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Abstract—In the near to mid future, Quantum Local Area Networks
(QLANs) – the fundamental building block of the Quantum Internet – will
unlike exhibit physical topologies characterized by densely physical con-
nections among the nodes. On the contrary, it is pragmatic to consider
QLANs based on simpler, scarcely-connected physical topologies, such
as star topologies. This constraint – if not properly tackled – will signif-
icantly impact the QLAN performance in terms of communication delay
and/or overhead. Thankfully, it is possible to create on-demand links
between QLAN nodes, without physically deploying them, by properly
manipulating a shared multipartite entangled state. Thus, it is possible
to build an overlay topology, referred to as artificial topology, upon
the physical one. In this paper, we address the fundamental issue of
engineering the artificial topology of a QLAN to bypass the limitations
induced by the physical topology. The designed framework relays only
on local operations, without exchanging signaling among the QLAN
nodes, which, in turn, would introduce further delays in a scenario very
sensitive to the decoherence. Finally, by exploiting the artificial topology,
it is proved that the troubleshooting is simplified, by overcoming the
single point of failure, typical of classical LAN star topologies.

Index Terms—Local Area Network, LAN, Quantum LAN, Multipartite
Entanglement, Graph states, Network Topology.

1 INTRODUCTION

Interconnecting different quantum processors with a Quan-
tum Local Area Network (QLAN) – namely, with a quantum
network able to cover a limited geographic area – represents
one of the very first steps for unlocking the vision of the
Quantum Internet [2]–[6]. And trial deployments of quan-
tum server farms based on technologies mimicking QLAN
have already begun [7]–[11].

It must be noted, though, that current (and near-term)
state-of-the-art of QLAN hardware requires sophisticated
and resource-intensive setups, often involving complex ex-
perimental apparatuses and precise control mechanisms.
Thus, in the short-mid time horizon, physical topologies
like fat tree and leaf-spine, typical of classical data centers
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[12], [13] and characterized by densely physical connections
among the LAN nodes, are not practical in QLANs. Con-
versely, it is quite reasonable and pragmatic to consider
simpler physical topologies for QLANs, such as star topolo-
gies [14], characterized by weaker connectivity among the
QLAN nodes.

Yet, these constraints on the physical topology induced
by the quantum hardware underlying QLAN functioning
– if not properly tackled – impact and limit the achievable
communication capabilities among the QLAN nodes.

To this aim, we cannot borrow well-established ap-
proaches from classical LANs. In fact, regardless of the
particulars of the physical (classical) LAN topology, upper
layers of the classical protocol stack are responsible to over-
come the constraints imposed by the physical topology en-
abling any-to-any communication, at the price of communi-
cation overhead and information duplication. Clearly, these
are not viable strategies in QLAN due to unconventional
quantum peculiarities, ranging from stringent coherence
times to quantum mechanics postulates and phenomena,
such as quantum measurement and the no-cloning theorem.
Besides, the design of a protocol suite for quantum networks
is still at its infancy [4], and thus the functionalities of
“quantum” upper-layers are yet to be defined.

Fortunately, the communication limitations induced by
the physical topology in QLANs can be overcame by relying
on the most distinguish feature of quantum mechanics,
namely, quantum entanglement. Specifically, entanglement
enables a new and richer form of connectivity [4], [15], [16],
referred in the following as entanglement-enabled connectivity,
with no-counterpart in classical LANs.

In fact, once an entangled state – say an EPR pair for
the sake of exemplification – has been shared between
two nodes, a qubit can be “transmitted” via quantum tele-
portation [17], [18], which does not require the physical
transmission of the quantum particle encoding the qubit
on the physical channel. Accordingly, entanglement enables
half-duplex unicast channels between any pairs of nodes,
regardless of their relative positions within the underlying
physical network topology. Hence, QLAN nodes that are
not physical connected can still directly communicate, as
long as they share some entanglement.

Additionally, entanglement is not limited to EPR pairs.
With multipartite entanglement [19], [20], the nature of
the entanglement-enabled connectivity becomes richer. As
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instance, by distributing an n-qubit GHZ state [19] among
n QLAN nodes, an EPR pair can be distributively extracted
by any pair of nodes, with the identities of the entangled
nodes chosen at run-time, accordingly to the traffic demand.
Furthermore, changing the selected multipartite entangled
state changes the specific communication patterns enabled
by the entanglement-enabled connectivity.

Consequently, by exploiting multipartite entanglement,
it is possible to augment the physical topology by introduc-
ing artificial links between un-connected nodes, without
any additional physical link. It may be useful to clarify
that an artificial link between two QLAN nodes reflects the
interaction pattern between the qubits belonging to the com-
posite multipartite entangled state. Thus, an artificial link
denotes the “possibility” of extracting a shared EPR between
the two nodes, starting from a multipartite entangled state
shared among a larger set of nodes. However, the number
of EPR pairs that can be simultaneously extracted from a
single multipartite entangled state heavily depends on the
type and structure of the considered state [21], and some of
the artificial links are depleted during the extraction process.

These artificial links constitute a sort of “overlay en-
tangled topology” built upon the physical one, referred to
as artificial topology, that can differs significantly from the
physical topology.

In this paper, we shed the lights on the possibility offered
by engineering the artificial QLAN topology to overcome
the limitations and the communication constraints induced
by the physical QLAN topology. This possibility has no
counterpart in classical networks. Indeed, it is interesting
to observe that, since entanglement is widely recognized
as a communication resource reminiscent of a resource en-
compassing both the classical physical and link layers [22],
[23], our findings highlight that the capability to enable any-
to-any communication is not constrained to be delegated
to the upper layers of the eventually designed protocol
stack for the Quantum Internet. Furthermore, through the
paper, we show how is possible to engineer the artificial
topology accordingly to the on-demand traffic requests.
And our framework relies only on local operations, without
exchanging signaling among the QLAN nodes, which, in
turn, would introduce further delays in a scenario very
sensitive to the decoherence.

We finally prove that, by exploiting the artificial topol-
ogy, it is possible to simplify the troubleshooting, by over-
coming the single point of failure, typical of classical LAN
star topologies.

1.1 Related Work

In this manuscript, we exploit the properties of a class of
multipartite entangled states, referred to as graph states [24],
that recently gained significant attention from the commu-
nity [25]–[29] due to their unique entanglement properties
[21], [24]. Indeed such properties make graph states ideal
resources for various applications in quantum computing
and quantum communications [6], [15].

In particular, graph states [21] have been widely in-
vestigated within the context of fusion-based strategies for
building larger states, starting from smaller building blocks
[29], [30]. Graph states have also been extensively studied

for “routing” EPRs through network nodes [31]. And, the
measurement-based properties [21] of graph states have
been explored for repeating operations within the optical
implementation of quantum repeaters [28].

Differently from the mentioned literature, in this paper
the aim is to dynamically adapt the artificial topology,
associated to an initial graph state, to the QLAN traffic
patterns, by overcoming the limitations induced by the
physical topology.

To the best of our knowledge, this is the first paper
engineering the intra-QLAN connectivity, by exploiting en-
tanglement. And, indeed, there was an urgent call for doing
this. In fact, recently in [16], it has been shown that the inter-
QLANs connectivity, namely, the connectivity among differ-
ent QLANs, heavily depends on the multipartite entangled
states locally generated and distributed within the single
QLANs.

The remaining part of the manuscript is organized as
follows. In Sec. 2, we introduce some preliminaries related
to graph states. In Sec. 3, we first describe the system model,
and then in Sec. 4, we develop the theoretical analysis by
providing the tools for engineering the artificial topology
beyond the limitations induced by the physical one. Finally,
in Sec. 5, we conclude the paper.

2 PRELIMINARIES

In this section, we first overview some preliminaries related
to graph theory in Sec. 2.1, which are used in Sec. 2.2 to
present and describe the class of multipartite entangled
states exploited in the remaining part of the manuscript –
namely, graph states – and the main tools for their manipula-
tion.

2.1 Graph theory fundamentals
Formally, a graph G is defined as a pair of two (finite) sets,
V and E, as follows:

G
△
= (V,E), (1)

with V denoting the set of vertices – also called nodes –
with cardinality |V | = n, and E denoting the set of edges
describing the connections between the vertices:

E = {{a, b} : a, b ∈ V ∧ a ̸= b} ⊂ V × V
△
= V 2 (2)

In the following we utilize the compact notation introduced
in (2) also for two arbitrary vertex sets A,B ⊆ V , by
denoting with the symbol A×B ⊆ V 2 the set of all possible
edges having one endpoint in A and the other in B:

A×B
△
= {{a, b} ∈ V 2 : a ∈ A ∧ b ∈ B}. (3)

Remark. Accordingly to the above, we have restricted our
attention on finite graphs, i.e., graphs with finite set of ver-
tices and edges. Furthermore, from (2), we have considered
only undirected and simple graphs (i.e., graphs where an edge
cannot connect the same vertex) since these two properties
are required for the mapping between graphs and graph
states [21], [24]. Indeed, the three mentioned properties
are quite reasonable from a merely network perspective,
where real-world networks always interconnect a finite set
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of nodes and a link having the same node as start and end-
point has no usefulness from a communication perspective.

