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Abstract—In the near to mid future, Quantum Local Area Net-
works (QLANs) – the fundamental building block of the Quantum
Internet – will unlike exhibit physical topologies characterized by
densely physical connections among the nodes. On the contrary,
it is pragmatic to consider QLANs based on simpler, scarcely-
connected physical topologies, such as star topologies. This con-
straint, if not properly tackled, will significantly impact the QLAN
performance in terms of communication delay and/or overhead.
Thankfully, it is possible to create on-demand links between QLAN
nodes, without physically deploying them, by properly manipulat-
ing a shared multipartite entangled state, namely, a graph state.
Thus, it is possible to build an overlay topology, referred to as
artificial topology, upon the physical one, by only performing Local
Operations and Classical Communication (LOCC). In this paper,
we address the fundamental issue of engineering the artificial topol-
ogy of a QLAN to bypass the limitations induced by the physical
topology. The designed framework relays only on local operations,
without exchanging signaling among the client nodes of the QLAN,
which, in turn, would introduce further delays in a scenario very
sensitive to the decoherence. Finally, by exploiting the artificial
topology, it is proved that the troubleshooting is simplified, by
overcoming the single point of failure, typical of classical LAN star
topologies.

Index Terms—Local area network, LAN, quantum LAN,
multipartite entanglement, graph states, network topology.

I. INTRODUCTION

INTERCONNECTING different quantum processors with a
Quantum Local Area Network (QLAN) – namely, with a

quantum network able to cover a limited geographic area –
represents one of the very first steps for unlocking the vision
of the Quantum Internet [2], [3], [4], [5], [6], [7], [8], [9], as
depicted in Fig. 1. And trial deployments of quantum server
farms based on technologies mimicking QLAN have already
begun [10], [11], [12], [13], [14].
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Fig. 1. Schematic representation of a quantum network architecture based on
the interconnection of different QLANs.

It must be noted, though, that current (and near-term) state-of-
the-art of QLAN hardware requires sophisticated and resource-
intensive setups, often involving complex experimental appara-
tuses and precise control mechanisms. Thus, in the short-mid
time horizon, physical topologies like fat tree and leaf-spine,
typical of classical data centers [15], [16] and characterized by
densely physical connections among the LAN nodes, are not
practical in QLANs. This holds not only for QLANs leveraging
already deployed network infrastructure such as fiber links,
but also for more specialized environments such as quantum
data centers. Thus, it is quite reasonable and pragmatic to
consider simpler physical topologies for QLANs, such as star
topologies [17], characterized by weaker connectivity among
the QLAN nodes.

Yet, these constraints on the physical topology, induced by
the quantum hardware underlying QLAN functioning, impact
and limit the achievable communication capabilities among the
QLAN nodes. And, even more challenging, we cannot borrow
well-established approaches from classical LANs for tackling
the aforementioned constraints. More in detail, regardless of
the particulars of the physical (classical) LAN topology, up-
per layers of the classical protocol stack are responsible for
overcoming the constraints imposed by the physical topology
enabling any-to-any communication, at the price of communi-
cation overhead and information duplication. Clearly, these are
not viable strategies in QLAN due to unconventional quantum
peculiarities, ranging from stringent coherence times to quantum
mechanics postulates and phenomena, such as quantum mea-
surement and the no-cloning theorem. Besides, the design of a
protocol suite for quantum networks is still at its infancy [4],
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and thus the functionalities of “quantum” upper-layers are yet
to be defined.

Luckily, the communication limitations induced by the physi-
cal topology in QLANs can be overcome by relying on the most
distinguish feature of quantum mechanics, namely, quantum en-
tanglement. Specifically, entanglement enables a new and richer
form of connectivity [4], [18], [19], referred in the following
as entanglement-enabled connectivity, with no-counterpart in
classical LANs.

In fact, once an entangled state – say an EPR pair for the sake
of exemplification – has been shared between two nodes, a qubit
can be “transmitted” via quantum teleportation [3], [20], [21],
[22], [23], which does not require the physical transmission of
the quantum particle encoding the qubit on the physical channel.
Accordingly, entanglement enables half-duplex unicast chan-
nels between any pairs of nodes, regardless of their relative
positions within the underlying physical network topology.
Hence, QLAN nodes that are not physically connected can still
directly communicate, as long as they share entanglement.

Additionally, entanglement is not limited to EPR pairs.
With multipartite entanglement [24], [25], the nature of the
entanglement-enabled connectivity becomes richer. As instance,
by distributing ann-qubit GHZ state [24] amongnQLAN nodes,
an EPR pair can be distributively extracted by any pair of nodes,
with the identities of the entangled nodes chosen at run-time,
accordingly to the communication needs. Furthermore, chang-
ing the selected multipartite entangled state changes the specific
communication patterns enabled by the entanglement-enabled
connectivity.

Consequently, by exploiting multipartite entanglement, it is
possible to augment the physical topology, by introducing
artificial links between un-connected nodes, without any ad-
ditional physical link. It may be useful to clarify that an artificial
link between two QLAN nodes reflects the interaction pattern
between the qubits belonging to the composite multipartite
entangled state. Thus, an artificial link denotes the “possibility”
of extracting a shared EPR between the two nodes, starting
from a multipartite entangled state shared among a larger set
of nodes. However, the number of EPR pairs that can be simul-
taneously extracted from a single multipartite entangled state
heavily depends on the type and structure of the considered
state [26], and some of the artificial links are depleted during
the extraction process. These artificial links constitute a sort
of “overlay entangled topology” built upon the physical one,
referred to as artificial topology, that can differs significantly
from the physical topology.

In this paper, we shed light on the possibility offered by engi-
neering the artificial QLAN topology to overcome the limitations
and the communication constraints induced by the physical
QLAN topology. This possibility has no counterpart in classical
networks. Indeed, it is interesting to observe that, since entangle-
ment is widely recognized as a communication resource reminis-
cent of a resource encompassing both the classical physical and
link layers [27], [28], our findings highlight that the capability
to enable any-to-any communication is not constrained to be
delegated to the upper layers of the eventually designed protocol
stack for the Quantum Internet. Furthermore, through the paper,

we show how to engineer the artificial topology accordingly to
the communication needs. Specifically, we provide a set of tools
– represented in the form of lemmas – that are indispensable
for engineering the artificial topologies to overcome the limi-
tations imposed by the physical connections among the nodes.
Our framework relies only on Local Operations and Classical
Communication (LOCC), without exchanging signaling among
the QLAN client nodes, which, in turn, would introduce further
delays in a scenario very sensitive to the decoherence.

We finally prove that, by exploiting the artificial topology,
it is possible to simplify the troubleshooting, by overcom-
ing the single point of failure, typical of classical LAN star
topologies.

A. Related Work

In this manuscript, we exploit the properties of a class of
multipartite entangled states, referred to as graph states [29], that
recently gained significant attention from the community [30],
[31], [32], [33], [34] due to their unique entanglement proper-
ties [26], [29]. Indeed such properties make graph states ideal
resources for various applications in quantum computing and
quantum communications [6], [18].

In particular, graph states [26] have been widely investi-
gated within the context of fusion-based strategies for building
larger states, starting from smaller building blocks [34], [35].
Graph states have also been extensively studied for “routing”
EPRs through network nodes [36] and they have been well
characterized in terms of noise and non idealities [37], [38].
And, the measurement-based properties [26] of graph states
have been explored for performing operations within the optical
implementation of quantum repeaters [33].

Differently from the mentioned literature, in this paper the
aim is to provide the theoretical tools to dynamically adapt the
artificial topology – associated to an initial graph state – to the
QLAN communication patterns, by overcoming the limitations
induced by the physical topology.

To the best of our knowledge, this is the first paper engineering
the intra-QLAN connectivity, by exploiting entanglement. And,
indeed, there was an urgent call for doing this. In fact, recently
in [19], it has been shown that the inter-QLANs connectivity,
namely, the connectivity among different QLANs, heavily de-
pends on the multipartite entangled states locally generated and
distributed within the single QLANs.

The remaining part of the manuscript is organized as follows.
In Section II, we introduce some preliminaries related to graph
states. In Section III, we first describe the system model, and then
in Section IV, we develop the theoretical analysis by providing
the tools for engineering the artificial topology beyond the
limitations induced by the physical one. Finally, in Section V,
we conclude the paper.

II. PRELIMINARIES

In this section, we first overview some preliminaries related
to graph theory in Section II-A. Then, in Section II-B we
describe the class of multipartite entangled states exploited in
the remaining part of the manuscript – namely, graph states –
and the main tools for their manipulation.
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A. Graph Theory Fundamentals

Formally, a graph G is defined as a pair of two (finite) sets, V
and E, as follows:

G
�
= (V,E), (1)

with V denoting the set of vertices – also called nodes – with
cardinality |V | = n, and E denoting the set of edges describing
the connections between the vertices:

E = {{a, b} : a, b ∈ V ∧ a �= b} ⊂ V × V
�
= V 2. (2)

In the following we utilize the compact notation introduced in
(2) also for two arbitrary vertex setsA,B ⊆ V , by denoting with
the symbolA×B ⊆ V 2 the set of all possible edges having one
endpoint in A and the other one in B:

A×B
�
= {{a, b} ∈ V 2 : a ∈ A ∧ b ∈ B}. (3)

Accordingly to the above, we have restricted our attention on
finite graphs, i.e., graphs with finite set of vertices and edges.
Furthermore, from (2), we have considered only undirected and
simple graphs (i.e., graphs where an edge cannot connect the
same vertex) since these two properties are required for the
mapping between graphs and graph states [26], [29]. Indeed,
the mentioned properties are quite reasonable from a merely
network perspective, where real-world networks always inter-
connect a finite set of nodes and a link having the same node
as start and end-point has no usefulness from a communication
perspective.

