are only analytically found for special classes
of states [66], [67], [68]. For genuinely multipartite entan-
gled (GME) states – i.e, states that are not separable
for any bipartition – a known entanglement measure
is the GME concurrence [69], [70], [71] CGME(ρ) =√
2min{1− Tr(ρ21 ), 1− Tr(ρ22 ), 1− Tr(ρ23 )}, with ρi

△
=

Trjk (ρ) (with j, k ̸= i) denoting the reduced density matrix
for the i-th subsystem.

APPENDIX B
BELL STATES GENERATION
A. CONDITIONS FOR ENTANGLEMENT
Theorem 1: The states in (4) are maximally entangled

bipartite states if and only if the conditions in (5) hold.
Proof: The proof follows by reasoning as in

Theorem 2. □
Proposition 1: The states in (4) are bi-separable if and

only if the conditions: ∃ i ∈ {0, 1} :
←−
Ui |ϕi⟩ =

−→
Ui |ϕi⟩ hold.

Proof: The proof follows by reasoning as in
Proposition 2. □

B. CONCURRENCE OF THE GENERATED STATED
Here we detail the example provided to illustrate the results
discussed in II.

We consider the unitaries given as U = U ′ = σ3 and Ũ =
Ũ ′ = exp−iσ2λ. In addition, we consider the initial product
state |ψ⟩ |φ⟩ = |η⟩ |η⟩ where

|η⟩ =
√
α |0⟩ +

√
1− α |1⟩

The conditions for producing separable states in Proposi-
tion 1. are explicitly translated to

⟨η| σ3 exp(+iσ2λ)σ3 exp(−iσ2λ) |η⟩ = ±1

H⇒ cos2 λ− sin2 λ = ±1

H⇒ λ =
π

2
or λ = 0 for λ ∈ [0,

π

2
] (18)

Only at these values of the unitary’s parameter λ both states
generated by the quantum switch are separable according to
Proposition. 1. Similarly, the conditions for maximal entan-
gled states given in Theorem 1 are translated as

⟨η| σ3 exp(−iσ2λ)σ3 exp(−iσ2λ) |η⟩ = 0

H⇒ cos2 λ− sin2 λ = 0

H⇒ λ =
π

4
for λ ∈ [0,

π

2
] (19)

Only when λ = π
4 that both states generated by the switch are

maximally entangled The previous conditions surprisingly
are independent of the parameter α of the state |η⟩ and only
depend on the parameter λ of the unitary Ũ . In order to further
check if these conditions hold, we study the entanglement
content of the emerging states (4) for the chosen unitaries
U and Ũ and the product state|η⟩ |η⟩. These states are given
explicitly by

ψ
(2)
+ =

1
3+ cos(4λ)

[
[(2α − 1) cos(2λ)+ 1] |00⟩

+ [−2
√
(α − 1)α cos(2λ)] |01⟩

+ [−2
√
(α − 1)α cos(2λ)] |10⟩

+ [(1− 2α) cos(2λ)+ 1] |11⟩
]

ψ
(2)
− =

1√
2 sin2 2λ

[
4 cos λ sin λ

√
(1− α)α

(
|00⟩ − |11⟩

)
+ (2α − 1) sin 2λ

(
|01⟩ + |10⟩

)]
The concurrence of the previous states is given respectively

by

C(ψ (2)
+ ) =

1
2

[
3− 4 cos(4λ)+ cos(8λ)

(3+ cos(4λ))2

]

C(ψ (2)
− ) =

 1 if λ ∈ (0,
π

2
)

0 if λ = 0 or λ =
π

2

APPENDIX C
GHZ-LIKE STATES
A. CONDITIONS FOR ENTANGLEMENT
Here we derive in Theorem 2 the necessary and sufficient
condition for generating a 3-partite GHZ-like state through
superposition of causal orders.
Theorem 2: The states in (6) are GHZ-like states if and

only if the condition given in (7) holds.
Proof: Wefirst observe that any tripartite GHZ-like state

|9(3)
⟩ is equivalent to the GHZ state |GHZ⟩ = 1

√
2
(|000⟩ +

|111⟩) through local unitaries [66] – i.e., |GHZ⟩ = (ULU
0 ⊗

ULU
1 ⊗ U

LU
2 ) |9(3)