Among the graph properties, vertex adjacency will be
heavily used through the paper, as evident from the next
definitions. Formally, given two vertices a, b ∈ V , if a and
b are connected through an edge {a, b} ∈ E, then they are
defined as adjacent vertices.

Definition 1 (Open and Closed neighborhood). The set
Na of vertices adjacent to an arbitrary vertex a is called open
neighborhood of a, and it is defined as:

Na
△
= {b ∈ V : {a, b} ∈ E}. (4)

The term “open” highlights that the vertex a is not included in the
set. Accordingly, a vertex a such that |Na| = 0 is called isolated
vertex. Conversely, whenever the vertex a should be included as
well within the set, we utilize the “closed" neighborhood Ṅa of a:

Ṅa
△
= Na ∪ {a}. (5)

Definition 2 (Induced Subgraph). The subgraph of G =
(V,E) induced by a vertex set A ⊆ V is defined as the graph
G[A] having: i) as vertices, the ones in A, and ii) as edges, the
edges in E whose endpoints are both in A. Formally:

G[A]
△
= (A,EA), (6)

with:

EA
△
=
{
{b, c} ∈ E : b ∈ A ∧ c ∈ A

}
= E ∩A2. (7)

Whether A should coincide with the neighborhood Na of some
vertex a, then G[Na] is referred to as the subgraph induced by the
neighborhood of a.

Definition 3 (Complete graph). A complete graph, also re-
ferred to as fully connected graph, is a graph where each pair of
the n = |V | vertices is adjacent. Formally:

Kn
△
= (V, V 2) (8)

Definition 4 (Star vertex). A star vertex of graph G = (V,E),
also referred to as completely connected vertex, is a vertex s ∈ V
adjacent to all the other vertices in V \ {s}. The set S of star
vertices of G is given by:

S
△
= {s ∈ V : Ns = V \ {s}} ⊆ V. (9)

Clearly, from (9) it follows that, given a star vertex s of a
graph G = (V,E), its closed neighborhood set Ṅs coincides
with V . However, in the following we use the notation Ṅs

whenever we want to emphasise the role played by s.

Definition 5 (Induced star subgraph). Let s ∈ V be a star
vertex of a graph G = (V,E). The subgraph of G induced by
its closed neighborhood Ṅs is referred to as induced star subgraph
G[Ṅs]:

G[Ṅs]
△
= (Ṅs, {s} ×Ns). (10)

Accordingly, s is the star vertex of the subgraph G[Ṅs].

Definition 6 (Graph complementation). The complement (or
inverse) of a graph G is the graph τ(G), obtained by considering
the same set of vertices V but with the edge set built such that

two distinct vertices of τ(G) are adjacent if and only if they are
not adjacent in G. Formally:

τ(G) = (V,EC), (11)

with

EC △
= V 2 \ E = {{a, b} ∈ V 2 : {a, b} ̸∈ E}. (12)

The complementation can be done also with respect to
the subgraph G[Na] induced by the neighborhood Na of
a vertex a ∈ V . In this case, it is usually referred as local
complementation of G at vertex a, and it is denoted as τa(G),
as formally defined below.

Definition 7 (Local Complementation). Given a graph G =
(V,E), the local complementation of G at vertex a ∈ V is the
graph τa(G) obtained by complementing the subgraph G[Na]
induced by neighborhood Na of vertex a, while leaving the rest
of the graph unchanged:

τa(G) =
(
V, (E ∪N2

a ) \ ENa

)
(13)

with ENa
defined in Def. 2.

Definition 8 (Vertex deletion). Given a graph G = (V,E),
the deletion of a vertex a ∈ V generates a new graph, denoted as
G − a, where both vertex a and all the edges connecting a with
its adjacent vertexes are removed. Formally:

G− a =
(
V \ {a}, E \ ({a} ×Na)

)
(14)

Hence, the edge set of G − a is the set of edges in G without the
edges with vertex a as endpoint.

Definition 9 (Path). A {a, b}-path is an ordered list p{a,b}
△
=

(a1, a2, . . . , al) of distinct vertices in V so that a = a1, b = al
and {ai, ai+1} ∈ E for any i.

Accordingly, a graph G = (V,E) is connected if, for each
pair of vertices a, b ∈ V , there exists a {a, b}-path in E.

2.2 Multipartite Entanglement: Graph states
A notable class of multipartite entangled states from a
communication perspective is represented by the so-called
graph states [21], [24], which – as suggested by the name
– can be effectively described with the graph theory tools
introduced in Sec. 2.1. Specifically, stemming from an arbi-
trary graph G defined in (1), the corresponding graph state
|G⟩ is obtained by mapping each vertex of the graph G with
a qubit in the state |+⟩, and then performing a controlled-
Z (CZ) gate between each pair of qubits corresponding to
adjacent vertices in G. The rationale underlying such a
mapping lies in the correspondence between graph edges
and interaction patterns among the qubits belonging to
the composite entangled system. In the mapping, vertices
play the role of physical systems and edges represent their
interactions.

Graph State. Formally, the n-qubit graph state |G⟩ associated
to graph G

△
= (V,E) can be expressed1 as [21]:

|G⟩ =
∏

{a,b}∈E

CZab |+⟩⊗n
, (15)

1. With a (widely adopted) notation abuse, since the application of
the CZab gate on the state |+⟩⊗n requires a reference to n − 2 identity
operations I acting on all the qubits different from a or b.
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a b c d e

(a) Representation of the graph G associated to a 5-qubits
linear graph state |G⟩.

a b c d e

(b) Representation of the graph G̃z = G− c obtained by perform-
ing a σz-measurement on the qubit associated to vertex c.

a b c d e

(c) Representation of the graph G̃y = τc(G)− c obtained
by performing a σy-measurement on the qubit associated
to vertex c.

a b c d e

(d) Representation of the graph G̃x = τd(τc(τd(G)− c)) obtained by
performing a σx-measurement on the qubit associated to vertex c.

Fig. 1: Pictorial representation of the effects of different single-qubit Pauli-measurements on a graph state. The effects are
shown by representing the graph associated with the graph state obtained after the measurements (up to local unitaries).
As widely done, a graph is represented by a diagram in a plane, where vertexes are denoted by points in the plane and
edges are denoted by arches between two vertices.

with |+⟩ = 1√
2
(|0⟩ + |1⟩), n = |V | and CZab denoting the CZ

gate applied to the qubits associated to the vertices a and b.

One could wonder whether graph states associated to
different graphs may be equivalent up to some metric. This
is clarified by the following definition.

Definition 10 (LU equivalence). Given two n-qubit quantum
states, say |G⟩ and |G′⟩, then |G⟩ and |G′⟩ are Local-Unitary
(LU)-equivalent iff there exists n local-unitary operators {Ui} so
that [32]:

|G⟩ =
⊗
i

Ui |G⟩ (16)

Accordingly to the above definition, it results that –
although each graph state |G⟩ corresponds uniquely to a
graph G – graph states associated to different graphs might
be equal up to some LU-operations [21], [24]. The mapping
between graph states and graphs is crucial beyond a merely
pictorial purpose. Specifically, the action of key operations
on a graph state |G⟩ can be described via simple transfor-
mations on the associated graph G. Among the possible
operations on graph states, Local-Clifford (LC) unitaries
(which are a subset of Local-Unitary operators) [21] and
single-qubit Pauli measurements play a crucial role for the
objectives of this manuscript.

Regarding LC unitaries, their actions can be described
via local complementations defined on the corresponding
graph. Indeed, the following result holds [21].

LC equivalence. Two n-qubit quantum states, say |G⟩ and
|G′⟩ are LC-equivalent iff the corresponding graphs G and G′ are
related by a sequence of local complementations defined in Def. 7.

Regarding single-qubit Pauli measurements, a projective
measurement through a Pauli operator σx, σy, or σz on a
qubit of the graph state |G⟩ yields, up to local unitaries
Ui,±, a new graph state |G̃⟩ on the unmeasured qubits.
Interestingly, as proved in [21], [24], this new graph state
|G̃⟩ can be obtained by means of vertex deletion and/or
local complementation (Defs. 7 and 8) on the graph G
associated to the original graph state |G⟩, as summarized
in the following and represented in Fig. 1.