Among the graph properties, vertex adjacency is heavily used
through the paper. Formally, given two vertices a, b ∈ V , if a
and b are connected through an edge {a, b} ∈ E, then they are
defined as adjacent vertices.

Definition 1 (Open and Closed neighborhood): The set Na

of vertices adjacent to an arbitrary vertex a is called open
neighborhood of a, and it is defined as:

Na
�
= {b ∈ V : {a, b} ∈ E}. (4)

The term “open” highlights that the vertexa is not included in the
set. Accordingly, a vertex a such that |Na| = 0 is called isolated
vertex. Conversely, whenever the vertex a should be included as
well within the set, we utilize the “closed” neighborhood Ṅa of
a:

Ṅa
�
= Na ∪ {a}. (5)

Definition 2 (Induced Subgraph): The subgraph of G =
(V,E) induced by a vertex set A ⊆ V is defined as the graph
G[A] having: i) as vertices, the ones in A, and ii) as edges, the
edges in E whose endpoints are both in A. Formally:

G[A]
�
= (A,EA), (6)

with:

EA
�
= {{b, c} ∈ E : b ∈ A ∧ c ∈ A} = E ∩A2. (7)

Remarkably, if A coincides with the neighborhood Na of some
vertex a, then G[Na] is referred to as the subgraph induced by
the neighborhood of a.

Definition 3 (Complete graph): A complete graph, also re-
ferred to as fully connected graph, is a graph where each pair of
the n = |V | vertices is adjacent. Formally:

Kn
�
= (V, V 2). (8)

Definition 4 (Star vertex): A star vertex of graph G = (V,E)
is a vertex s ∈ V adjacent to all the other vertices in V \ {s}.
The set S of star vertices of G is given by:

S
�
= {s ∈ V : Ns = V \ {s}} ⊆ V. (9)

From (9), it follows that, given a star vertex s of a graph
G = (V,E), its closed neighborhood set Ṅs coincides with V .
However, in the following we use the notation Ṅs whenever we
want to emphasize the role played by s. Furthermore, it is evident
from Definition 2, that a star vertex is a completely connected
vertex.

Definition 5 (Induced star subgraph): Let s ∈ V be a star
vertex of a graph G = (V,E). The subgraph of G induced by its
closed neighborhood Ṅs is referred to as induced star subgraph
G[Ṅs]:

G[Ṅs]
�
= (Ṅs, {s} ×Ns). (10)

Accordingly, s is the star vertex of the subgraph G[Ṅs].1

Definition 6 (Graph complementation): The complement (or
inverse) of a graph G is the graph τ(G), obtained by considering
the same set of vertices V but with the edge set built such that
two distinct vertices of τ(G) are adjacent if and only if they are
not adjacent in G. Formally:

τ(G) = (V,EC), (11)

with

EC �
= V 2 \ E = {{a, b} ∈ V 2 : {a, b} �∈ E}. (12)

The complementation can be done also with respect to the
subgraphG[Na] induced by the neighborhoodNa of a vertexa ∈
V . In this case, it is usually referred as local complementation
of G at vertex a, and it is denoted as τa(G), as formally defined
below.

Definition 7 (Local Complementation): Given a graph G =
(V,E), the local complementation of G at vertex a ∈ V is the
graph τa(G) obtained by complementing the subgraph G[Na]
induced by neighborhood Na of vertex a, while leaving the rest
of the graph unchanged:

τa(G) =
(
V, (E ∪N2

a ) \ ENa

)
, (13)

with ENa
defined in Definition 2.

Definition 8 (Vertex deletion): Given a graphG = (V,E), the
deletion of a vertex a ∈ V generates a new graph, denoted as
G− a, where both vertex a and all the edges connecting a with
its adjacent vertexes are removed. Formally:

G− a = (V \ {a}, E \ ({a} ×Na)) . (14)

1With a small notation abuse, the symbol G[Ṅs] indicates the particular
subgraph induced by the closed neighborhood, by constraining vertex b in (7)
to be equal to the star vertex s.
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Hence, the edge set of G− a is the set of edges in G without
the edges with vertex a as endpoint.

Definition 9 (Path): A {a, b}-path is an ordered list p{a,b}
�
=

(a1, a2, . . . , al) of distinct vertices in V so that a = a1, b = al
and {ai, ai+1} ∈ E for any i.

Accordingly, a graph G = (V,E) is connected if, for each
pair of vertices a, b ∈ V , there exists a {a, b}-path in E.

B. Multipartite Entanglement: Graph States

A notable class of multipartite entangled states from a com-
munication perspective is represented by the so-called graph
states [26], [29]. As suggested by the name, these multipartite
entangled states can be effectively described by leveraging the
graph theory tools introduced in Section II-A. Specifically, stem-
ming from an arbitrary graphG defined in (1), the corresponding
graph state |G〉 is obtained by mapping each vertex of the
graph G with a qubit in the state |+〉, and then performing a
controlled-Z (CZ) gate between each pair of qubits correspond-
ing to adjacent vertices in G. The rationale underlying such a
mapping lies in the correspondence between graph edges and
interaction patterns among the qubits belonging to the composite
entangled system. In the mapping, vertices play the role of
physical systems and edges represent their interactions.

Graph State: Formally, then-qubit graph state |G〉 associated

to graph G
�
= (V,E) can be expressed2 as [26]:

|G〉 =
∏

{a,b}∈E
CZab|+〉⊗n, (15)

with |+〉 = 1√
2
(|0〉+ |1〉), n = |V | and CZab denoting the CZ

gate applied to the qubits associated to the vertices a and b.
It is worthwhile to observe that each graph state |G〉 cor-

responds uniquely to a graph G. However, one could wonder
whether graph states associated to different graphs may be
equivalent up to some metric. This is clarified by the following
definition.

Definition 10 (LU equivalence): Given two n-qubit graph
states – say |G〉 and |G′〉 – |G〉 and |G′〉 are Local-Unitary
(LU)-equivalent iff there exists n local-unitary operators {Ui}
such that [39]:

|G〉 =
⊗
i

Ui|G〉. (16)

Accordingly to Definition 10, it results that graph states
associated to different graphs might be equal up to some LU-
operations [26], [29]. The mapping between graph states and
graphs is crucial beyond a merely pictorial purpose. Specifically,
the action of key operations on a graph state |G〉 can be described
via simple transformations on the associated graph G. Among
the possible operations on graph states, Local-Clifford (LC)
unitaries (which are a subset of Local-Unitary operators) [26]
and single-qubit Pauli measurements play a crucial role for
the objectives of this manuscript. Regarding LC unitaries, their

2With a (widely adopted) notation abuse, since the application of the CZab
gate on the state |+〉⊗n requires a reference ton− 2 identity operations I acting
on all the qubits different from a or b.

actions can be described via local complementations defined on
the corresponding graph. Indeed, the following result holds [26].

LC equivalence: Two n-qubit graph states, say |G〉 and |G′〉
are LC-equivalent iff the corresponding graphs G and G′ are
related by a sequence of local complementations, i.e.:

G′ = τa1
(τa2

(. . . (τa�
(G))), for some a1, a2, . . . a� ∈ V,

(17)
with τa(G) defined in Definition 7.

Thus, when we refer to two LC-equivalent graph states, we
implicitly refer to the sequence of local complementations that
maps one associated graph into the other.

Regarding single-qubit Pauli measurements, a projective mea-
surement through a Pauli operator σx, σy, or σz on a qubit of the
graph state |G〉 yields, up to local unitaries Ui,±, a new graph
state |G̃〉 on the unmeasured qubits. Interestingly, as proved
in [26], [29], this new graph state |G̃〉 can be obtained by means
of vertex deletion and/or local complementation (Definitions 7
and 8) on the graph G associated to the original graph state |G〉,
as summarized in the following and represented in Fig. 2.

Projective Measurements via Pauli Operators: The projective
measurement of a qubit – associated to vertex a ∈ V in graph
G = (V,E) – of the initial graph state |G〉 through a Pauli
operator σχ yields, up to local unitaries, to a new graph state
|G̃χ〉3 among the remaining qubits, whose associate graph G̃χ

is obtained:
– for Pauli operator χ = σz , by deleting the vertex a from

graph G:

G̃z
�
= G− a. (18)

– for Pauli operator χ = σy, by first local complementation
of the graph G at vertex a, and then by deleting a from
graph G:

G̃y
�
= τa(G)− a. (19)

– for Pauli operator χ = σx, by concatenating the following
three graph operations: i) local complementation of the
graph G at an arbitrary neighbor vertex b0 ∈ Na, ii) then,
local complementation of the graphG at vertex a, followed
by the deletion of a from graph G, and iii) finally, a local
complementation at b0 of the graph obtained at the previous
step:

G̃x = τb0 (τa(τb0(G))− a) . (20)

It is worthwhile to note that, although the choice of the
vertex b0 in the neighborhood of a at step i) is not unique,
the post-measurement graph states are LU equivalent for
any choice of b0 [26].