⟩.
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Case⇐H (sufficient condition). By hypothesis,
←−
Ui |ϕi⟩ =(

−→
Ui |ϕi⟩

)⊥
for any i. Hence, (6) is equivalent to:

|ψ
(3)
± ⟩ =

1
√
L±

−→
U0 |ϕ0⟩

−→
U1 |ϕ1⟩

−→
U2 |ϕ2⟩

±

(
−→
U0 |ϕ0⟩

)⊥ (
−→
U1 |ϕ1⟩

)⊥ (
−→
U2 |ϕ2⟩

)⊥
(20)

By defining local unitaries such that ULU
i
−→
Ui |ϕi⟩ = |0⟩

(hence, ULU
i

(
−→
Ui |ϕi⟩

)⊥
= |1⟩), the thesis follows.

Case H⇒ (necessary condition). By hypothesis, (6) is a
GHZ-like state. We prove the case with a reductio ad absur-
dum by supposing that there exists at least one i, say i = 0,

so that
←−
U0 |ϕ0⟩ ̸=

(
−→
U0 |ϕ0⟩

)⊥
. From GHZ-like state defini-

tion, there exist ULU
1 ,ULU

2 such that |ψ (3)
± ⟩ is LU-equivalent

to the following (by neglecting the normalization factor for
the sake of simplicity):(
I ⊗ ULU

1 ⊗ U
LU
2

)
|ψ

(3)
± ⟩=

−→
U0 |ϕ0⟩ ⊗ |00⟩±

←−
U0 |ϕ0⟩ ⊗ |11⟩

(21)

Then, there must exist another unitaryULU
0 acting on the first

qubit such that (21) is equivalent to the |GHZ ⟩ state, i.e.:(
ULU
0 ⊗ I ⊗ I

) (
−→
U0 |ϕ0⟩ ⊗ |00⟩ ±

←−
U0 |ϕ0⟩ ⊗ |11⟩

)
=

1
√
2
(|000⟩ + |111⟩) (22)

Since unitary matrices preserve orthogonality, from (22),

it follows that
−→
U0 |ϕ0⟩ =

(
←−
U0 |ϕ0⟩

)⊥
, which constitutes a

reductio ad absurdum. Hence, the thesis follow. □
Remark: Clearly, the above result can be straightfor-

wardly extended to n-partite GHZ-like states |ψ (n)
± ⟩ generated

through an even superposition of the two alternative causal
orders between two n-qubit local unitaries V (n)

=
⊗n−1

i=0 Ui
and Ṽ (n)

=
⊗n−1

i=0 Ũi acting on an initially pure product
n-partite state

⊗n−1
i=0 |ϕi⟩ by following the same reasoning

and, in such a case, the necessary and sufficient condition
becomes: ⟨ϕi|

←−
Ui†
−→
Ui |ϕi⟩ = 0 ∀ i = 0, . . . , n− 1.

Proposition 2: The states in (6) are bi-separable if and
only if the condition given in (8) holds.

Proof: In the following, we directly prove the proposi-
tion for the arbitrary states |ψ (n)

± ⟩ generated through an even
superposition of the two alternative causal orders between

two n-qubit local unitaries V (n)
=

⊗n−1
i=0 Ui and Ṽ (n)

=⊗n−1
i=0 Ũi acting on an initially pure product n-partite state⊗n−1
i=0 |ϕi⟩.
Case ⇐H (sufficient condition). It is straightforward to

recognize that, whenever there exists at least an i such that
←−
Ui |ψi⟩ =

−→
Ui |ψi⟩, the states |ψ

(n)
± ⟩ in Eq. 6 are separable.