Projective Measurements via Pauli Operators. The projec-
tive measurement of a qubit – associated to vertex a ∈ V in graph

G = (V,E) – of the initial graph state |G⟩ through a Pauli
operator σχ yields, up to local unitaries, to a new graph state
|G̃χ⟩2 among the remaining qubits, whose associate graph G̃χ is
obtained:

- for Pauli operator χ = σz , by deleting the vertex a from
graph G:

G̃z
△
= G− a. (17)

- for Pauli operator χ = σy , by first local complementation
of the graph G at vertex a, and then by deleting a from
graph G:

G̃y
△
= τa(G)− a. (18)

- for Pauli operator χ = σx, by concatenating the following
three graph operations: i) local complementation of the
graph G at an arbitrary neighbour vertex b0 ∈ Na, ii)
then, local complementation of the graph G at vertex a,
followed by the deletion of a from graph G, and iii) finally,
a local complementation at b0 of the graph obtained at the
previous step:

G̃x = τb0
(
τa(τb0(G))− a

)
. (19)

It is worthwhile to note that, although the choice of the
vertex b0 in the neighborhood of a at step i) is not unique,
the post-measurement graph states are LU equivalent for
any choice of b0 [21].

3 MODEL AND DESIGN PARAMETERS

In this section, we exploit the tools introduced in Sec. 2 to
show how the artificial QLAN topology can be engineered
from a communication perspective to overcome the commu-
nication constraints induced by the physical QLAN topol-
ogy. Accordingly, we have the following research objective.

Research Problem. Our goal is to create direct, artificial links
between nodes that are not neighbors in the physical topology, so
that they can directly communicate, overcoming so the communi-
cation limitations induced by the physical topology. Furthermore,
we aim at creating such links on-demand – i.e., at run-time,

2. With a mild notation abuse, the dependence on a is neglected for
the sake of notation simplicity. Similar notation abuses will be adopted
also for the following projective measurements.
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(a) (b) (c)

Fig. 2: Pictorial representation of a QLAN. The orchestrator node (shown in red) is connected to the client nodes via a
physical topology. After operations performed locally at the orchestrator, artificial topologies are built upon the physical
one: artificial bus topology, in the sub-figure (b) or artificial (enhanced) ring topology, in the sub-figure (c).

whenever needed – so that these direct links can adapt to varying
communication needs, by properly engineering a multipartite
entanglement state shared via the physical topology.

3.1 System Model
Entanglement generation and distribution within a QLAN
require highly specialized environments equipped with
challenging and expensive hardware – as instance ultra-
high vacuum systems or ultra-low temperature cryostats
– necessary to preserve the coherence of the quantum
states. And, the challenges for controlling and preserving
the quantum states get harder as the number of physical
connections increases. This makes pragmatic – given the
current maturity of the quantum technologies and given
the unavoidable requirement of some sort of local interac-
tion among the qubits to be entangled – to assume some
sort of hierarchy among network nodes, with a specialized
super-node – i.e., the orchestrator – responsible for locally
generating and then distributing a multipartite entangled
state among the network nodes [16], [33]–[35], referred to as
clients.

By accounting for the discussion about unfeasible dense
physical topologies (such as fat tree or leaf-spine) in Sec. 1,
we consider a sparse topology where the orchestrator is
directly connected through physical quantum channels to
the network nodes via a star topology, as illustrated in Fig. 2.

As defined within the Research Problem, we plan to
engineer the multipartite entanglement state – and, more
precisely, the graph state – distributed within the QLAN to
overcame the physical topology constraints induced by the
quantum hardware underlying QLAN functioning. Clearly,
there are two main degrees of freedom underlying the
choice of the initial graph state to be generated, distributed
and eventually engineered:

i) the “type” of the graph state, namely the specific
structure of the associated graph;

ii) the “dimensions" of the graph state, expressed by the
number of qubits: i) retained at the orchestrator and
ii) distributed to the clients.

3.1.1 Graph State Type
Regarding the first degree of freedom, as said, edges of the
associated graph are related to some sort of “entangling
interaction” among the qubits belonging to the composite

entangled system. Thus, by over-simplifying, the denser is
the graph associated to the graph state, the more challenging
is the generation of the corresponding graph state due to the
complexity of the underlying multipartite interactions.

In order to confer practicability to our proposal, we
consider as elementary state generated at the orchestrator
the simplest form of graph states, namely, linear cluster state.

Elementary State. Formally, for n-qubit linear cluster state |L⟩
associated to a linear graph, (15) reduces to:

|L⟩ =
n−1∏
i=1

CZ(i,i+1) |+⟩⊗n
. (20)

Indeed, linear cluster state have been already experimen-
tally generated in controlled environments [29], [30]. Fur-
thermore, recently it has been experimentally demonstrated
[36] that, starting from linear cluster states, it is possible
to realize different 2-dimensional graph states, by utilizing
properly fusion operations. Thus, our choice of starting from
linear cluster states at the orchestrator is not only practical
– being characterized by low complexity – but it is also not
restrictive.

3.1.2 Graph State Dimensions

Regarding the second degree of freedom, from its descrip-
tion it is clear that we already made a design choice, i.e., to
retain some qubits of the initial state at the orchestrator. In
other words, the hierarchy among the nodes is maintained
also in the distribution of the multipartite state.

The rationale for this choice is to be able to adapt
the resource state – aka, the graph state generated at the
orchestrator – accordingly to the on-demand traffic requests,
without the need of exchanging signaling among the clients.
This, in turns, avoids to introduce further delays in a sce-
nario very sensitive to the decoherence.

And, perhaps more importantly, this design choice
avoids the need of performing arbitrary quantum opera-
tions at the clients, as we prove in the following section.
Specifically, the desired artificial topology is built by per-
forming only local operations on the qubits retained by the
orchestrator, starting from the initial distributed state.

The key role played by the number of qubits retained at
the orchestrator is further described in the next subsections,
after collecting some definitions.
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3.2 Design Parameters

In this subsection, we map the degrees of freedom related
to the entanglement distribution process into a set of design
parameters, which allows to completely describe the topol-
ogy of the graph associated to the graph state.

Definition 11 (Number of orchestration qubits). Given a
n-qubit graph state |G⟩, the number of orchestration qubits is
indicated with:

no
△
= |Vo|, (21)

with Vo = {o1, . . . , ono
} ⊂ V denoting the subset of vertices of

the overall graph G associated with the qubits of the overall graph
state |G⟩ retained by the orchestrator.

Definition 12 (Number of client qubits). Given a n-qubit
graph state |G⟩, the number of client qubits is indicated with:

k
△
= |Vc|, (22)

with Vc = {c1, . . . , ck} ⊂ V denoting the subset of vertices of
the overall graph G associated with the qubits of the overall graph
state |G⟩ distributed to the clients.

Remark. As an example of the key role played by no and
k, let us consider a k + 1-qubit graph state distributed to k
clients. Under these assumptions, we have that the number
of qubits at the orchestrator is forced to be no = 1. Clearly,
there exists different types of graph states satisfying these
constraints, and a simple one – which also fits with the
underlying physical topology – is the one associated with a
star graph centered at the orchestrator, i.e., G = (V,E) with
E =

{
{o1, ci}ki=1

}
. Being such a graph state LU-equivalent

to a GHZ state [21], it allows to extract a single EPR pair
between any pair of nodes – i.e., between a couple of clients
or between a client and the orchestrator. From this simple
example, it appears clear that different choices about no and
k imply different features of the graph state and, hence, of
the associated graph, which in turn determine the clients
communication capabilities beyond the physical topology
constraint. This will be engineered in the Sec. 4.

Definition 13 (Orchestration qubit: client degree). Given an
orchestration vertex oi ∈ Vo, koi, ≤ k denotes its “client” degree,
i.e., the cardinality of its neighborhood N c

oi

△
= Noi ∩ Vc ⊂ V ,

restricted to the vertices associated to qubits distributed to the
clients. Formally:

N c
oi

△
= Noi ∩ Vc =

{
cj ∈ Vc : {oi, cj} ∈ E

}
⊂ V, (23)

with, koi,c = |N c
oi |.

Definition 14 (Client qubit: r-rank bridge). A client vertex
ci ∈ Vc is defined as “r-rank bridge” whenever its rank – i.e., the
cardinality of its neighborhood No

ci

△
= Nci ∩ Vo ⊂ V , restricted

to vertices associated to qubits retained at the orchestrator – is r,
which is greater than one. Formally:

No
ci

△
= Nci ∩ Vo =

{
oj ∈ Vo : {oj , ci} ∈ E

}
⊂ V, (24)

with, |No
ci | = r > 1.