III. MODEL AND DESIGN PARAMETERS

In this section, we exploit the tools introduced in Section II
to engineer the artificial QLAN topology for overcoming the
communication constraints induced by the physical topology.

3With a mild notation abuse, the dependence on a is neglected for the sake of
notation simplicity. Similar notation abuses will be adopted also for the following
projective measurements.
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Fig. 2. Pictorial representation of the effects of different single-qubit Pauli-measurements on a graph state. The effects are shown by representing the graph
associated with the graph state obtained after the measurements (up to local unitaries). As widely done, a graph is represented by a diagram in a plane, where
vertexes are denoted by points in the plane and edges are denoted by arches between two vertices.

A. Problem Statement

Our goal is to augment the physical topology by creating arti-
ficial links between nodes that are not neighbors in the physical
topology, without any additional physical link deployment, by
leveraging entanglement. Furthermore, we aim at creating such
links on-demand – i.e., at run-time, whenever needed – so that
these direct links can adapt to varying communication needs, by
properly designing a multipartite entanglement state shared via
the physical topology.

Research Problem: Accordingly to the above, the research
problem can be formalized as follows:
� defining pragmatic physical architectures for QLANs,

given the current maturity of the quantum technologies;
� identifying the degrees of freedom for defining the set of

parameters to characterize our model;
� identifying and designing the most suitable “type” of graph

state, namely the specific structure of the associated graph
and its “dimension”;

� developing the theoretical tools and rules to engineer the
artificial topology according to the communication needs.

B. System Model

Entanglement generation and distribution within a QLAN
require highly specialized environments equipped with chal-
lenging and expensive hardware – as instance ultra-high vacuum
systems or ultra-low temperature cryostats – necessary to pre-
serve the coherence of the quantum states. And, the challenges
for controlling and preserving the quantum states get harder as
the number of physical connections increases as highlighted in
Section I.4 This makes pragmatic – given the current maturity
of the quantum technologies and given the unavoidable require-
ment of some sort of local interaction among the qubits to be
entangled – to induce a hierarchy among the network nodes,
with a specialized super-node – referred to as the orchestrator
– responsible for locally generating and then distributing a
multipartite entangled state among the network nodes [19], [40],
[41], [42], [43], referred to as clients. Although the physical
implementation of our architecture is beyond the scope of this

4In principle, a richer physical topology may assure more disjoint paths for the
concurrent distribution of entangled pairs at the cost of increasing the complexity
of the network architecture and its control logic.

work, it is interesting to observe that the orchestrator could
generate a multipartite entangled state by exploiting quantum
emitters as in [44] and the clients could be equipped with
absorptive memories.

By accounting for the discussion about unfeasible dense
physical topologies (such as fat tree or leaf-spine) in Section I,
we consider a sparse topology where the orchestrator is directly
connected through physical quantum channels to the clients via
a star topology, as illustrated in Fig. 3. As proved via a rigorous
theoretical analysis in the next sections, by manipulating a suit-
able multipartite entangled state, it is possible to build artificial
topologies upon the physical one, such as bus, as depicted in
Fig. 3(b) and “enhanced ring topology”5 as depicted in Fig. 3(c).

Remark: Although beyond the scope of this work, it is inter-
esting to observe that in principle, the orchestrator can directly
distribute each qubit of the overall multipartite entangled state
to each client. However, this approach is not viable for all
the classes of multipartite entanglement, which are character-
ized by different persistence properties. Accordingly, a more
general case is the one in which multipartite entangled states
are distributed through teleportation, by exploiting the a priori
distribution of EPR pairs via heralded schemes. As a matter of
fact, this strategy is very common in literature and it has been
proved also to guarantee more resilience to noise and better
protection against memory decoherence [19], [43].

As defined within the Research Problem, we plan to engineer
the multipartite entanglement state – and, more precisely, the
graph state – distributed within the QLAN to overcome the
physical topology constraints induced by the quantum hardware
underlying QLAN functioning. Clearly, there are two main
degrees of freedom underlying the choice of the initial graph
state to be generated, distributed and eventually engineered:

i) the “type” of the graph state, namely the specific structure
of the associated graph;

ii) the “dimensions” of the graph state, expressed by the
number of qubits: i) retained at the orchestrator and ii)
distributed to the clients.

1) Graph State Type: Regarding the first degree of freedom,
the edges of the associated graph are related to some sort of

5As better clarified in Section IV-C, the term “enhanced” is used, since the
structure of such an artificial topology resembles the shape of a classical ring
topology augmented with additional links among the clients.
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Fig. 3. Pictorial representation of a QLAN. The orchestrator node (shown in red) is connected to the client nodes via a physical topology. After operations
performed locally at the orchestrator, artificial topologies are built upon the physical one: artificial bus topology, in the sub-figure (b) or artificial (enhanced) ring
topology, in the sub-figure (c).

Fig. 4. Pictorial representation of merging operations on different topologies.

“entangling interaction” among the qubits belonging to the com-
posite entangled system. Thus, by over-simplifying, the denser
is the graph associated to the graph state, the more challen-
ging is the generation of the corresponding graph state due to
the complexity of the underlying multipartite interactions. In
order to confer practicability to our proposal, we consider as
elementary state generated at the orchestrator the simplest form
of graph states, namely, linear cluster state.

Elementary State: Formally, for n-qubit linear cluster state
|L〉 associated to a linear graph, (15) reduces to:

|L〉 =
n−1∏
i=1

CZ(i,i+1)|+〉⊗n. (21)

Indeed, linear cluster state have been already experimentally
generated in controlled environments [34], [35]. Furthermore,
recently it has been demonstrated that, starting from linear
cluster states, it is possible to realize different 2-dimensional
graph states, by utilizing properly fusion operations [45], [46].
Thus, our choice of starting from linear cluster states at the
orchestrator is not only practical – being characterized by low
complexity – but it is also not restrictive.

In the following, we refer to the operations for realizing
more complex graph states starting from linear cluster states
as merging operations [37], [47]. The rational for this is that
the term “fusion” usually refers to optical operations on graph
states. On the contrary, the analysis developed in this paper
does not require any assumption about the underlying adopted
quantum technology. Stemming from this, a merging operation
between two vertices belonging to two different graph states is
a process through which the two vertexes are combined into a
single vertex. A pictorial representation of the aforementioned
merging operations is provided in Fig. 4.

2) Graph State Dimensions: Regarding the second degree of
freedom, from its description it is clear that we already made a
design choice, i.e., to retain some qubits of the initial state at the
orchestrator. In other words, the hierarchy among the nodes is
maintained also in the distribution of the multipartite state.

The rationale for this choice is to be able to adapt the resource
state, i.e., the graph state generated at the orchestrator, accord-
ingly to the on-demand communication needs, without the need
of exchanging signaling among the clients. This, in turns, avoids
to introduce further delays in a scenario very sensitive to the
decoherence.
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And, perhaps more importantly, this design choice avoids the
need of performing arbitrary quantum operations at the clients,
as we prove in the following section. Specifically, the desired
artificial topology is built by performing only local operations
on the qubits retained by the orchestrator and classical commu-
nication – LOCC – from the orchestrator to the involved clients,
starting from the initial distributed state.

The key role played by the number of qubits retained at the
orchestrator is further described in the next subsections, after
collecting some definitions.

C. Design Parameters

In this subsection, we map the degrees of freedom related
to the entanglement distribution process into a set of design
parameters, which allows to completely describe the topology
of the graph associated to the graph state.

Definition 11 (Number of orchestration qubits): Given an
n-qubit graph state |G〉, the number of orchestration qubits is
indicated with:

no
�
= |Vo|, (22)

with Vo = {o1, . . . , ono
} ⊂ V denoting the subset of vertices

of the overall graph G associated with the qubits of the overall
graph state |G〉 retained by the orchestrator.

Definition 12 (Number of client qubits): Given an n-qubit
graph state |G〉, the number of client qubits is indicated with:

k
�
= |Vc|, (23)

with Vc = {c1, . . . , ck} ⊂ V denoting the subset of vertices of
the overall graph G associated with the qubits of the overall
graph state |G〉 distributed to the clients.

Remark: As an example of the key role played by no and
k, let us consider a k + 1-qubit graph state distributed to k
clients. Under these assumptions, we have that the number of
qubits at the orchestrator is forced to be no = 1. There exists
different types of graph states satisfying these constraints, and
a simple one is the one associated with a star graph centered
at the orchestrator, i.e., G = (V,E) with E = {{o1, ci}ki=1}.
This graph also fits with the underlying physical topology. Being
such a graph state LU-equivalent to a GHZ state [26], it allows
to extract a single EPR pair between any pair of nodes, such
as between a couple of clients or between a client and the
orchestrator. From this simple example, it appears clear that
different choices about no and k imply different features of
the graph state and, hence, of the associated graph, which in
turn determine the clients communication capabilities beyond
the physical topology constraint. This will be engineered in the
Section IV.