Case H⇒ (necessary condition). By hypothesis |ψ (n)
± ⟩ are

separable. Hence, there exist a partition so that |ψ (n)
± ⟩ =

|ψA⟩ ⊗ |ψB⟩ with |ψA⟩ being pure state of the first subsys-
tem A. Let us assume, without loss of generality, subsystem A
consisting of the first two qubits of (6). We prove the case
with a reductio ad absurdum by supposing that

←−
Ui |ψi⟩ ̸=

−→
Ui |ψi⟩ for any i = {0, 1, . . . , n − 1}. Since |ψ (n)

± ⟩ are
separable, there exist two local unitaries acting on the first
two qubits5 such that as in (23), shown at the bottom of the
page, with |↑↑⟩ denoting a certain state for subsystem A.
Since unitary matrices preserve inner product, from (B-B) it
results that

←−
U0⊗

←−
U1 |ϕ0ϕ1⟩ = c

−→
U0⊗

−→
U1 |ϕ0ϕ1⟩. But this last

equality requires that
←−
Ui |ψi⟩ =

−→
Ui |ψi⟩ for any i = {0, 1},

which constitutes a reductio ad absurdum. Hence, the thesis
follow. □

B. THE GME CONCURRENCE OF THE GENERATED STATES
we consider the unitaries used previously – U = σ3 and
Ũ = exp−iλσ2 – as well as the initial product state |η⟩ |η⟩ |η⟩
where |η⟩ =

√
α |0⟩ +

√
1− α |1⟩. Quantum switching the

local unitaries U ⊗U ⊗U and Ũ ⊗ Ũ ⊗ Ũ and letting them
act on |η⟩ |η⟩ |η⟩ we get, after measuring the control qubit on
the coherent basis, the emerging states

|ψ
(3)
+ ⟩ =

1
L

(
a |000⟩ + b(|001⟩ + |010⟩ + |100⟩)

+ e(|110⟩ + |101⟩ + |011⟩ + h |111⟩)
)

|ψ
(3)
− ⟩ =

1
L ′

(
a′ |000⟩ + b′(|001⟩ + |010⟩ + |100⟩)

+ e′(|110⟩ + |101⟩ + |011⟩ + h′ |111⟩)
)

(24)

where the parameters a, b, e, h,L and a′, b′, e′, h′,L ′ are
given by

a = −
√
α cos(λ)((4α − 3) cos(2λ)− 2α + 3)

5The same reasoning – as well as the same result – holds by considering
local unitaries acting on the remaining n− 2 qubits.

ULU
0 ⊗ U

LU
1 ⊗ I . . .⊗ I︸ ︷︷ ︸

n−2

 |ψ (n)
± ⟩

= ULU
0
−→
U0 |ϕ0⟩ ⊗ ULU

1
−→
U1 |ϕ1⟩ ⊗

(
−→
U3 ⊗ . . .⊗

−→
U n−1

)
|ϕ3 . . . ϕn−1⟩

± ULU
0
←−
U0 |ϕ0⟩ ⊗ ULU

1
←−
U1 |ϕ1⟩ ⊗

(
←−
U3 ⊗ . . .⊗

←−
U n−1

)
|ϕ3 . . . ϕn−1⟩

= |↑↑⟩ ⊗

(
−→
U3 ⊗ . . .⊗

−→
U n−1

)
|ϕ3 . . . ϕn−1⟩ ± c |↑↑⟩ ⊗

(
←−
U3 ⊗ . . .⊗

←−
U n−1

)
|ϕ3 . . . ϕn−1⟩ (23)
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b =
√
1− α cos(λ)((4α − 1) cos(2λ)− 2α + 1)

e =
√
α cos(λ)((4α − 3) cos(2λ)− 2α + 1)

h = −
√
1− α cos λ((4α − 1) cos(2λ)− 1− 2α)

