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Abstract—The entanglement distribution process is widely en-
visioned as one of the key functionalities of the Quantum Internet.
Its engineering is, thus, foundational to effectively implement
communication protocols in quantum networks. In this paper,
we exploit the Markov Decision Process formalism to model
the entanglement distribution as an optimal decision problem.
Furthermore, we analyze the impact of reward functions on
two key performance metrics, namely: the average distribution
time and the average distributed cluster size. From this analysis,
we gain some insights for choosing a reward function that
meets suitable figures of merit for an overlaying communication
protocol.

Index Terms—Entanglement Distribution, Quantum Internet,
Quantum Communications, Markov Decision Process

I. INTRODUCTION

The Quantum Internet, i.e., a network interconnecting het-
erogeneous quantum networks, is foreseen to enable several
applications with no counterpart in the classical world [1]–
[5], such as distributed quantum computing [6] and secure
communications. In this context, the entanglement distribution
process plays a key role. Indeed, the successful distribution
of entangled states among remote nodes represents a prelim-
inary condition for any entanglement-based communication
protocol. Thus, the ultimate goal is to design an entanglement
distribution system that is reliable and efficient, i.e. a system
engineered with the aim to account for failures and non-
idealities. Understanding how quantum communication sys-
tems should function, and how to engineer such systems, has
been the focus of research efforts in recent years. Specifically,
several theoretical models and designs have been proposed
[7]–[9].

In most of the aforementioned models, it is common to
assume a small set of super-nodes in the network to be in
charge of generating and distributing entangled states [10],
[11], due to the current technological limitations. In these
scenarios, the super-nodes are therefore responsible for avoid-
ing potential bottlenecks and meeting the overlaying com-
munication protocol’s requirements. Hence, optimizing the
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entanglement distribution process becomes imperative. This
can be accomplished by modeling the distribution process at a
super-node and integrating some design parameters to control
its behavior.

Unfortunately, at the moment, literature is still missing a
general yet simple framework that accounts for the aforemen-
tioned challenges, enabling to efficiently control the distribu-
tion process.

In this paper, we move the first step toward modeling
entanglement distribution at the super-nodes as an optimal
decision problem, providing quantum network designers with
a flexible tool to satisfy their communication needs.

A. Related works

The entanglement distribution process has been modeled in
a few different ways in the literature. In [12], the authors model
the distribution of entangled pairs as a Discrete Time Markov
Chain (DTMC). Specifically, they assume infinite coherence
time and infinite resources at the central node – referred
to as “switch” – with the aim of analyzing the expected
capacity of the switch in terms of the number of qubits to
be stored for meeting the stability condition of the system.
In [13], the distribution of entangled pairs is modeled as a
Continuous Time Markov Chain (CTMC). Such a model is
based on a Poisson probability distribution for the successful
distribution of entangled pairs over the single quantum channel
and accounts for some non-idealities, such as decoherence and
noisy measurements. Recently, in [14] the Markov decision
process formalism has been proposed as a model for the
entanglement swapping operations within a quantum repeater
chain. Specifically, the resulting policy establishes – for each
node belonging to the linear repeater chain and for each
time step – which operation should be performed among the
set: wait, entanglement distribution with the neighbors nodes,
entanglement swapping and measurement. Finally, in [15]
some practical figures of merit for entanglement distribution
in quantum repeater networks are provided. In particular, the
authors define the average connection time and the average
size of the largest distributed entangled state for a fixed
scenario.
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Fig. 1: Representation of the two functioning regimes for a network with N = 3 clients: (a): regime of the action C. (b):
regime of the action Q.

B. Our contributions
Differently from the previously mentioned state-of-the-art

proposals, in this work, we focus on engineering the entan-
glement distribution process, by abstracting from the particular
state to be distributed and providing a model that can be
tweaked to account for the physical characteristics of the
process itself. To this aim:

1) we formulate the entanglement distribution process as a
Markov Decision Process (MDP);

2) we analyze the impact of different reward functions on
the distribution process through two figures of merit:
the average distribution time and the average distributed
cluster size;

3) we provide some insights into selecting a suitable reward
function for entanglement-based communication proto-
cols.

In short, we provide an easy-to-use tool for modeling and
tuning entanglement distribution systems for meeting some
performance requirements. However, it is worth noting that
the model that we provide in this work is widely flexible, and
may be adjusted to be applied in many different scenarios.

II. PRELIMINARIES

In the following, we will focus on the entanglement distri-
bution process from a communication engineering perspective.
Specifically, in this section we provide the system model for
a generic entanglement distribution system.

A. System Model
Without loss of generality, we consider a star network

topology, in which a super-node acts as central node and it
is responsible for the entanglement distribution process [10],
[11]. Specifically, the super-node is in charge of distributing
entangled states to N quantum nodes – referred to as clients
– through N dedicated quantum channels. During the entan-
glement distribution process, the super-node and its clients are
assumed to interact in a time-slotted fashion.