Definition 13 (Orchestration qubit: client degree): Given an
orchestration vertex oi ∈ Vo, koi, ≤ k denotes its “client” de-

gree, i.e., the cardinality of its neighborhood N c
oi

�
= Noi ∩ Vc ⊂

V , restricted to the vertices associated to qubits distributed to
the clients. Formally:

N c
oi

�
= Noi ∩ Vc = {cj ∈ Vc : {oi, cj} ∈ E} ⊂ V,

with, koi,c = |N c
oi
|. (24)

Definition 14 (Client qubit: r-rank bridge): A client vertex
ci ∈ Vc is defined as “r-rank bridge” whenever its rank – i.e., the

cardinality of its neighborhood No
ci

�
= Nci ∩ Vo ⊂ V , restricted

to vertices associated to qubits retained at the orchestrator – is
r, which is greater than one. Formally:

No
ci

�
= Nci ∩ Vo = {oj ∈ Vo : {oj , ci} ∈ E} ⊂ V,

with, |No
ci
| = r > 1. (25)

Remarkably, the bridge rank r is given by the number of
vertices belonging to the set Vo that are connected with a bridge.
A vertex that is connected to a single orchestration qubit oi ∈ Vo

is not considered to be a bridge.
Definition 15 (Orchestration qubit: bridge degree): Given an

orchestration vertex oi ∈ Vo, 0 < kroi,b ≤ k denotes its “r-rank
bridge degree”, i.e., the cardinality of its neighborhood Noi ,
restricted to vertices associated to bridges with rank r:

kroi,b
�
= |Br

oi
|, with Br

oi

�
=

{
ci ∈ Noi : |No

ci
| = r

}
. (26)

Specifically, the bridge degree kroi,b represents the number
of r-rank bridges connected to the orchestrator qubit oi. In the
following, we denote with the symbols k̄rb and k̂rb the maximum
and minimum values for the r-rank bridge degrees among all
the orchestration qubits, i.e.:

k̄rb
�
= max

oi∈Vo

{kroi,b}, (27)

k̂rb
�
= min

oi∈Vo,
{kroi,b}. (28)

IV. FROM PHYSICAL TO ARTIFICIAL TOPOLOGY

Here, we develop the main tools for addressing the research
problem introduced in Section III:

bypassing the communication limitations induced by
the physical QLAN topology by building artificial
topologies interconnecting nodes – such as bus and
(enhanced) ring topologies – at run-time, accordingly
to the communication patterns.

We highlight that motivations and interest for these artificial
topologies are not arbitrary. Indeed, the graph states associated
to these topologies exhibit an application value, representing
the main resources for measurement-based quantum information
processing and computation [32], [48], [49]. Furthermore, lim-
iting the analysis to these artificial topologies is not restrictive,
since it is possible to build different topologies starting from the
considered ones, as experimentally proved [45].

A. Distributed State Design

As pointed out in Section III-B, we consider, as elementary
multipartite states generated at the orchestrator, linear cluster
states, since they are experimentally-feasible and they can be
merged to obtain more complex states. Yet, there exists different
design choices in choosing: i) the specific final graph state
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Fig. 5. Pictorial representation of chain and generalized tree-like graph states, obtained starting from a linear cluster state and by using the merging operations
illustrated in Fig. 4.

(obtained by combining the elementary states) to be distributed
and ii) the specific distribution pattern of the individual qubits
of the final state to the nodes of the QLAN. We summarize our
design choices in the following.

Design principles: The generation and distribution process
of the n-qubit graph state |G〉 through a QLAN with k clients
is performed so that the graph G = (V,E) associated to |G〉
satisfies the following conditions:

i) V = Vo ∪ Vc ∧ Vo ∩ Vc = ∅ (29)

ii) |Vo| > 1 ∧ |Vc| = k (30)

iii) ∀{a, b} ∈ E : a ∈ Vo ∧ b ∈ Vc (31)

iv) koi,c = kc, ∀ oi ∈ Vo (32)

v) ∃ r′ ∈ N \ {0, 1} :{
kr

′
oi,b

�= 0, ∀ oi ∈ Vo

kr
′

oi,b
= k̄r

′
b = k̄b ∨ kr

′
oi,b

= k̂r
′

b = k̂b, ∀oi ∈ Vo

(33)

The first constraint is quite axiomatic, forcing the orchestrator
to distribute the qubits of the multipartite entangled state, either
to clients or to itself, as a local resource for forcing the artificial
connectivity among the clients toward the topology of interest,
as we prove in the following.

As for the second constraint, it allows us to consider the worst-
case scenario from a communication perspective: each client
receives only one qubit of the multipartite entangled state for
fulfilling the on-demand communication needs.

The third constraint forces the graph state to exhibit “vertical”
edges among the two different hierarchy levels represented by
Vo and Vc, i.e., between orchestrator and clients vertices, rather
than ‘horizontal” edges within the same level. This design choice
is key to “remotely” tune the artificial connectivity among the
clients by only manipulating the qubits at the orchestrator, as
proved in the following. Furthermore, we note that the absence
of horizontal edges enforces a two-colorable structure [26], [29]
on the distributed graph state. In fact, a graph G = (V,E) is
two-colorable if the set of vertices V can be partitioned into two
subsets so that there exist no edge in E between two vertices
belonging to the same subset. For our modeling, the final graph

state G = (V,E) is also denoted as G = (Vo, Vc, E) whenever
we want to emphasize the two-colorable property.

Finally, as for the fourth and the fifth constraint, they enforce
a recursive and regular structure within the graph underlying the
graph state after the distribution, in the light of practicability.
Accordingly, we require6 that the client degree is koi,c = kc for
all the orchestration qubits. Furthermore, we require that all the
bridges have the same rank, say r′, and that each orchestrator
is adjacent to either k̄b or k̂b bridges.7 Accordingly, the final
graph state exhibit a recursive and regular structure, as shown in
Fig. 5, consisting in a recursive topology built by concatenating
elementary constituents represented by the star subgraphG[Ṅoi ]
induced by the closed neighborhoods Ṅoi of the orchestrator
vertices. In this topology, the maximum number of bridges
k̄b is exhibited by intermediate orchestration qubits, whereas
the minimum number k̂b of bridges is exhibited by the two
orchestration qubits at the edges of the structure. Remarkably,
constraints iv) and v) are not contradicting the assumption of
fixed value of bridge rank r′, since each orchestration qubit is
allowed to have a different number of bridges without affecting
the number of edges per bridge.

Stemming from the above design principles, we design two
different type of graph states to be distributed within the QLAN.
Both of them are characterized by 2-rank bridges and they are
referred to as chain graph state and generalized tree-like graph
state, as formally defined in the following.

Chain Graph State: An n-qubit ‘chain” graph state can be
distributed through a QLAN with k clients by retaining no =
k − 1qubits at the orchestrator and by settingkc = 2, k̄b = 2 and
k̂b = 1. Accordingly, the associated graph G = (V,E) satisfies
the following:

V = Vo ∪ Vc, with Vo
�
= {oi}k−1

i=1 ∧ Vc
�
= {ci}ki=1, (34)

E =
k−1⋃
i=1

{{oi, ci}, {oi, ci+1}} . (35)

6We note that, having a fixed values for koi,c is not restrictive, since this
condition can be easily satisfied by introducing fictitious clients during the
entanglement generation process.

7Hence, it results kc ≥ k̄b ≥ k̂b by definition.
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Remark: A chain graph state can be straightforwardly obtained
from a linear graph state |L〉 as depicted in Fig. 5(a). In a nutshell,
it is sufficient to generate a (2k − 1)-qubit linear cluster state at
the orchestrator, and to wisely distribute k qubits to the clients,
so that any qubit retained at the orchestrator is associated to a
vertex, which is adjacent to two client vertices corresponding to
the qubits distributed to two different clients.

Generalized Tree-Like Graph State: An n-qubit “generalized
tree-like” graph state can be distributed through a QLAN with

k clients by retaining no = k−k̂b

kc−k̂b
qubits at the orchestrator for

arbitrary values of kc, k̄b, k̂b ∈ N+. Accordingly, the associated
graph G = (V,E) satisfies the following:

V = Vo ∪ Vc, with Vo
�
= {oi}no

i=1 ∧ Vc
�
= {ci}ki=1 (36)

E =

no⋃
i=1

({oi} ×Noi) . (37)

From (37), it is evident that the graph associated to the gen-
eralized tree-like graph, after the distribution process, appears
as the concatenation of no star subgraphs, defined in Defini-
tion 5, each having kc edges – G[Ṅoi ] = (Ṅoi , {oi} ×Noi)
with i ∈ {1, . . . , no} – induced by Ṅoi and with {oi}no

i=1 as star
vertexes of the subgraphs. The concatenation utilizes as anchor
vertices the k̄b bridges for internal orchestrator qubits and as
anchor vertices the k̂b bridges for the 2 external orchestrator
qubits. Clearly, similar considerations can be made for the chain
graph, by looking at (35).

Remark: As depicted in Fig. 5(b) for kc = 5, k̄b = 4 and
k̂b = 2, a generalized tree-like graph state can be obtained by
generating at the orchestrator two linear cluster states and by
wisely performing merging operations at the orchestrator. After
that, the qubits are distributed to the k clients, so that any qubit
retained at the orchestrator is associated to a vertex, which
is adjacent to kc client vertices corresponding to the qubits
distributed to the kc different clients. It is evident from Fig. 5(b)
that the structure of the graph resembles a tree. This consid-
eration induced us to label it as “generalized tree-like” graph
state.

Stemming from the concept of bridge, we can now provide
the last definition, utilized in the theoretical analysis.