Definition 15 (Orchestration qubit: bridge degree). Given
an orchestration vertex oi ∈ Vo, 0 < kroi,b ≤ k denotes its “r-
rank bridge degree”, i.e., the cardinality of its neighborhood Noi ,
restricted to vertices associated to bridges with rank r:

kroi,b
△
= |Br

oi |, with Br
oi

△
=
{
ci ∈ Noi : |No

ci | = r
}
. (25)

In the following, we denote with the symbols k̄rb and k̂rb
the maximum and minimum values for the r-rank bridge
degrees among all the orchestration qubits, i.e.:

k̄rb
△
= max

oi∈Vo

{kroi,b}, (26)

k̂rb
△
= min

oi∈Vo,
{kroi,b}. (27)

4 FROM PHYSICAL TO ARTIFICIAL TOPOLOGY

Here, we develop the main tools for addressing the research
problem introduced in Sec. 3:

bypassing the communication limitations induced by the
physical QLAN topology by building artificial topolo-
gies – such as bus and (enhanced) ring topologies –
interconnecting nodes at run-time, accordingly to the
traffic demand.

We highlight that motivations and interest for these
artificial topologies are not arbitrary. Indeed, the graph
states associated to these topologies exhibit an application
value, representing the main resources for measurement-
based quantum information processing and computation
[27], [37], [38]. Furthermore, limiting the analysis to these
artificial topologies is not restrictive, since it is possible to
build different topologies starting from the considered ones,
as experimentally proved [36].

4.1 Distributed State Design

As pointed out in Sec. 3.1, we consider – as elementary
multipartite states generated at the orchestrator – linear
cluster states since they are experimentally-feasible and they
can be merged to obtain more complex states.

Yet, there exists different design choices in choosing: i)
the specific final graph state (obtained by combining the
elementary states) to be distributed and ii) the specific
distribution pattern of the individual qubits of the final
state to the nodes of the QLAN. We summarize our design
choices in the following.

Design Principles. The generation and distribution process of
the n-qubit graph state |G⟩ through a QLAN with k clients is
performed so that the graph G = (V,E) associated to |G⟩ satisfies
the following conditions:

i) V = Vo ∪ Vc ∧ Vo ∩ Vc = ∅ (28)
ii) |Vo| > 1 ∧ |Vc| = k (29)
iii) ∀{a, b} ∈ E : a ∈ Vo ∧ b ∈ Vc (30)
iv) koi,c = kc ∀ oi ∈ Vo, ∧∃ := r′ : (31){

kr
′

oi,b
̸= 0, ∀ oi ∈ Vo

kr
′

b,oi
= k̄r

′

b = k̄b ∨ kr
′

b,oi
= k̂r

′

b = k̂b, ∀oi ∈ Vo

The first constraint is quite axiomatic, forcing the orches-
trator to distribute the qubits of the multipartite entangled
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(a) Example of a chain graph state, obtained by first gener-
ating at the orchestrator a linear cluster state, and then by
distributing the entangled qubits to the clients so that any
qubit retained at the orchestrator is adjacent to two qubits
distributed at two different clients.

(b) Example of a generalized tree-like, obtained by first generat-
ing at the orchestrator two linear cluster states, and by wisely
performing fusion operations. Then, the qubits are distributed
to the k clients, so that any qubit retained at the orchestrator is
associated to a vertex, which is adjacent to kc client vertices.

Fig. 3: Pictorial representation of chain and generalized tree-like graph states, obtained starting from a linear cluster state.

state, either to clients or to itself, as a local resource for
forcing the artificial connectivity among the clients toward
the topology of interest, as we prove in the following.

As for the second constraint, it allows us to consider the
worst-case scenario from a communication perspective: each
client receives only one qubit of the multipartite entangled
state for fulfilling the on-demand traffic requests.

The third constraint forces the graph state to exhibit
“vertical” edges among the two different hierarchy levels
represented by Vo and Vc – i.e., between orchestrator and
clients vertices – rather than ‘horizontal” edges within the
same level. This design choice is key to “remotely” tune the
artificial connectivity among the clients by only manipulat-
ing the qubits at the orchestrator, as proved in the following.
Furthermore, we note that the absence of horizontal edges
enforces a two-colorable structure [21], [24] on the distributed
graph state. In fact, a graph G = (V,E) is two-colorable if
the set of vertices V can be partitioned into two subsets so
that there exist no edge in E between two vertices belonging
to the same subset. For our modeling, the final graph state
G = (V,E) is also denoted as G = (Vo, Vc, E) whenever we
want to empathize the two-colorable property.

Finally, as for the fourth constraint, it enforce a recursive
and regular structure within the graph underlying the graph
state after the distribution, in the light of practicability.
Accordingly, we require3 that the client degree is koi,c = kc
for all the orchestration qubits. Furthermore, we requires
that all the bridges have the same rank – say r′ adjacent
orchestrator vertices – and that each orchestrator is adjacent
to either k̄b or k̂b bridges4. Accordingly, the final graph state
exhibit a recursive and regular structure, as shown in Fig 3,
consisting in a recursive topology built by concatenating
elementary constituents represented by the star subgraph
G[Ṅoi ] induced by the closed neighborhoods Ṅoi of the
orchestrator vertices. In this topology, the maximum num-

3. We note that, having a fixed values for koi,c is not restrictive, since
this condition can be easily satisfied by introducing fictitious clients
during the entanglement generation process.

4. Hence, it results kc ≥ k̄b ≥ k̂b by definition.

ber of bridges k̄b is exhibited by intermediate orchestration
qubits, whereas the the minimum number of bridges is k̄b is
exhibited by the two orchestration qubits at the edges of the
structure.

Stemming from the above four design principles, we
design two different type of graph states to be distributed
within the QLAN – both characterized by 2-rank bridges –
referred to as chain graph state and generalized tree-like graph
state, and formally defined in the following.

Chain Graph State. A n-qubit ‘chain” graph state can be dis-
tributed through a QLAN with k clients by retaining no = k− 1
qubits at the orchestrator and by setting kc = 2, k̄b = 2 and
k̂b = 1. Accordingly, the associated graph G = (V,E) satisfies
the following:

V = Vo ∪ Vc, with Vo
△
= {oi}k−1

i=1 ∧ Vc
△
= {ci}ki=1, (32)

E =
k−1⋃
i=1

{
{oi, ci}, {oi, ci+1}

}
. (33)

Remark. A chain graph state can be straightforwardly ob-
tained from a linear graph state |L⟩ as depicted in Fig. 3a. In
a nutshell, it is sufficient to generate a (2k − 1)-qubit linear
cluster state at the orchestrator, and to wisely distribute
k qubits to the clients, so that any qubit retained at the
orchestrator is associated to a vertex, which is adjacent to
two client vertices corresponding to the qubits distributed
to two different clients.

Generalized Tree-Like Graph State. A n-qubit “generalized
tree-like” graph state can be distributed through a QLAN with
k clients by retaining no = k−k̂b

kc−k̂b
qubits at the orchestrator for

arbitrary values of kc, k̄b, k̂b ∈ N+. Accordingly, the associated
graph G = (V,E) satisfies the following:

V = Vo ∪ Vc, with Vo
△
= {oi}no

i=1 ∧ Vc
△
= {ci}ki=1 (34)

E =
no⋃
i=1

(
{oi} ×Noi

)
. (35)
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From (35), it is evident that the graph associated to the
generalized tree-like graph, after the distribution process,
appears as the concatenation of no star subgraphs, defined
in Def. 5, each having kc edges – G[Ṅoi ] = (Ṅoi , {oi}×Noi)
with i ∈ {1, . . . , no} – induced by Ṅoi and with {oi}no

i=1

as star vertexes of the subgraphs. The concatenation utilizes
as anchor vertices the k̄b bridges for internal orchestrator
qubits and as anchor vertices the k̂b bridges for the 2
external orchestrator qubits. Clearly, similar considerations
can be made for the chain graph, by looking at (33).

Remark. As depicted in Fig. 3b for kc = 5, k̄b = 4 and
k̂b = 2, a generalized tree-like graph state can be obtained
by generating at the orchestrator two linear cluster states
and by wisely performing fusion operations at the orchestra-
tor. After that, the qubits are distributed to the k clients, so
that any qubit retained at the orchestrator is associated to a
vertex, which is adjacent to kc client vertices corresponding
to the qubits distributed to the kc different clients. It is
evident from Figs. 6 and 7 that the structure of the graph
resembles a tree. This consideration induced us to label it as
“generalized tree-like” graph state

Stemming from the concept of bridge, we can now pro-
vide the last definition, utilized in the theoretical analysis.

Definition 16 (Client proximity). Given two clients ci, cj ∈
Vc ⊂ V with i ̸= j, their proximity d(ci, cj) is defined as the
number of bridges belonging to the shortest path, connecting the
two clients within the graph G = (V,E), plus one. Formally::

d(ci, cj) = 1 +
∣∣{a ∈ p{ci,cj} : a ∈ Vc ∧ |No

a | > 1
}∣∣, (36)

with p{ci,cj} denoting the shortest path among all the possible
paths defined in Def. 9.

We highlight that two clients ci, cj ∈ Vc ⊂ V adjacent
to the same orchestration qubit in the designed resource
states have the minimum possible value of proximity, i.e.,
d(ci, cj) = 1.