L =

√
1
2
(3 cos(2λ)+ cos(6λ)+ 4) (25)

a′ = −
√
1− α sin(λ)((4α − 1) cos(2λ)+ 1+ 2α)

b′ =
√
α sin(λ)((4α − 3) cos(2λ)+ 2α − 3)

e′ = −
√
α sin λ((4α − 3) cos(2λ)− 1+ 2α)

h′ =
√
1− α sin λ((4α − 1) cos(2λ)− 1+ 2α)

L ′ =

√
1
2
(4− 3 cos(2λ)− cos(6λ)) (26)

In order to study the biseparability of the state (24),
we need to study the partial trace with respect to different
bipartitions ρ1|23, ρ2|13, ρ3|12 which turn out to be equal for
the states |ψ (3)

± ⟩. The reduced density matrices of these latter
are given by as in 27 and 28, shown at the bottom of the page.

In turn, the GME concurrence for both states is written as

CGME (ρ+) =
8 sin4(λ)(cos(4λ)+ 3)

(−2 cos(2λ)+ cos(4λ)+ 3)2

CGME (ρ−) =
8 cos4(λ)(cos(4λ)+ 3)

(2 cos(2λ)+ cos(4λ)+ 3)2
(29)

APPENDIX D
W-LIKE STATES
A. CONDITIONS FOR ENTANGLEMENT
Theorem 3: The states in (11) are W-like states if and only

if the condition given in (12) holds.
Proof: Wefirst note that any tripartiteW-like state |9(3)

⟩

is equivalent to |W ⟩ = 1
√
3
(|100⟩ + |010⟩ + |001⟩) by local

unitaries -i.e., |W ⟩ =
(
ULU
0 ⊗U

LU
1 ⊗U

LU
2

)
|9(3)
⟩. Similarly

to the proof of Theorem. 2, the proof of the sufficiency of
the condition in (12) is straightforward. In the meanwhile,
the necessity can be proved by reductio ad absurdum as in
Theorem. 2, by supposing that there exists at least one i –
say, without loss of generality, i = 0 – so that

←−
U 0 |ϕ⟩ ̸=(−→

U 0 |ϕ0⟩
)⊥. From the W-like state equivalence, there exists

a local unitary of the form I ⊗ ULU
1 ⊗ U

LU
2 such that(

I ⊗ ULU
1 ⊗ U

LU
2

)
|ψ

(3)
±±⟩

=
←−
U0 |ϕ0⟩ ⊗ |00⟩ ±

−→
U0 |ϕ0⟩ ⊗ |10⟩ ±

−→
U0 |ϕ0⟩ ⊗ |01⟩ (30)

Then, there must exist another unitary ULU
0 acting on the

first qubit such that (30) is equivalent to W state, i.e. as
in (31), shown at the bottom of the page. Since unitary
matrices preserve orthogonality, from (31), it follows that
−→
U0 |ϕ0⟩ =

(
←−
U0 |ϕ0⟩

)⊥
, which constitutes a reductio ad

absurdum. Hence, the thesis follow. □
Remark: Although the deterministic generation of any n-

partite GHZ-like state requires only a qubit degree of freedom
controlling two different evolutions coherently, the deter-
ministic generation of W-like states requires a higher-order
control of the causal orders. Specifically, n local unitaries –
with n being a power of 2 – must be arranged in a particular
way. The rationale for this requirement lays in the necessity
of having a maximally coherent basis of states that serves as
a measurement setup on the controlling degrees of freedom,
allowing the deterministic generation of the superposition
required in the W states on all outputs. This requirement can
only be met in Hilbert spaces of dimension which is a power
of two. In such space, an orthonormal basis of maximally
coherent states exists, and it can be used to coherentely
control the order of the local unitaries. Therefore, generating
n-partite W-like states deterministically, where n = 2d ,
encounters no problem as we can always find a maximally
coherent orthonormal basis achieving this. Instead, a slight
adjustment on the control strategy needs to be handled in
order to achieve the deterministic generation of n-partite W
states when n is not a power of 2. To overcome this issue,
we embed the control degrees of freedom in a larger Hilbert
space of dimension 2d where d = ⌈log2 n⌉. It is important to
note that this requirement is not necessary if only heralded
entanglement generation is desired. In this case, any qudit
state of dimension n can be used to control the order of the
n local unitaries. Otherwise, this condition is not suitable for
the deterministic generation of entangled states.
Proposition 3: The state in (11) is bi-separable if and only

if the condition given in (13) holds.
Proof: The proof follows the similar steps of