Definition 16 (Client proximity): Given two clients ci, cj ∈
Vc ⊂ V with i �= j, their proximity d(ci, cj) is defined as the
number of bridges belonging to the shortest path, connecting the
two clients within the graph G = (V,E), plus one. Formally:

d(ci, cj) = 1 +
∣∣ {a ∈ p{ci,cj} : a ∈ Vc ∧ |No

a | > 1
} ∣∣, (38)

with p{ci,cj} denoting the shortest path among all the possible
paths defined in Definition 9.

We highlight that two clients ci, cj ∈ Vc ⊂ V adjacent to the
same orchestration qubit in the designed resource states have the
minimum possible value of proximity, i.e., d(ci, cj) = 1.

B. From Physical Star Topology to Artificial Bus Topology

Here, we prove in Lemma 1 how to engineer a chain graph
state distributed through the QLAN so that all the clients are

Fig. 6. Generation of an artificial bus topology among the k clients of the
QLAN starting from a (2k − 1)-qubit chain state. The artificial topology is
obtained by (wisely) measuring each qubit retained at the orchestrator, according
to Lemma 1.

eventually interconnected by an an artificial bus topology, i.e.,
a linear graph among the vertices associated to qubits stored at
the clients.

Lemma 1: By distributing a (2k − 1)-qubit chain graph state
through the QLAN, an artificial bus topology interconnecting k
clients can be obtained by performing nc = (k − 1) local σy-
Pauli measurements of the qubits retained at the orchestrator.

Proof: Please refer to Appendix A. �
As depicted in Fig. 6, the results of Lemma 1 imply that is

possible to build an artificial topology directly interconnecting
clients with artificial links – even if they are not physically
connected in the physical topology – by exploiting only LOCC
at the orchestrator. From a communication engineering perspec-
tive, this is valuable since the orchestrator can tune the artificial
connectivity for dynamically satisfying the client traffic patterns
after – rather than before – the entanglement distribution process
has been completed.

Remark: Clearly, the orchestrator could have distributed a
bus (linear) graph state since the beginning as initial state. Yet,
whenever the client communication needs at run-time would
involve pairs of clients that happen to be distant within the linear
topology, the distributed state should be further processed to be
adapted to those needs. This requires a sequence of quantum
operations and classical coordination/signaling at and between
the clients – as an example, entanglement swapping at the
intermediate node(s) [4] – for satisfying such needs, inducing
so further overhead and delays in a scenario very sensitive to
the decoherence. On the contrary, our centralized framework
allows to build at run-time the most suitable topology, without
the need of additional signaling nor quantum operations at the
clients besides the LOCC required by the considered Pauli
measurement for correcting the final state.

To provide a deeper insight of the ability of our framework
to dynamically adapt to the communication needs, let us con-
sider the extraction of EPR pairs between couple of clients as
the final communication task, as instance for performing qubit
transmission via quantum teleportation. To this aim, the artificial
bus topology enables the simultaneous extraction of �k

2 � EPR
pairs [26], depending on the identities of the clients aiming
at communicating with each other. One could be induced to
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believe that this task would require some sort of cooperation
from the clients. This is true in general, but our framework allows
to achieve the same result by exclusively acting locally at the
orchestrator, as proved with the following lemma.

Lemma 2: By distributing a (2k − 1)-qubit chain graph state
through the QLAN among k clients, then up to �k

2 � EPR pairs
can be obtained by performing nc Pauli-measurements on the
qubits retained at the orchestrator.

Proof: Please refer to Appendix B. �
Stemming from this result, it is worth to observe that an

alternative method with respect to the proposed one consists
in a chain of repeaters that try to reactively distribute bipartite
entanglement based on communication needs. Such an approach
is clearly less successful at keeping up with the communication
needs than our approach. Indeed, the strategy based on a chain
of repeaters requires a tight coordination/signaling at the clients
inducing so further overhead and delays with respect to our
proposal, as analyzed in the previous remark.

We further observe from Lemma 2 that it is worth to discuss
a parallel with respect to classical LAN topologies. Specifically,
this capability to fulfill in parallel up to �k

2 � different qubit
transmissions has no counterpart in classical LANs resembling
the same topology, such as the classical bus topology. Indeed,
in such a classical case, a single medium – e.g., a coaxial cable
– is shared among all the LAN nodes, which allows only one
communication per use of the channel. Furthermore, although
cost-effective and easy to deploy, the classical bus topology
introduces a point-of-failure vulnerability: whenever the bus
fails, the entire LAN experiences service disruption [50]. On
the contrary, the persistency8 of the graph state described by
the artificial bus topology is indeed �k

2 � [26], [51]. More in
detail, persistency indicates the robustness of a multipartite state
against losses or accidental measurements of a qubit, which
destroy entanglement. In this light, the persistency can be seen
as a quantum equivalent of resistance to point-of-failure vul-
nerability, mentioned above. Thus, also by accounting for this
communication metric, the artificial bus topology represents an
improvement with respect to the classical world.

The above mentioned capability of the artificial topology to
dynamically adapt to communication needs by processing qubits
retained at the orchestrator is further stressed by the following
result, where d(ci, cj) denotes the proximity between clients ci
and cj defined in Definition 16.

Lemma 3 (Entanglement Rolling in chain graph states):
By distributing a 2k − 1-qubit chain graph state through the
QLAN among k clients, an artificial link inter-connecting two
clients ci, cj ∈ Vc, i �= j can be built by performing d(ci, cj) σx

Pauli-measurements on the qubits retained at the orchestrator
and associated to vertices belonging the the shortest path pci,cj
connecting ci and cj .

Proof: Please refer to Appendix C.
A pictorial representation of the results of Lemma 3 is re-

ported in Fig. 7. There, the two clients c1 and c3 – which

8According to [51], the persistency of a quantum state is given by the the
minimum number of qubits, that need to be measured to guarantee that the
resulting state is unentangled.

Fig. 7. Entanglement rolling: generation of an artificial link between two
clients ci and cj starting from a (2k − 1)-qubit chain state. In the example,
the clients to be interconnected within the artificial topology are c1 and c3,
whose proximity in the initially distributed chain state is d(c1, c3) = 2.

are neither physical connected nor virtually connected in the
initial distributed multipartite state – are eventually connected
by an artificial link. For this, it suffices to perform 2 = d(c1, c3)
σx-Pauli measurements on specific orchestration qubits. We
named the effects induced by Lemma 3 on the topology as
entanglement rolling to highlight the roller effects on the client
artificial connections. It is worthwhile to emphasize that the
result of Lemma 3 is not equivalent to extract EPR pairs from
the overall multipartite state. It rather goes in the direction of
properly manipulating and adapting the artificial topology, by
relaying on the orchestration qubits to effectively adapt to the
communication needs and at the same time to save in terms of
communication overhead.

Remark: As detailed in the appendix, the key role played by
the bridges in the designed resource states is to act as anchors in
the artificial topology. Specifically, bridges act as anchors capa-
ble of connecting different sub-nets within the overall topology
due to their connections with multiple orchestration qubits. And
indeed, by exploiting the bridges, communication opportunities
are facilitated among clients adjacent to different orchestration
qubits, by properly manipulating them as proved in Lemmas 1
and 3

C. From Physical Star Topology to Artificial Enhanced Ring
Topology

The on-demand capability of the artificial quantum topology
to adapt to the different communication needs is further en-
hanced by engineering a graph state with a denser connectiv-
ity – i.e., the generalized tree-like graph – by paying a price
consisting in the higher complexity of the state generation
process.

Here, we first prove in Lemma 4 how to obtain an artificial
enhanced ring topology among the clients, starting from the
generalized tree-like graph state. This artificial topology is
referred to as “enhanced ring topology”, due to its structure,
which resembles the classical ring topology augmented with
additional edges among the clients.

Lemma 4: By distributing an n-qubit generalized tree-like
graph state through the QLAN, then an artificial enhanced ring
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Fig. 8. Generation of an enhanced ring topology among the k clients of the
QLAN starting from an n-qubit tree-like state with kc = 5, k̂b = 2 and k̄b =

2 k̂b = 4. The artificial topology is obtained by (wisely) measuring each qubit
retained at the orchestrator, according to Lemma 4.

Fig. 9. Generation of an enhanced ring topology among the k clients of the
QLAN starting from a ( 32k − 1)-qubit tree-like graph state, with kc = k̄b = 4,

k̂b = 2 and kb = 2k̂b = 4. In particular, the artificial topology is obtained
by (wisely) measuring each qubit retained at the orchestrator, according to
Lemma 4.

topology interconnecting the k clients, characterized by an edge

set with cardinality equal tono

(
kc

2

)− 2(no − 1)
(
k̂b

2

)
, can be ob-

tained by performing no = k−k̂b

kc−k̂b
local Pauli σy-measurements

on the orchestrator qubits.
Proof: Please refer to Appendix D. �
The result of Lemma 4 implies that the final neighborhood

of a client – i.e., the number of artificial links generated at each
client by measuring the qubits at the orchestrator – depends on
kc, which in turns is lower bounded by the number of bridges,
i.e., kc ≥ k̄b. This is evident by comparing Figs. 8 and 9,
characterized by two different values of kc. Indeed, it is valuable
to observe that for a generalized tree-like graph with kc edges
for each orchestration vertex equal to the minimum one – i.e.,
kc = k̄b = 2k̂b as represented in Fig. 9 – the cardinality of the
edge set of the artificial enhanced ring topology simplifies to
k̂b((no + 1)k̂b − 1).