4.2 From Physical Star Topology to Artificial Bus
Topology

Here, we prove in Lemma 1 how to engineer a chain graph
state distributed through the QLAN so that all the clients are
eventually interconnected by an an artificial bus topology,
i.e., a linear graph among the vertices associated to qubits
stored at the clients.

Lemma 1. By distributing a (2k − 1)-qubit chain graph state
through the QLAN, an artificial bus topology interconnecting k
clients can be obtained by performing nc = (k−1) local σy-Pauli
measurements of the qubits retained at the orchestrator.

Proof: Please refer to Appendix A in the Supplementary
Material.

As depicted in Fig. 4, the results of Lemma 1 imply
that is possible to build an artificial topology directly in-
terconnecting clients with artificial links – even if they are
not physically connected in the physical topology – by
exploiting only local operations at the orchestrator. From
a communication engineering perspective, this is valuable
since the orchestrator can tune the artificial connectivity for
dynamically satisfying the client traffic patterns after – rather

{σy, σy, . . . , σy}

no = k − 1 qubits

. . .

. . .

c1 c2 c3 ck−2 ck−1 ck

Orchestrator Level Client level

Fig. 4: Generation of an artificial bus topology among the k
clients of the QLAN starting starting from a (2k − 1)-qubit
chain state. The artificial topology is obtained by (wisely)
measuring each qubit retained at the orchestrator, according
to Lem. 1.

than before – the entanglement distribution process has been
completed.

Remark. Clearly, the orchestrator could have distributed a
bus (linear) graph state since the beginning as initial state.
Yet, whenever the client communication needs at run-time
would involve pairs of clients that happen to be distant
within the linear topology, the distributed state should be
further processed to be adapted to those needs. This requires
a sequence of quantum operations and classical coordina-
tion/signaling at and between the clients – as an example,
entanglement swapping at the intermediate node(s) [] – for
satisfying such needs, inducing so further overhead and
delays in a scenario very sensitive to the decoherence. On
the contrary, our framework allows to build at run-time
the most suitable topology, without the need of additional
signaling nor quantum operations at the clients, by exe-
cuting only local operations on the qubits retained by the
orchestrator, starting from the initial multipartite state.

To provide a deeper insight of the ability of our frame-
work to dynamically adapt to traffic demands, let us con-
sider the extraction of EPR pairs between couple of clients
as the final communication task, as instance for performing
qubit transmission via quantum teleportation. To this aim,
the artificial bus topology enables the simultaneous extrac-
tion of ⌊k

2 ⌋ EPR pairs [21], depending on the identities of
the clients aiming at communicate each other. One could
be induced to believe that this task would require some
sort of cooperation from the clients. This is true in general,
but our framework allows to achieve the same result by
exclusively acting locally at the orchestrator, as proved with
the following lemma.

Lemma 2. By distributing a (2k − 1)-qubit chain graph state
through the QLAN among k clients, then up to ⌊k

2 ⌋ EPR pairs can
be obtained by performing nc Pauli-measurements on the qubits
retained at the orchestrator.

Proof: Please refer to Appendix B in the Supplementary
Material.
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Fig. 5: Entanglement rolling: generation of an artificial link
between two clients ci and cj starting from a (2k− 1)-qubit
chain state. In the example, the clients to be interconnected
within the artificial topology are c1 and c3,- whose proximity
distant in the initially distributed chain state is d(c1, c3) = 2.

Stemming from this result, it is worth to discuss a
parallel with respect to classical LAN topologies. Specifi-
cally, this capability to fulfill in parallel up to ⌊k

2 ⌋ different
qubit transmissions has no counterpart in classical LANs
resembling the same topology, such as the classical bus
topology. Indeed, in such a classical case, a single medium
– e.g., a coaxial cable – is shared among all the LAN
nodes, which allows only one communication per use of
the channel. Furthermore, although cost-effective and easy
to deploy, the classical bus topology introduces a point-
of-failure vulnerability: whenever the bus fails, the entire
LAN experiences service disruption [39]. On the contrary,
the persistency of the graph state described by the artificial
bus topology is indeed ⌊k

2 ⌋ [21], [40]. The persistency –
namely, the minimum number of qubits that need to be
measured to guarantee that the resulting state is separable
[4] – indicates the robustness of a multipartite state against
losses or accidental measurements of a qubit, which destroy
entanglement. In this light, the persistency can be seen as a
quantum equivalent of resistance to point-of-failure vulner-
ability, mentioned above. Thus, also by accounting for this
communication metric, the artificial bus topology represents
an improvement with respect to the classical world.

The above mentioned capability of the artificial topol-
ogy to dynamically adapt to traffic demands by processing
qubits retained at the orchestrator is further stressed by
the following result, where d(ci, cj) denotes the proximity
between clients ci and cj defined in Def. 16 .

Lemma 3. (Entanglement Rolling) By distributing a 2k −
1-qubit chain graph state through the QLAN among k clients,
an artificial link inter-connecting two clients ci, cj ∈ Vc, i ̸= j
can be built by performing d(ci, cj) σx Pauli-measurements on
the qubits retained at the orchestrator and associated to vertices
belonging the the shortest path pci,cj connecting ci and cj .

Proof. Please refer to Appendix C in the Supplementary
Material.

. . .

{σy, σy, . . . , σy}

. . .

. . .

. . .

Fig. 6: Generation of an enhanced ring topology among
the k clients of the QLAN starting from a n-qubit tree-
like state with kc = 5, k̂b = 2 and k̄b = 2 k̂b = 4. The
artificial topology is obtained by (wisely) measuring each
qubit retained at the orchestrator, according to Lem. 4.

A pictorial representation of the results of Lemma 3 is
reported in Fig. 5. There, the two clients c1 and c3 – which
are neither physical connected nor virtually connected in
the initial distributed multipartite state – are eventually
connected by an artificial link. For this, it suffices to perform
2 = d(c1, c3) σx-Pauli measurements on specific orchestra-
tion qubits. We named the effects induced by Lemma 3 on
the topology as entanglement rolling to highlight the roller
effects on the client artificial connections. It is worthwhile
to emphasize that the result of Lemma 3 is not equivalent
to extract EPR pairs from the overall multipartite state. It
rather goes in the direction of properly manipulating and
adapting the artificial topology, by relaying on the orchestra-
tion qubits to effectively adapt to the traffic-demands and at
the same time to save in terms of communication overhead.
Remark. As detailed in the appendix, the key role played
by the bridges in the designed resource states is to act as
anchors in the artificial topology. Specifically, bridges act
as anchors capable of connecting different sub-nets within
the overall topology due to their connections with multiple
orchestration qubits. And indeed, by exploiting the bridges,
communication opportunities are facilitated among clients
adjacent to different orchestration qubits, by properly ma-
nipulating them as proved in Lemmas 1 and 3

4.3 From Physical Star Topology to Artificial Enhanced
Ring Topology
The on-demand capability of the artificial quantum topol-
ogy to adapt to the different traffic demands is further
enhanced by engineering a graph state with a denser con-
nectivity – i.e., the generalized tree-like graph – by paying
a price consisting in the higher complexity of the state
generation process.

Here, we first prove in Lemma 4 how to obtain an artifi-
cial enhanced ring topology among the clients, starting from
the generalized tree-like graph state. This artificial topology is
referred to as “enhanced ring topology”, due to its structure,
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{σy, σy, . . . , σy}

no = k
2 − 1 qubits

. . .

. . .

. . .
c(k/2+1)

. . .
c1 c2 c3 c(k/2−2) c(k/2−1) ck/2

c(k/2+2) c(k/2+3) c(k−2) c(k−1) ck

Fig. 7: Generation of an enhanced ring topology among the
k clients of the QLAN starting from a ( 32k − 1)-qubit tree-
like graph state, with kc = k̄b = 4, k̂b = 2 and kb = 2k̂b = 4.
In particular, the artificial topology is obtained by (wisely)
measuring each qubit retained at the orchestrator, according
to Lem. 4.

which resembles the classical ring topology augmented with
additional edges among the clients.

Lemma 4. By distributing a n-qubit generalized tree-like graph
state through the QLAN, then an artificial enhanced ring topology
interconnecting the k clients, characterized by an edge set with
cardinality equal to no

(kc

2

)
− 2(no − 1)

(k̂b

2

)
, can be obtained

by performing no = k−k̂b

kc−k̂b
local Pauli σy-measurements on the

orchestrator qubits.
Proof: Please refer to Appendix C in the Supplementary

Material.

The result of Lemma 4 implies that the final neighbor-
hood of a client – i.e., the number of artificial links generated
at each client by measuring the qubits at the orchestrator –
depends on kc, which in turns is lower bounded by the num-
ber of bridges, i.e., kc ≥ k̄b. This is evident by comparing
Fig. 6 and Fig. 7, characterized by two different values of kc.
Indeed, it is valuable to observe that for a generalized tree-
like graph with kc edges for each orchestration vertex equal
to the minimum one – i.e., kc = k̄b = 2k̂b as represented
in Fig. 7 – the cardinality of the edge set of the artificial
enhanced ring topology simplifies to k̂b((no + 1)k̂b − 1).