Proposition 2. □

B. THE DETERMINISTIC GENERATION OF 3-W STATES
In this section we show how the states in (11) are obtained
from a superposition of causal order. By considering the
Kraus operator of the model to be given by the unitary

S =
(
Ũ0 ⊗ U1 ⊗ U2 · U0 ⊗ Ũ1 ⊗ Ũ2

)
⊗ |1⟩ ⟨1|c

ρreduced+ =
1
L2

(
cos2(λ)(4(α − 1) cos(2λ)+ cos(4λ)+ 3) −4

√
−(α − 1)α cos2(λ) cos(2λ)

−4
√
−(α − 1)α cos2(λ) cos(2λ) cos2(λ)(−4α cos(2λ)+ cos(4λ)+ 3)

)
(27)

ρreduced− =
1
L ′2

(
sin2(λ)(4α cos(2λ)+ cos(4λ)+ 3) −4

√
(α − 1)α sin2(λ) cos(2λ)

−4
√
(α − 1)α sin2(λ) cos(2λ) sin2(λ)(−4(α − 1) cos(2λ)+ cos(4λ)+ 3)

)
(28)

(
ULU
0 ⊗ I ⊗ I

)
←−
U0 |ϕ0⟩ ⊗ |00⟩ ±

−→
U0 |ϕ0⟩ ⊗ |10⟩ ±

−→
U0 |ϕ0⟩ ⊗ |01⟩ =

1
√
3

(
|100⟩ ± |010⟩ ± |001⟩

)
(31)
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+

(
U0 ⊗ Ũ1 ⊗ U2 · Ũ0 ⊗ U1 ⊗ Ũ2

)
⊗ |2⟩ ⟨2|c

+

(
U0 ⊗ U1 ⊗ Ũ2 · Ũ0 ⊗ Ũ1 ⊗ U2

)
⊗ |3⟩ ⟨3|c

(32)

This acts on a joint system-control state
(
|ϕ0ϕ1ϕ2⟩

)
⊗|+

(3)
⟩c

with

|+
(3)
⟩c =

1
√
3

(
|0⟩c + |1⟩c + |2⟩c

)
(33)

The resulting joint evolution is given by

1
√
3

[(
Ũ0 ⊗ U1 ⊗ U2 · U0 ⊗ Ũ1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ2⟩ ⊗ |0⟩c

+

(
U0 ⊗ Ũ1 ⊗ U2 · Ũ0 ⊗ U1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ1⟩ ⊗ |1⟩c

+

(
U0 ⊗ U1 ⊗ Ũ2 · Ũ0 ⊗ Ũ1 ⊗ U2

)
|ϕ1ϕ1ϕ2⟩ ⊗ |3⟩c

]
Because of the issue of the measurement discussed in (Dis-

cussion) an encoding of the control in a higher dimensional
Hilbert space whose dimension is a power of 2 is needed,
in order to find a maximally coherent basis. If we perform
the encoding