We emphasize that we named the built artificial topology
as “enhanced ring topology”, since its structure resembles the
shape of a classical ring topology augmented with additional

links among the nodes. The concept of artificial enhanced ring
topology represents a remarkable quantum counterpart of the
classical ring topology. Indeed, in classical ring topologies,
each node communicates with exactly two neighboring nodes.
Data travels along the ring, passing from one device to the next
one until reaching its destination [52], [53]. Despite offering
significant advantages over classical bus (such as simpler
routing algorithms) topologies, a classical ring topology cannot
tolerate the failure of neither the bus nor any single node, and
it poses significant deployment challenges when it comes to
network expansion.

Conversely, artificial enhanced ring topologies do not con-
straint each node to communicate with exactly two neighboring
nodes, since each client has multiple artificial pathways to
connect with the selected client destination. Thus, the network
flexibility and adaptability to the communication needs is even
further increased with respect to the artificial bus topology.
Furthermore, as we will prove in the next section, the persistency
of the graph state associated to the artificial enhanced ring
topology is no, which is greater than 1. Thus, as for the artificial
bus topology, the enhanced ring topology overcomes the single
point-of-failure inherent in classical ring scenarios. In other
words, if one or more qubits are lost or measured, the remaining
clients in the network can still communicate by utilizing the
remaining artificial links within the topology. Furthermore, the
ability to dynamically reconfigure paths based on the redundant
artificial connections of the artificial topology enhances the
overall reliability and adaptability of the quantum network.

It is also interesting to observe that, in the case of artificial
topologies enabled by entanglement, the network expansion can
be easily achieved by increasing the size of the multipartite
state distributed within the QLAN, hence by overcoming another
challenge of the classical world.

The anchor role played by the bridges and highlighted for
the chain graph resource state can be further stressed for the
generalized tree-like resource, as proved in the following.

Lemma 5 (Entanglement Rolling in generalized tree-like
graph states): By distributing an n-qubit generalized tree-like
graph state though the QLAN among k clients, an artificial
link interconnecting two clients ci, cj ∈ Vc, i �= j can be built
by performing d(ci, cj) σx-Pauli measurements on the qubits
retained at the orchestrator and associated to vertices belonging
the shortest path pci,cj connecting ci and cj .

Proof: Please refer to Appendix E. �
A pictorial representation of the results of Lemma 5 is re-

ported in Fig. 10. In such a figure, for different versions of the
generalized tree-like topology, non-adjacent clients c1 and c8 are
finally connected by an artificial link, i.e, they become neigh-
bor in the artificial topology, by performing d(c1, c8) σx-Pauli
measurements on the orchestration qubits. Also for this case,
we named the effects induced by Lemma 5 on the topology, as
entanglement rolling to highlight the roller effects on the client
artificial connections.

From the above description – and made evident by Fig. 10
– entanglement rolling implements some sort of entanglement
swapping, yet allowing a more efficient extraction of EPR
pairs. More into details, with a traditional “entanglement
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Fig. 10. Pictorial representation of the entanglement rolling effects on generalized-tree like states, accordingly to Lemma 5.

swapping”-like strategy, the identities of the swapper nodes
and the corresponding entanglement path should be identified
a priori, by loosing in capability to dynamically adapt to
the communications needs and to accommodate in parallel
different transmissions. On the contrary, the reduction of
proximity between selected clients via rolling can be exploited
to efficiently extract Bell pairs. As an example, let us consider
the resulting artificial topology after the entanglement rolling in
Fig. 10(c). From that figure, it is evident that, by performing a
Pauli-Z measurement on node c1 and c5 it is possible to extract
3 concurrent EPR pairs by communicating, only these two mea-
surement results and the associated measurement corrections.

Regarding the classical signaling required by the entangle-
ment rolling, a specific implementation of the classical com-
munication protocol handling such a classical signaling consti-
tutes an open problem, highly relevant and intriguing for future
development of QLANs. Indeed, such a protocol should try to
aggregate as much classical signaling as possible within the same
message for overhead reduction. As an example, the orchestrator
can aggregate, in a single communication round, the unitary
correction information (required by the clients after the σx-Pauli
measurements at the orchestrator itself) with the instructions for
c1 and c5 about measuring their qubits after the rolling oper-
ations, all into a single classical message. Preliminary results
about the interplay between quantum operations and classi-
cal communication for engineering the QLAN entanglement-
enabled connectivity have been derived in [54]. Specifically, two
classical communication protocols, i.e., a measurement protocol
and a correction protocol, have been implemented in SeQUeNCe
network simulator [55].

1) Enhanced Ring: Quantifying Entanglement: One of the
aspect worthwhile of further analysis is to quantify the entan-
glement in enhanced ring topologies.

To this aim, a widely used approach consists in evaluating the
Schmidt measure Es(|G〉) [26]. However, even if the Schmidt
measure stands as an important tool for quantifying the entan-
glement of a quantum state, it can be very hard to calculate,
since it requires the decomposition of the quantum state in
the LU-equivalent quantum state characterized by the smallest
number of superposed terms.

Indeed, since the enhanced ring is obtained through σy

measurements on the orchestration qubits of a generalized-
tree like state, the two-colorable structure of the original
state is not assured [26]. Stemming from this observation,
in order to quantify the entanglement within an artificial en-
hanced ring topology, the preliminary result in Lemma 6 is
needed.

Lemma 6: An artificial enhanced ring topology shared among
k clients – obtained by engineering an n-qubit generalized tree-
like graph characterized by kc > k̄b according to Lemma 4 – is
Local-Clifford (LC) equivalent to a k-qubit generalized tree-like
graph state with the same values for nc and the same number
of bridges of the original tree-like graph, but with a number of
edges per orchestration qubit given by k′c = kc − 1 and with a
number of clients equal to k′ = k − nc.

Proof: Please refer to Appendix F. �
Although the condition kc = k̄b is not captured by

Lemma 6, this is not restrictive since we can always as-
sure kc > kb, by adding fictitious nodes as discussed in
Section IV-A.
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Lemma 7: The Schmidt measure of the graph state associated
to an artificial enhanced ring topology shared among k clients –
obtained by engineering an n-qubit generalized tree-like graph
characterized by kc > k̄b according to Lemma 4 –admits a
closed form expression as follows:

ES(|Ger〉) = no. (39)

Proof: Graph states that are LC equivalent are characterized
by the same Schmidt measure. Hence, by accounting for the
result of Lemma 6, it is sufficient to determine the Schmidt
measure of the LC-equivalent generalized tree-like graph state
with kc > k̄b. To this aim, we observe that this graph state is
a two-colorable graph, for which lower and upper bounds are
known [26]. By observing that the size of the minimum vertex
cover is no, being no < k′, as well the rank of the submatrix
ΓAB of the adjacency matrix of the overall graph state, the proof
follows, since the upper and lower bounds coincide. �

According to Lemma 7, we can extract no EPR pairs from an
enhanced ring. But, differently from plain ring graph states with
the same number of qubits, the freedom in selecting the identities

of the pairs is higher. Indeed, the no

2 kc(kc − 3)− nokk̂b
k̂b−2

k−k̂b

additional edges with respect to a k-qubit ring increases the
degrees of freedom in selecting the pairs of nodes that eventually
will share an EPR pairs. Thus, this type of topology is suitable
for communication scenarios characterized by highly-variable
traffic patterns.

Finally, form the above lemma, it results also that the persis-
tency of the artificial enhanced ting topology is no, which, as
mentioned above, overcome the single-point failure of classical
ring topologies.

V. CONCLUSIONS & PERSPECTIVES

In this paper, we have introduced and modeled the pivotal
role played by multipartite entanglement within Quantum Local
Area Network (QLAN) topology. Specifically, we have shown
that the engineering of the artificial network topology enabled by
multipartite entanglement can be performed on-demand, accord-
ing to the communication needs, by exploiting only local Pauli
measurements at the node, i.e., the orchestrator, responsible for
multipartite entanglement generation and distribution. To this
aim, we proved that it is possible, by starting from a physical star
topology and by wisely manipulating multipartite entanglement,
to build different artificial topologies.

A worthwhile consideration is that the proposed network
architecture advocates for concentrating the complexity on the
orchestrator and deploying lightweight clients. Stemming from
this and by seeing a QLAN as the building block of the Quantum
Internet, the proposed architecture calls for a new philosophy
underlying the network design, where the complexity is in the
core network while leaving the edges of the network simpler.
Clearly, this inevitably clashes with the well-known repeater-
based models, in which the complexity is housed in the clients,
by mimicking classical TCP/IP design principles [4].

We hope that this work, by proposing a new perspective on the
quantum LANs and their architectures, will fuel the interest of
the community towards a major paradigm shift for the Quantum
Internet design.

APPENDIX A
PROOF OF LEMMA 1

Proof: Accordingly to Sec. II, the action of a σy-Pauli mea-
surement at the orchestrator on the qubit associated to vertex
oi is equivalent to the local complementation of the graph at
vertex oi, followed by the deletion of oi from the graph. Thus
accordingly to (19), it results:

τoi(G)− oi =

= (V \ {oi} , (E ∪N2
oi
) \ ENoi

\ Eoi), (40)

where Eoi
�
= {oi} ×Noi .