We emphasize that we named the built artificial topology
as “enhanced ring topology”, since its structure resembles
the shape of a classical ring topology augmented with
additional links among the nodes. The concept of artificial
enhanced ring topology represents a remarkable quantum
counterpart of the classical ring topology. Indeed, in classical
ring topologies, each node communicates with exactly two
neighboring nodes. Data travels along the ring, passing from
one device to the next one until reaching its destination [41],
[42]. Despite offering significant advantages over classical
bus (such as simpler routing algorithms) topologies, a clas-
sical ring topology cannot tolerate the failure of neither the

bus nor any single node, and it poses significant deployment
challenges when it comes to network expansion.

Conversely, artificial enhanced ring topologies do not
constraint each node to communicate with exactly two
neighboring nodes, since each client has multiple artificial
pathways to connect with the selected client destination.
Thus, the network flexibility and adaptability to the traf-
fic demands is even further increased with respect to the
artificial bus topology. Furthermore, as we will prove in the
next section, the persistency of the graph state associated to
the artificial enhanced ring topology is no, which is greater
than 1. Thus, as for the artificial bus topology, the enhanced
ring topology overcomes the single point-of-failure inherent
in classical ring scenarios. In other words, if one or more
qubits are lost or measured, the remaining clients in the
network can still communicate by utilizing the remaining
artificial links within the topology. Furthermore, the ability
to dynamically reconfigure paths based on the redundant
artificial connections of the artificial topology enhances the
overall reliability and adaptability of the quantum network.

It is also interesting to observe that, in the case of
artificial topologies enabled by entanglement, the network
expansion can be easily achieved by increasing the size of
the multipartite state distributed within the QLAN, hence
by overcoming another challenge of the classical world.

The anchor role played by the bridges and highlighted
for the chain graph resource state can be further stressed
for the generalized tree-like resource, as proved in the
following.

Lemma 5. (Entanglement Rolling) By distributing a n-qubit
generalized tree-like graph state though the QLAN among k
clients, an artificial link interconnecting two clients ci, cj ∈
Vc, i ̸= j can be built by performing d(ci, cj) σx-Pauli measure-
ments on the qubits retained at the orchestrator and associated to
vertices belonging the shortest path pci,cj connecting ci and cj .

Proof: Please refer to Appendix E in the Supplementary
Material.

A pictorial representation of the results of Lemma 5 is
reported in Fig. 8. In such a figure, for different versions
of the generalized tree-like topology, non-adjacent clients c1
and c8 are finally connected by an artificial link, i.e, they
become neighbor in the artificial topology, by performing
d(c1, c8) σx-Pauli measurements on the orchestration qubits.
Also for this case, we named the effects induced by Lemma 5
on the topology, as entanglement rolling to highlight the
roller effects on the client artificial connections.

4.4 Enhanced Ring: Quantifying Entanglement
One of the aspect worthwhile of further analysis is to
quantify the entanglement in enhanced ring topologies.

To this aim, a widely used approach consists in eval-
uating the Schmidt measure Es(|G⟩) [21]. However, even
if the Schmidt measure stands as an important tool for
quantifying the entanglement of a quantum state, it can be
very hard to calculate, since it requires the decomposition
of the quantum state in the LU-equivalent quantum state
characterized by the smallest number of superposed terms.

Indeed, since the enhanced ring is obtained through σy

measurements on the orchestration qubits of a generalized-
tree like state, the two-colorable structure of the original
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(a) Example of entanglement rolling with generalized tree-like topology and kc = 5, no = 2 and k̂b = 2. In this example, clients c1
and c8 have a proximity d(c1, c8) = 2.
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(b) Example of entanglement rolling with generalized tree-like topology and kc = 6, no = 2 and k̂b = 3. In this example, clients c1
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(c) Example of entanglement rolling with generalized tree-like topology and kc = 4, no = 3 and k̂b = 2. In this example, clients c1
and c8 have a proximity d(c1, c8) = 3.

Fig. 8: Pictorial representation of the entanglement rolling effects on generalized-tree like states, accordingly to Lemma 5.

state is not assured [21]. Stemming from this observation,
in order to quantify the entanglement within an artificial
enhanced ring topology, the preliminary result in Lemma 6
is needed.

Lemma 6. An artificial enhanced ring topology shared among k
clients – obtained by engineering a n-qubit generalized tree-like
graph characterized by kc > k̄b according to Lemma 4 – is Local-
Clifford (LC) equivalent to a k-qubit generalized tree-like graph
state with the same values for nc and the same number of bridges
of the original tree-like graph, but with a number of edges per
orchestration qubit given by k′c = kc − 1 and with a number of
clients equal to k′ = k − nc.

Proof: Please refer to Appendix. F in the Supplementary
Material.

Although the condition kc = k̄b is not captured by
Lemma 6, this is not restrictive since we can always assure

kc > kb, by adding fictitious nodes as discussed in Sec. 4.1.

Lemma 7. The Schmidt measure of the graph state associated
to an artificial enhanced ring topology shared among k clients
– obtained by engineering a n-qubit generalized tree-like graph
characterized by kc > k̄b according to Lemma 4 –admits a closed
form expression as follows:

ES(|Ger⟩) = no. (37)

Proof: Graph states that are LC equivalent are character-
ized by the same Schmidt measure. Hence, by accounting for
the result of Lemma 6, it is sufficient to determine the Schmidt
measure of the LC-equivalent generalized tree-like graph state with
kc > k̄b. To this aim, we observe that this graph state is a two-
colorable graph, for which lower and upper bounds are known
[21]. By observing that the size of the minimum vertex cover is
no, being no < k′, as well the rank of the submatrix ΓAB of the
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adjacency matrix of the overall graph state, the proof follows, since
the upper and lower bounds coincide.

According to Lemma 7, we can extract no EPR pairs
from an enhanced ring. But, differently from plain ring
graph states with the same number of qubits, the freedom
in selecting the identities of the pairs is higher. Indeed, the
no

2 kc(kc − 3)− nokk̂b
k̂b−2

k−k̂b
additional edges with respect to

a k-qubit ring increases the degrees of freedom in selecting
the pairs of nodes that eventually will share an EPR pairs.
Thus, this type of topology is suitable for communication
scenarios characterized by highly-variable traffic patterns.

Finally, form the above lemma, it results also that the
peristency of the artificial enhanced ting topology is no,
which, as mentioned above, overcome the single-point fail-
ure of classical ring topologies.

5 CONCLUSIONS

In this paper, we have introduced and modeled the pivotal
role played by multipartite entanglement within Quantum
Local Area Network (QLAN) topology. Specifically, we
have shown that the engineering of the artificial network
topology enabled by multipartite entanglement can be per-
formed on-demand, according to the communication needs,
by exploiting only local Pauli measurements at the node
responsible for multipartite entanglement generation and
distribution. To this aim, we proved that it is possible,
by starting from a physical star topology and by wisely
manipulating multipartite entanglement, to build different
artificial topologies. We hope that this work, by proposing a
new perspective on the concept of quantum LANs, will fuel
the interest of the community towards QLANs as building
block for the future Quantum Internet.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Accordingly to Sec. 2, the action of a σy-Pauli
measurement at the orchestrator on the qubit associated to
vertex oi is equivalent to the local complementation of the
graph at vertex oi, followed by the deletion of oi from the
graph. Thus accordingly to (18), it results:

τoi(G)− oi = (38)

= (V \ {oi} , (E ∪N2
oi) \ ENoi

\ Eoi),

where Eoi
△
= {oi} ×Noi .

From the definition of a n-qubit chain graph state, it is
easy to recognize that ENoi

is an empty set, Eoi
△
= {oi} ×

Noi =
{
{oi, ci}, {oi, ci+1}

}
and that N2

oi = {ci, ci+1}. Thus
by performing a σy-Pauli measurement on the i-th vertex at
the orchestrator, (38) is equivalent to:

τoi(G)− oi = (39)

= (V \ {oi} , E ∪ {ci, ci+1} \
{
{oi, ci}, {oi, ci+1}

}
).

By reasoning as above and by accounting for (38) and (39),
no σy-Pauli measurements at the no orchestrator vertices
lead to the graph G̃

(no)
y = (V (no), E(no)) with:

V (no) = V \
k−1⋃
i=1

{oi} = V \ Vo, (40)

E(no) =
{
{ci, ci+1}k−1

i=1

}
. (41)

The proof follows by recognizing that the resulting graph
G̃

(no)
y exhibits a k-qubit BUS topology among all the initial

k clients.