|0⟩ → |00⟩

|1⟩ → |01⟩

|2⟩ → |10⟩

it allows us to perform a measurement in the maximally
coherent basis given as

|++⟩ =
1
√
4

(
|00⟩ + |01⟩ + |10⟩ + |11⟩

)
|+−⟩ =

1
√
4

(
|00⟩ − |01⟩ + |10⟩ − |11⟩

)
|−+⟩ =

1
√
4

(
|00⟩ + |01⟩ − |10⟩ − |11⟩

)
|−−⟩ =

1
√
4

(
|00⟩ − |01⟩ − |10⟩ + |11⟩

)
This measurement procedure generates the following states

|ψ
(3)
±±⟩ =

1
√
3

[(
Ũ0 ⊗ U1 ⊗ U2 · U0 ⊗ Ũ1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ2⟩

±

(
U0 ⊗ Ũ1 ⊗ U2 · Ũ0 ⊗ U1 ⊗ Ũ2

)
|ϕ0ϕ1ϕ1⟩

±

(
U0 ⊗ U1 ⊗ Ũ2 · Ũ0 ⊗ Ũ1 ⊗ U2

)
|ϕ1ϕ1ϕ2⟩

]
APPENDIX E
GRAPH STATES
Here we prove that the indefinite causal strategy S given in
(14) does generate of a graph state |G⟩, by assuming the
knowledge of the corresponding graph G = (V ,E). From
graph state definition, we have:

|G⟩ = ⊗(i,j)∈ECZ (i,j)
|+⟩

n (34)

The state resulting from the strategy S in (14), after measuring
the control qubits in the coherent basis, is given by:

|G⟩ = ⊗(i,j)∈ESCO
(i,j)
± |η⟩

n (35)

with |η⟩ denoting the input state and SCO(i,j)
± = V (i,j)Ṽ (i,j)

±

Ṽ (i,j)V (i,j). We note that it does not exist any local unitary
operation mapping the two operations CZ and SCO each
others, i.e, they are not equivalent up to a local unitary. If this
would be true, we should be able to find a local two-qubit
unitary T ⊗W satisfying the equation:

(T ⊗W )CZ (T †
⊗W †) = SCO (36)

with T and W arbitrary single-qubit unitaries. Clearly, this
equation has no solution since Tr((T ⊗W )CZ (T †

⊗W †)) =
Tr(CZ ) = 2 ̸= Tr(SCO±).
Luckily, the similarity between CZ and SCO± can be

retrieved, effictively, by their respective action on separable
input states. By fixing the input states |η⟩, we can find a
post-processing local unitary that makes the two operations
generating LU equivalent states. In fact, if we set the input
state |η⟩ = |0⟩, we obtain:

SCO+ |00⟩ =
1
√
2

(
|00⟩ + |11⟩

)
SCO− |00⟩ =

1
√
2

(
|10⟩ + |01⟩

)
(37)

On the other hand, it results:

CZ |++⟩ =
1
√
2

(
|0+⟩ + |1−⟩

)
(38)

This shows that the states in (34) and (35) are equivalent up
to a local unitary, given by I ⊗ H and X ⊗ H depending on
the outcomes {+,−} on the control qubit respectively.

Finally, to asses the necessary nature of conditions in (15),
we follow the same reasoning of reductio ad absurdum used
in Theorem. 2. Let us suppose that there exists an indefinite
causal order strategy that generates |G⟩ with the appropriate
entanglement rank rAB = r ′ on bipartition {A,B} and that
violates one of the conditions in (15) corresponding to the
same bipartition {A,B}, and let this condition be without any
loss of generality the following one:

⟨ψ |y |ψ⟩x

=

[ 2l∑
j′x

[
⊗i∈A ⟨0|iU

(j′x )†
i

]][ 2l∑
jy

[
⊗j∈A U

(jy)
i |0⟩i

]]
= 1 (39)

In this case, the Schmidt decomposition in the bipartition
{A,B} violates the corresponding entanglement rank of the
state and is given by:

|G⟩ =
2r
′∑

h=1

|φ⟩h |ψ⟩h =

2r
′∑

h̸=x,y

|φ⟩h |ψ⟩h + (|φ⟩x + |φ⟩y) |ψ⟩x

(40)

and therefore the schmidt rank rAB = r ′ − 1, which contra-
dicts the assumption. Hence, the conditions in (15) must be
fulfilled to be able to generate a graph state with appropriate
entanglement ranks.
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