From the definition of an n-qubit chain graph state, it is easy

to recognize that ENoi
is an empty set, Eoi

�
= {oi} ×Noi =

{{oi, ci}, {oi, ci+1}} and that N2
oi

= {ci, ci+1}. Thus by per-
forming a σy-Pauli measurement on the i-th vertex at the or-
chestrator, (40) is equivalent to:

τoi(G)− oi =

= (V \ {oi} , E ∪ {ci, ci+1} \ {{oi, ci}, {oi, ci+1}}). (41)

By reasoning as above and by accounting for (40) and (41), no

σy-Pauli measurements at the no orchestrator vertices lead to

the graph G̃
(no)
y = (V (no), E(no)) with:

V (no) = V \
k−1⋃
i=1

{oi} = V \ Vo, (42)

E(no) =
{{ci, ci+1}k−1

i=1

}
. (43)

The proof follows by recognizing that the resulting graph
G̃

(no)
y exhibits a k-qubit BUS topology among all the initial k

clients.

APPENDIX B
PROOF OF LEMMA 2

Proof: Let us consider the projection operations on i-th or-
chestration qubit defined as follows:

P (oi) =

{
P

(oi)
y ⊗ I⊗(n−1) if i is odd,

P
(oi)
z ⊗ I⊗(n−1) if i is even,

(44)

where P is the projection operator associated with the σz or
σy-Pauli measurements – depending on the index – applied on
qubit oi and I is the identity operator applied on the rest of the
qubits.

Accordingly to Sec. II, the action of a σz-Pauli measurement
on the qubit associated to vertex oi is equivalent to the deletion
of vertex oi from the graph. Whereas, the action of a σy-Pauli
measurement on the qubit associated to vertex oi is equivalent
to the local complementation of the graph at vertex oi, followed
by the deletion of oi from the graph.

From this, it is evident that the resulting graph obtained viaσz-
Pauli measurement on qubit oi and the resulting graph obtained
via σy-Pauli measurement on qubit oi are characterized by the
same vertex set, while they differ in the edge sets. More into
detail, the projection operator on the i-th orchestration qubit
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leads to the following graph:

G̃(i) =

{
G̃

(i)
y = (V

(i)
y , E

(i)
y ) if i is odd,

G̃
(i)
z = (V

(i)
z , E

(i)
z ) if i is even,

(45)

with:

V (i)
y = V (i)

z = V \ {oi}, (46)

E(i)
y = (E ∪ {ci, ci+1}) \ {{oi, ci}, {oi, ci+1}} , (47)

E(i)
z = E \ {{oi, ci}, {oi, ci+1}} . (48)

Thus by performing no measurements according to (44), the
vertex set of the resulting graph is given by the unmeasured
vertices, i.e. the clients, while, by accounting for (46) and (47),
the set of edges is given by the links between two consecutive
clients whose smaller index is odd. Formally:

G̃(no) =

(
V \

no⋃
i=1

{oi}︸ ︷︷ ︸
V (no)

,

�no

2 �−1⋃
i=0

{c2i+1, c2i+2}︸ ︷︷ ︸
E(no)

)
. (49)

Thus, the graph state associated to the graph G̃(no) can be written
as:

|G̃〉 =
�no

2 �⊗
i=0

|K2〉, (50)

where |K2〉 is the two-qubit fully connected graph state, in (8),
which is LU equivalent to a Bell state. Remarkably, for the chain
graph state topology, we have thatno = k − 1, therefore �no

2 � =
�k−1

2 � = �k
2 �. This completes the proof.

APPENDIX C
PROOF LEMMA 3

As indicated in Sec. II, the σx-measurement on a qubit corre-
sponding to orchestrator vertex oi is equivalent to perform the
following sequence of graph operations

τb0 (τoi (τb0(G))− oi) , (51)

with b0 an arbitrary neighbor of oi. By accounting for the
structure of the chain graph and by Def. 9, it results that the
shortest path p{ci,cj} connecting ci and cj , is composed by
d(ci, cj)-orchestrator vertices and d(ci, cj)− 1 bridges, being
d(ci, cj) their proximity. By accounting for this consideration,
the proof follows by setting the neighbors {b0} involved in the
first d(ci, cj)− 1 σx-measurements on the orchestrator vertices
equal to the identities of the d(ci, cj)− 1 bridges belonging to
p{ci,cj}, and the last b0 – of the σx-measurement on the last
orchestrator qubit – is set equal to the client cj .

By proceeding step-by-step, the first σx-measurement is per-
formed on oi, with b0 = ci+1. If d(ci, cj) > 1, ci+1 �= cj is a
bridge, otherwise ci+1 = cj and the proof directly follows. Thus,
(51) can be re-written as:

τci+1

(
τoi

(
τci+1

(G)
)− oi

)
, (52)

with

τci+1
(G) =

⎛
⎜⎝V, (E ∪N2

ci+1
) \ ENci+1︸ ︷︷ ︸

E′

⎞
⎟⎠ , (53)

and N2
ci+1

= {oi, oi+1}. Moreover, we have that:

τoi(τci+1
(G)) =

⎛
⎜⎝V, (E′ ∪N2

oi
) \ ENoi︸ ︷︷ ︸

E′′

⎞
⎟⎠ , (54)

where the set N2
oi

is as follows:

N2
oi

=

{
{{ci, ci+1}, {ci, oi+1}, {ci+1, oi+1}} if i < no,

{ci, ci+1} if i = no,

(55)
and the set ENoi

is given by:

ENoi
=

{
{ci+1, oi+1} if i < no,

∅ if i = no.
(56)

Accordingly, the edge set E′′ includes the edges
{{ci, oi+1}, {ci, ci+1}, {ci, oi}, {ci+1, oi}}. Stemming from
this, it results that the deletion of vertex oi in (52) leads to the
resulting graph:

τoi(τci+1
(G))− oi =

⎛
⎜⎝V \ {oi}, E ′′ \ Eoi︸ ︷︷ ︸

E′′′

⎞
⎟⎠ , (57)

with Eoi = {{oi, ci}, {oi, ci+1}, {oi, oi+1}}. Thus, E
′′′

in-
cludes the edges {{ci, oi+1}, {ci, ci+1}}. We note that the
actions of the former graph operations lead to the scenario
in which ci is the only neighbor of ci+1. Therefore, the last
graph operation in (52), i.e. τci+1

(τoi(τci+1
(G))− oi), does not

change the graph.
The above results show that by performing a σx-measurement

on oi and by choosing as support node b0 the bridge ci+1, i.e.
b0 = ci+1, the overall effect is to create a direct edge between ci
and ci+1 and between ci and oi+1, while ci+1 looses its bridge
role, meaning that it looses the edge with oi+1. Thus ci and ci+1

are swapped in their artificial topology positions, reducing so the
proximity between ci and cj . From this description is already
evident the “rolling” effect, mentioned in Sec. IV.

By reasoning as above and by performing the other
(d(ci, cj)− 2) σx-measurements on d(ci, cj)− 2 orchestrator

qubits {ok}i+d(ci,cj)−2
k=i+1 , ci is progressively swapped in its topo-

logical position with the d(ci, cj)− 2 bridges, belonging to the
shortest path p{ci,cj}. Hence, at the last measurement stage on
oi+d(ci,cj)−1, ci exhibits an edge with oi+d(ci,cj)−1 which in
turns has an edge with cj . Thus by choosing as support node
b0 = cj and by reasoning as above, the proof follows.

APPENDIX D
PROOF OF LEMMA 4

Without loss of generality, in the following, we restrict our
attention on artificial topologies characterized by kc > k̄b. The
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proof can be carried similarly also for the easier case in which
kc = k̄b.

Specifically, the proof follows by adopting a similar reasoning
as in Lem. 1: first local complementations of the graph G –
associated to the generalized tree-like graph state – at vertices
{oi}no

i=1 are performed and then, each of the aforementioned
complementation is followed by the deletion of {oi} from the
resulting graph, as indicated in (19).

Accordingly to Sec IV, the graph G = (V,E) associated to
an n-qubit generalized tree-like graph state can be expressed
through star subgraphs. Formally:

G =

no⋃
i=1

G[Ṅoi ] =

no⋃
i=1

(Ṅoi , {oi} ×Noi︸ ︷︷ ︸
Eoi

), (58)

with Noi the neighborhood associated to an arbitrary orches-
tration vertex oi. To carry the proof, it is useful to explicit the
neighborhood Noi .

To this aim, we introduce a labeling for the clients based on the
splitting of the clients into two groups with increasing numbering
from left to right. Specifically, client vertices are assumed to be
placed in two separate groups, named up and down, as follows.