APPENDIX B
PROOF OF LEMMA 2

Proof: Let us consider the projection operations on i-
th orchestration qubit defined as follows:

P (oi) =

{
P

(oi)
y ⊗ I⊗(n−1) if i is odd,

P
(oi)
z ⊗ I⊗(n−1) if i is even,

(42)

where P is the projection operator associated with the σz or
σy-Pauli measurements – depending on the index – applied
on qubit oi and I is the identity operator applied on the rest
of the qubits.

Accordingly to Sec. 2, the action of a σz-Pauli measure-
ment on the qubit associated to vertex oi is equivalent to the
deletion of vertex oi from the graph. Whereas, the action of
a σy-Pauli measurement on the qubit associated to vertex oi
is equivalent to the local complementation of the graph at
vertex oi, followed by the deletion of oi from the graph.

From this, it is evident that the resulting graph obtained
via σz-Pauli measurement on qubit oi and the resulting
graph obtained via σy-Pauli measurement on qubit oi are
characterized by the same vertex set, while they differ in the
edge sets. More into detail, the projection operator on the
i-th orchestration qubit leads to the following graph:

G̃(i) =

{
G̃

(i)
y = (V

(i)
y , E

(i)
y ) if i is odd,

G̃
(i)
z = (V

(i)
z , E

(i)
z ) if i is even,

(43)

with:
V (i)
y = V (i)

z = V \ {oi}, (44)

E(i)
y = (E ∪ {ci, ci+1}) \

{
{oi, ci}, {oi, ci+1}

}
, (45)

E(i)
z = E \

{
{oi, ci}, {oi, ci+1}

}
. (46)

Thus by performing no measurements according to (42),
the vertex set of the resulting graph is given by the unmea-
sured vertices, i.e. the clients, while, by accounting for (44)
and (45), the set of edges is given by the links between two
consecutive clients whose smaller index is odd. Formally:

G̃(no) =

(
V \

no⋃
i=1

{oi}︸ ︷︷ ︸
V (no)

,

⌈no

2 ⌉−1⋃
i=0

{c2i+1, c2i+2}︸ ︷︷ ︸
E(no)

)
. (47)

Thus, the graph state associated to the graph G̃(no) can
be written as:

|G̃⟩ =
⌈no

2 ⌉⊗
i=0

|K2⟩ , (48)

where |K2⟩ is the two-qubit fully connected graph state, in
(8), which is LU equivalent to a Bell state. Remarkably, for
the chain graph state topology, we have that no = k − 1,
therefore ⌈no

2 ⌉ = ⌈k−1
2 ⌉ = ⌊k

2 ⌋. This completes the proof.

APPENDIX C
PROOF LEMMA 3
As indicated in Sec. 2, the σx-measurement on a qubit corre-
sponding to orchestrator vertex oi is equivalent to perform
the following sequence of graph operations

τb0
(
τoi
(
τb0(G))− oi

)
, (49)

with b0 an arbitrary neighbor of oi. By accounting for the
structure of the chain graph and by Def. 9, it results that
the shortest path p{ci,cj} connecting ci and cj , is composed
by d(ci, cj)-orchestrator vertices and d(ci, cj) − 1 bridges,
being d(ci, cj) their proximity. By accounting for this con-
sideration, the proof follows by setting the neighbors {b0}
involved in the first d(ci, cj) − 1 σx-measurements on the
orchestrator vertices equal to the identities of the d(ci, cj)−1
bridges belonging to p{ci,cj}, and the last b0 – of the σx-
measurement on the last orchestrator qubit – is set equal to
the client cj .

By proceeding step-by-step, the first σx-measurement is
performed on oi, with b0 = ci+1. If d(ci, cj) > 1, ci+1 ̸= cj is
a bridge, otherwise ci+1 = cj and the proof directly follows.
Thus, (49) can be re-written as:

τci+1

(
τoi
(
τci+1

(G))− oi
)
, (50)

with

τci+1
(G) =

(
V, (E ∪N2

ci+1
) \ ENci+1︸ ︷︷ ︸

E′

)
, (51)
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and N2
ci+1

= {oi, oi+1}. Moreover, we have that:

τoi(τci+1
(G)) =

(
V, (E

′
∪N2

oi) \ ENoi︸ ︷︷ ︸
E′′

)
, (52)

where the set N2
oi is as follows:

N2
oi =

{{
{ci, ci+1}, {ci, oi+1}, {ci+1, oi+1}

}
if i < no,

{ci, ci+1} if i = no,
(53)

and the set ENoi
is given by:

ENoi
=

{
{ci+1, oi+1} if i < no,

∅ if i = no.
(54)

Accordingly, the edge set E
′′

includes the edges
{{ci, oi+1}, {ci, ci+1}, {ci, oi}, {ci+1, oi}}. Stemming from
this, it results that the deletion of vertex oi in (50) leads
to the resulting graph:

τoi(τci+1(G))− oi =
(
V \ {oi}, E

′′
\ Eoi︸ ︷︷ ︸

E′′′

)
, (55)

with Eoi =
{
{oi, ci}, {oi, ci+1}, {oi, oi+1}

}
. Thus, E

′′′
in-

cludes the edges {{ci, oi+1}, {ci, ci+1}}. We note that the
actions of the former graph operations lead to the scenario
in which ci is the only neighbor of ci+1. Therefore, the last
graph operation in (50), i.e. τci+1

(τoi(τci+1
(G)) − oi), does

not change the graph.
The above results show that by performing a σx-

measurement on oi and by choosing as support node b0
the bridge ci+1, i.e. b0 = ci+1, the overall effect is to
create a direct edge between ci and ci+1 and between ci
and oi+1, while ci+1 looses its bridge role, meaning that it
looses the edge with oi+1. Thus ci and ci+1 are swapped in
their artificial topology positions, reducing so the proximity
between ci and cj . From this description is already evident
the “rolling” effect, mentioned in Sec. 4.

By reasoning as above and by performing the other
(d(ci, cj)−2) σx-measurements on d(ci, cj)−2 orchestrator
qubits {ok}

i+d(ci,cj)−2
k=i+1 , ci is progressively swapped in its

topological position with the d(ci, cj)−2 bridges, belonging
to the shortest path p{ci,cj}. Hence, at the last measurement
stage on oi+d(ci,cj)−1, ci exhibits an edge with oi+d(ci,cj)−1

which in turns has an edge with cj . Thus by choosing as
support node b0 = cj and by reasoning as above, the proof
follows.

APPENDIX D
PROOF OF LEMMA 4
Without loss of generality, in the following, we restrict our
attention on artificial topologies characterized by kc > k̄b.
The proof can be carried similarly also for the easier case in
which kc = k̄b.

Specifically, the proof follows by adopting a similar
reasoning as in Lem. 1: first local complementations of the
graph G – associated to the generalized tree-like graph
state – at vertices {oi}no

i=1 are performed and then, each
of the aforementioned complementation is followed by the
deletion of {oi} from the resulting graph, as indicated in
(18).

Accordingly to Sec 4, the graph G = (V,E) associated to
a n-qubit generalized tree-like graph state can be expressed
through star subgraphs. Formally:

G =
no⋃
i=1

G[Ṅoi ] =
no⋃
i=1

(Ṅoi , {oi} ×Noi︸ ︷︷ ︸
Eoi

), (56)

with Noi the neighborhood associated to an arbitrary or-
chestration vertex oi. To carry the proof, it is useful to
explicit the neighborhood Noi .

To this aim, we introduce a labeling for the clients based
on the splitting of the clients into two groups with increasing
numbering from left to right. Specifically, client vertices are
assumed to be placed in two separate groups, named up and
down, as follows.

Vc = Vup ∪ Vdown, ∧ Vup ∩ Vdown = ∅, (57)

Vup =
{
{ci}

kf

i=1

}
, (58)

Vdown =
{
{cj}kj=kf+1

}
, (59)

with kf denoting an offset value defined as: kf
△
= ⌈kc

2 ⌉no −
⌈ k̂b

2 ⌉(no− 1). We introduce also other two offset parameters
characterizing a certain orchestration qubit oi, as follows:

kupf,oi = (⌈kc

2 ⌉ − ⌈ k̂b

2 ⌉ − 1)(i− 1) (60)

kdown
f,oi = (⌊kc

2 ⌋ − ⌊ k̂b

2 ⌋ − 1)(i− 1). (61)

By accounting for (58), (59) and (60), (61), the neighbor-
hood Noi in (56) of each oi can expressed:

Noi =

{
{cj} ∈ Vup : j = i+ kupf,oi , . . . , i+ kupf,oi+ (62)

+ (⌈kc

2 ⌉ − 1)

}
∪
{
{cl} ∈ Vdown : l = i+ kf+

+ kdown
f,oi , . . . , i+ kf + kdown

f,oi + (⌊kc

2 ⌋ − 1)

}
.