Vc = Vup ∪ Vdown, ∧ Vup ∩ Vdown = ∅, (59)

Vup =
{
{ci}kf

i=1

}
, (60)

Vdown =
{
{cj}kj=kf+1

}
, (61)

with kf denoting an offset value defined as: kf
�
= �kc

2 �no −
� k̂b

2 �(no − 1).
We introduce also other two offset parameters characterizing

a certain orchestration qubit oi, as follows:

kupf,oi = (�kc

2 � − � k̂b

2 � − 1)(i− 1) (62)

kdown
f,oi

= (�kc

2 � − � k̂b

2 � − 1)(i− 1). (63)

By accounting for (60), (61) and (62), (63), the neighborhood
Noi in (58) of each oi can expressed:

Noi =

{
{cj} ∈ Vup : j = i+ kupf,oi , . . . , i+ kupf,oi+

+ (�kc

2 � − 1)

}
∪
{
{cl} ∈ Vdown : l = i+ kf+

+ kdown
f,oi

, . . . , i+ kf + kdown
f,oi

+ (�kc

2 � − 1)

}
. (64)

Stemming from the above, it results that the action of a σy-Pauli
measurement at the orchestrator vertex o1 is equivalent to the
local complementation of the graph at vertex o1, followed by
the deletion of o1 from the graph:

G̃(1) = τo1(G)− o1 =

= (V \ {o1}︸ ︷︷ ︸
�
=V (1)

, [(E ∪N2
o1
) \ ENo1

] \ Eo1︸ ︷︷ ︸
�
=E(1)

), (65)

withENo1
= ∅, as a consequence of the definition of generalized

tree-like state. Accordingly, a σy-Pauli measurement at the
orchestrator vertex o1 leads to a new graph where all the clients
originally in No1 in (65) are fully interconnected, including the
clients with bridge role.

This consideration allows us to highlight that at the next
measurement step, when a σy-Pauli measurement is performed
at the orchestrator vertex o2, ENo2

is not anymore an empty set.
To provide the expression of ENoi

at the arbitrary measurement
step at at the orchestrator vertex oi, it is useful to introduce the
edge set of the bridges connected to a given orchestrator vertex
oi:

EBoi
= {{ci, cj} : ci, cj ∈ Boi , i �= j} ⊂ E(i), (66)

where Boi is defined in (26). Accordingly, in the i-th mea-
surement step, the action of a σy-Pauli measurement at the
orchestrator vertex oi leads to the graph:

G̃(i) = τoi(G̃
(i−1))− oi =

(
V (i), E(i)

)
(67)

with vertex and edge sets – V (i), E(i) – depending on the vertex
and edge sets – V (i−1), E(i−1) – in the previous measurement
step:

V (i) = V (i−1) \ {oi} (68)

E(i) = (E(i−1) ∪N2
oi
) \ ENoi

\ Eoi . (69)

The set ENoi
in (69) contains the links created between bridges

adjacent to the orchestration vertices oi and oi−1:

ENoi
=

{
∅ if i = 1,

EBoi
∩ EBoi−1

otherwise,
(70)

and N2
oi

is given by:

N2
oi

= {{cj , cl} : cj , cl ∈ Noi , j �= l} . (71)

Accordingly, at each σy measurement step, a new complete
subgraphK[Noi ] = (Noi , N

2
oi
) induced by the neighbors of oi is

created. Such a complete subgraph is reduced by the deletion of
the edges between bridge vertices belonging toEBoi ∩ EBo(i−1)

,
i.e., bridges adjacent to oi and oi−1. It is convenient to note that
the complete subgraph K[Noi ] can be equivalently obtained by
the union of star subgraph associated to each client in Noi :

K[Noi ] =
⋃

∀ci∈Noi

G[Ṅci ], (72)

where G[Ṅci ] is defined in (10) in Def. 5 as:

G[Ṅci ] = (Noi︸︷︷︸
Ṅci

, {ci} × (Noi \ {ci})︸ ︷︷ ︸
{ci}×Nci

) = (V̇ci , Ėci). (73)

Thus, the overall artificial topology, obtained after no σy-Pauli
measurements, is given by the union of all the star subgraphs
associated to each client, without the edges between internal
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bridges. Formally:

G̃(no)
y =

(
V \

no⋃
i=1

{oi}︸ ︷︷ ︸
V (no)

,

k⋃
i=1

Ėci \
no⋃
i=1

(EBoi ∩ EBo(i−1)
)

︸ ︷︷ ︸
E(no)

)
.

(74)
From the above, it results that for each external orchestration
qubit, namely oi = o1 and oi = ono

,
(
kc

2

)
new edges are cre-

ated as consequence of the complementation, while at the next

measurement step, exactly
(
k̂b

2

)
links are deleted among the

bridges belonging toEBoi ∩ EBo(i−1)
. For all the other (internal)

orchestration qubits, the number of deleted edges is doubled.
Formally, the cardinality of the edge set can be written as:

|E(no)| = 2

[(
kc
2

)
−
(
k̂b
2

)]
+ (no − 2)

[(
kc
2

)
− 2

(
k̂b
2

)]
=

= no

(
kc
2

)
− 2(no − 1)

(
k̂b
2

)
. (75)

This complete the proof.

APPENDIX E
PROOF LEMMA 5

Similarly to Lemma 3, the proof follows by setting the neigh-
bors {b0} involved in the first d(ci, cj)− 1 σx-measurements on
the orchestrator vertices equal to the identities of the d(ci, cj)−
1 bridges belonging to p{ci,cj}, and the last b0 – of the σx-
measurement on the last orchestrator qubit – is set equal to the
client cj .

For the sake of notation simplicity we assume that ci is a client
associated to orchestrator oi. Otherwise, a re-labeling of the
client ci is assumed. This is not restrictive due to the symmetry
of the structure of the generalized tree-like graph described in
Sec. IV. Accordingly, if d(ci, cj) > 1, the b0 of the first σx-
measurement has to be set equal to one of the bridges in Boi ,
as for instance, b0 = c

i+kup
f,oi

+(�kc

2 �−1)
, with kupf,oi defined in

(62). In the following for the sake of clarity, we denote with

�oi
�
= kupf,oi + (�kc

2 � − 1). As observed in the proof of Lemma 3,
the effect of the σx-measurement is to swap the positions within
the artificial topology between ci and the support node ci+�oi

,
in terms of edges with the orchestrator vertices.

By proceeding step-by-step, the first σx-measurement, per-
formed on oi with b0 = ci+�oi

, has the effect of modifying the
neighbor of ci+�oi

as follows:

Nci+�oi
= (Noi \ {ci+�oi

}). (76)

Accordingly to (76), ci+�oi
is not anymore a bridge for oi+1.

It is also interesting to note that the aforementioned behavior
is common to each bridge of the orchestrator vertices oi and
oi+1 in the initial graph. In other words, each vertex belonging
to (Boi ∩Boi+1

) with i < no, has the vertex ci+�oi
as the only

neighbor, after the measurement, loosing so its bridge role. On

the contrary, client ci assumes the role of bridge for oi+1:

Nci =

{{
ci+�oi

, oi+1

}
if i < no,

{ci+�oi
} if i = no.

(77)

The aforementioned behavior is also exhibited by the other
clients originally – before the σx-measurement – in Noi and
not in Boi ∩Boi+1

.
By accounting for the above, the overall effect of the σx-

measurement on oi is to create an artificial link between ci and
oi+1, by highlighting again the “rolling” effect mentioned in Ap-
pendix C. The proof follows, by reasoning as above. Specifically,
by performing the other (d(ci, cj)− 2) σx-measurements on
d(ci, cj)− 2 orchestrator qubits, ci is progressively swapped in
its topological position with the d(ci, cj)− 2 bridges, belonging
to the shortest path p{ci,cj}. Hence, at the last measurement stage
on oi+d(ci,cj)−1, ci exhibits an edge with oi+d(ci,cj)−1 which in
turns has an edge with cj . Thus by choosing as support node
b0 = cj and by reasoning as above, the proof follows.

APPENDIX F
PROOF LEMMA 6

Accordingly to Def. 10, two k-qubit graph states are LC
equivalent iff e corresponding graphs are related by a sequence
of local complementations.

Let us consider a k-quibit generalized tree-like graph state
whose associated graph G = (V,E) is:

V = Vo ∪ Vc
�
=

{
{oi}no

i=1 ∪ {ci}k′
i=1

}
(78)

E =

no⋃
i=1

Eoi , (79)

where Eoi
�
= {oi} ×Noi is the edge set, with cardinality k′o =

kc − 1, associated to G[Ṅoi ] and k′ = k − no. By locally com-
plementing G at vertex o1, one has:

τo1(G) =

(
V, (E ∪N2

o1
) \ ENo1

)
, (80)

where ENo1
is the empty set. In the remaining no − 1 local

complementations at vertices {oi}no
i=2, by reasoning as in rom

Appendix D, it results that ENoi
is given by:

ENoi
= EBoi

∩ EBo(i−1)
. (81)

Accordingly, at the last local complementation on vertex ono
,

the associate graph can be written as:

G(no) =

(
V,

no⋃
i=1

(E(i−1) ∪N2
oi
) \

no⋃
i=2

(EBoi
∩ EBo(i−1)

)

)
,

(82)
with E(0) = E, being the originally edge set before the first
complementation at node o1. From (82), it is easy to recognize
that:

(E(i−1) ∪N2
oi
) =

k′⋃
i=1

Ėci

no⋃
i=1

Eoi =

k′+no⋃
i=1

Ė ′
ci
. (83)
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By substituting (83) in (82), one has:

G(no) =

(
V,

k′+no⋃
i=1

Ė ′
ci
\

no⋃
i=2

(EBoi
∩ EBo(i−1)

)

)
. (84)

The proof follows, by recognizing that (84) is equivalent to (74)
in Appendix D. In other words, an artificial enhanced ring with
k = k′ + no clients is obtained.
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