Stemming from the above, it results that the action of
a σy-Pauli measurement at the orchestrator vertex o1 is
equivalent to the local complementation of the graph at
vertex o1, followed by the deletion of o1 from the graph:

G̃(1) = τo1(G)− o1 = (63)

= (V \ {o1}︸ ︷︷ ︸
△
=V (1)

, [(E ∪N2
o1) \ ENo1

] \ Eo1︸ ︷︷ ︸
△
=E(1)

),

with ENo1
= ∅, as a consequence of the definition of gener-

alized tree-like state. Accordingly, a σy-Pauli measurement
at the orchestrator vertex o1 leads to a new graph where all
the clients originally in No1 in (63) are fully interconnected,
including the clients with bridge role.

This consideration allows us to highlight that at the next
measurement step, when a σy-Pauli measurement is per-
formed at the orchestrator vertex o2, ENo2

is not anymore an
empty set. To provide the expression of ENoi

at the arbitrary
measurement step at at the orchestrator vertex oi, it is useful
to introduce the edge set of the bridges connected to a given
orchestrator vertex oi:

EBoi
=
{
{ci, cj} : ci, cj ∈ Boi , i ̸= j

}
⊂ E(i), (64)
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where Boi is defined in (25). Accordingly, in the i-th mea-
surement step, the action of a σy-Pauli measurement at the
orchestrator vertex oi leads to the graph:

G̃(i) = τoi(G̃
(i−1))− oi = (V (i), E(i)

)
(65)

with vertex and edge sets – V (i), E(i) – depending on the
vertex and edge sets – V (i−1), E(i−1) – in the previous
measurement step:

V (i) = V (i−1) \ {oi} (66)

E(i) = (E(i−1) ∪N2
oi) \ ENoi

\ Eoi . (67)

The set ENoi
in (67) contains the links created between

bridges adjacent to the orchestration vertices oi and oi−1:

ENoi
=

{
∅ if i = 1,

EBoi
∩ EBoi−1

otherwise,
(68)

and N2
oi is given by:

N2
oi =

{
{cj , cl} : cj , cl ∈ Noi , j ̸= l

}
. (69)

Accordingly, at each σy measurement step, a new complete
subgraph K[Noi ] = (Noi , N

2
oi) induced by the neighbors

of oi is created. Such a complete subgraph is reduced by
the deletion of the edges between bridge vertices belonging
to EBoi ∩ EBo(i−1)

, i.e., bridges adjacent to oi and oi−1. It
is convenient to note that the complete subgraph K[Noi ]
can be equivalently obtained by the union of star subgraph
associated to each client in Noi :

K[Noi ] =
⋃

∀ci∈Noi

G[Ṅci ], (70)

where G[Ṅci ] is defined in (10) in Def. 5 as:

G[Ṅci ] = (Noi︸︷︷︸
Ṅci

, {ci} × (Noi \ {ci})︸ ︷︷ ︸
{ci}×Nci

) = (V̇ci , Ėci). (71)

Thus, the overall artificial topology, obtained after no σy-
Pauli measurements, is given by the union of all the star
subgraphs associated to each client, without the edges be-
tween internal bridges. Formally:

G̃(no)
y =

(
V \

no⋃
i=1

{oi}︸ ︷︷ ︸
V (no)

,
k⋃

i=1

Ėci \
no⋃
i=1

(EBoi ∩ EBo(i−1)
)︸ ︷︷ ︸

E(no)

)
.

(72)
From the above, it results that for each external orches-

tration qubit, namely oi = o1 and oi = ono
,
(kc

2

)
new edges

are created as consequence of the complementation, while
at the next measurement step, exactly

(k̂b

2

)
links are deleted

among the bridges belonging to EBoi ∩EBo(i−1)
. For all the

other (internal) orchestration qubits, the number of deleted
edges is doubled. Formally, the cardinality of the edge set
can be written as:

|E(no)| = 2

[(
kc
2

)
−
(
k̂b
2

)]
+ (no − 2)

[(
kc
2

)
− 2

(
k̂b
2

)]
=

= no

(
kc
2

)
− 2(no − 1)

(
k̂b
2

)
. (73)

This complete the proof.

APPENDIX E
PROOF LEMMA 5
Similarly to Lemma 3, the proof follows by setting the neigh-
bors {b0} involved in the first d(ci, cj)−1 σx-measurements
on the orchestrator vertices equal to the identities of the
d(ci, cj) − 1 bridges belonging to p{ci,cj}, and the last b0 –
of the σx-measurement on the last orchestrator qubit – is set
equal to the client cj .

For the sake of notation simplicity we assume that ci is a
client associated to orchestrator oi. Otherwise, a re-labeling
of the client ci is assumed. This is not restrictive due to the
symmetry of the structure of the generalized tree-like graph
described in Sec. 4. Accordingly, if d(ci, cj) > 1, the b0 of
the first σx-measurement has to be set equal to one of the
bridges in Boi , as for instance, b0 = c

i+kup
f,oi

+(⌈kc

2 ⌉−1)
, with

kupf,oi defined in (60). In the following for the sake of clarity,

we denote with ℓoi
△
= kupf,oi + (⌈kc

2 ⌉ − 1). As observed in
the proof of Lemma 3, the effect of the σx-measurement is
to swap the positions within the artificial topology between
ci and the support node ci+ℓoi

, in terms of edges with the
orchestrator vertices.

By proceeding step-by-step, the first σx-measurement,
performed on oi with b0 = ci+ℓoi

, has the effect of modify-
ing the neighbor of ci+ℓoi

as follows:

Nci+ℓoi
= (Noi \ {ci+ℓoi

}). (74)

Accordingly to (74), ci+ℓoi
is not anymore a bridge for oi+1.

It is also interesting to note that the aforementioned behav-
ior is common to each bridge of the orchestrator vertices oi
and oi+1 in the initial graph. In other words, each vertex
belonging to (Boi ∩Boi+1

) with i < no, has the vertex ci+ℓoi
as the only neighbor, after the measurement, loosing so its
bridge role. On the contrary, client ci assumes the role of
bridge for oi+1:

Nci =

{{
ci+ℓoi

, oi+1

}
if i < no,

{ci+ℓoi
} if i = no.

(75)

The aforementioned behavior is also exhibited by the other
clients originally – before the σx-measurement – in Noi and
not in Boi ∩Boi+1 .

By accounting for the above, the overall effect of the σx-
measurement on oi is to create an artificial link between ci
and oi+1, by highlighting again the “rolling” effect men-
tioned in Appendix C. The proof follows, by reasoning as
above. Specifically, by performing the other (d(ci, cj) − 2)
σx-measurements on d(ci, cj) − 2 orchestrator qubits, ci is
progressively swapped in its topological position with the
d(ci, cj)− 2 bridges, belonging to the shortest path p{ci,cj}.
Hence, at the last measurement stage on oi+d(ci,cj)−1, ci
exhibits an edge with oi+d(ci,cj)−1 which in turns has an
edge with cj . Thus by choosing as support node b0 = cj
and by reasoning as above, the proof follows.

APPENDIX F
PROOF LEMMA 6
Accordingly to Def. 10, two k-qubit graph states are LC
equivalent iff e corresponding graphs are related by a se-
quence of local complementations.
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Let us consider a k-quibit generalized tree-like graph
state whose associated graph G = (V,E) is:

V = Vo ∪ Vc
△
=
{
{oi}no

i=1 ∪ {ci}k
′

i=1

}
(76)

E =
no⋃
i=1

Eoi , (77)

where Eoi
△
= {oi} × Noi is the edge set, with cardinality

k′o = kc−1, associated to G[Ṅoi ] and k′ = k−no. By locally
complementing G at vertex o1, one has:

τo1(G) =

(
V, (E ∪N2

o1) \ ENo1

)
, (78)

where ENo1
is the empty set. In the remaining no − 1 local

complementations at vertices {oi}no
i=2, by reasoning as in

rom Appendix D, it results that ENoi
is given by:

ENoi
= EBoi

∩ EBo(i−1)
. (79)

Accordingly, at the last local complementation on vertex ono
,

the associate graph can be written as:

G(no) =

(
V,

no⋃
i=1

(E(i−1)∪N2
oi)\

no⋃
i=2

(EBoi
∩EBo(i−1)

)

)
, (80)

with E(0) = E, being the originally edge set before the
first complementation at node o1. From (80), it is easy to
recognize that:

(E(i−1) ∪N2
oi) =

k′⋃
i=1

Ėci

no⋃
i=1

Eoi =
k′+no⋃
i=1

Ė′
ci . (81)

By substituting (81) in (80), one has:

G(no) =

(
V,

k′+no⋃
i=1

Ė′
ci \

no⋃
i=2

(EBoi
∩ EBo(i−1)

)

)
. (82)

The proof follows, by recognizing that (82) is equivalent to
(72) in Appendix D. In other words, an artificial enhanced
ring with k = k′ + no clients is obtained.
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