More into details, we consider the time horizon of the
entanglement distribution process constituted by M time slots:

T = {1, 2, . . . ,M}. (1)

with M implicitly accounting for the minimum coherence
time. Specifically, the value of M in (1) depends on the partic-
ulars of the technology adopted for generating and distributing
the entangled states, and it is set such that the decoherence
effects can be considered negligible. We also consider N
identical and independent quantum channels, where ebit trans-
missions are assumed to be independent1 and each quantum
channel is assumed to be a quantum absorbing channel.
Accordingly, we denote with p the probability of an ebit
propagating through a quantum channel without experiencing
absorption, and with q

△
= 1−p the probability of failing an ebit

distribution as a consequence of the carrier absorption. Hence,
an ebit distribution attempt over a quantum channel can be
modeled as a Bernoulli random variable with parameter p.

B. Problem Statement

The overall goal is to distribute a multipartite entangled
state. Due to the current hardware technology limitations and
the existence of different classes of multipartite entanglement
(not all characterized by the persistence property), to give
generality to the proposal, we assume the super-node to be
distributing EPRs to the clients. This allows the super-node to
eventually distribute the multipartite entangled state through
teleportation [10]. Accounting for Sec. II-A, during the first
timeslot the super-node simultaneously transmits N ebits to
the N clients, by exploiting an heralded scheme. This enables
the super node to recognize which client – if any – experi-
enced an absorption over the channel. In case of absorption,
further distributions can be attempted. These require additional
time, thus challenging the decoherence constraints as well
as impacting the overall distribution rate. Hence, there exists
a trade-off between the number of clients that successfully
received the ebit – which we refer to as distributed cluster
size – and the distribution time, i.e., the number of time
slots in which the distribution process is completed. As a
consequence, the problem of optimizing the aforementioned
trade-off arises. Solving such a problem is not a trivial task,

1Specifically, successive ebit transmission over the same channel and
transmissions over different quantum channels are assumed to be independent.
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Fig. 2: Reward function gn(s) plots.

and, indeed, it deeply affects the performance of the overlaying
communication protocol.

To this aim, in the following we introduce a theoretical
model of the entanglement distribution process that accounts
for several key parameters - such as the coherence time, the
channel absorption probability and the number of clients - and
introduces some design parameters to be tweaked for meeting
some communication performance requirements.

III. OPTIMAL DECISION PROBLEM

With the discussion of Sec. II in mind, we propose to
model the entanglement distribution process as an optimal
decision problem by exploiting the Markov Decision Processes
(MDPs) formalism [16]. We first describe the model, then we
distinguish the fixed parameters from the design parameters.
With the former we mean fixed quantities that represent con-
straints arising from the underlying technology and\or system
architecture. With the latter we mean the system degrees of
freedom that can be exploited to engineer the entanglement
distribution process. By doing so, we are able to understand the
roles, the relationships and the impact of different parameters
in the decision process by conducting a performance analysis.

A. Mathematical model

In the following formulation, the central node acts as a
decision maker, deciding at any given time-slot whether or
not to attempt the distribution. From now on, the consequence
of the decision, i.e. attempting or not the distribution, will be
referred to as action.

We model the distribution process through the quintuple:

{S, T,A(s,n), p(·|s, a), rn(s, a)} (2)

where:
• S denotes the finite and discrete state space associated to

the entanglement distribution process;
• T , as previously described in (1), is the finite and discrete

time horizon in which the distribution takes place;

• A(s,n) denotes the set of actions available to the decision-
maker – i.e., the super-node – when the system is in state
s ∈ S at the time n ∈ T ;

• p(sj |si, a) denotes the transition probability from state si
to sj according to action a;

• rn(s, a) denotes the reward function.
More into details, we refer to s ∈ S as the state of the

system, where:

S = S′ ∪ {∆} with S′ = {0, 1, 2, . . . , N} (3)

Specifically, si ∈ S′ denotes the state where i clients success-
fully received an ebit and ∆ denotes the absorption state, i.e.,
no further ebits are transmitted.

Hence, the couple (s, n), with s ∈ S and n ∈ T , fully
describes the state of the system.

For any given state s ∈ S and time-slot n ∈ T , the set of
the available actions A(s,n) is:

A(s,n) =

{
{C,Q} s ∈ S′ \ {N} ∧ n < M

{Q} s ∈ {N,∆} ∨ n = M
(4)

with C denoting the action of attempting the distribution,
and Q denoting the action of not attempting the distribution.
Remarkably, the only action available in the state s = ∆ and/or
at the time-slot M is Q.

Assuming the system being in the state si ∈ S at the time-
slot n ∈ T , when an action a ∈ A(si,n) is performed, the sys-
tem will evolve into state sj ∈ S with probability p(sj |si, a).
Accounting for the system model described in Sec. II-A, the
transition probability p(sj |si, a) can be expressed as follows:

p(sj |si, a) =


p(sj |si) si, sj ∈ S′ : j ≥ i ∧ a = C

1 si ∈ S, sj = ∆ ∧ a = Q

0 si, sj ∈ S′ : j < i ∨ si = ∆, sj ∈ S′

(5)
where, in our problem:

p(sj |si) = p(si+l|si) =
(
N − i

l

)
qN−i−lpl (6)



Fig. 3: Compact representation of the action matrices parameterized – according to the color scale on the right – in p with
N = M = 100, λ = 0.95, fn(s) = 0, h(s) = gn(s).

with j = i+ l and 0 ≤ l ≤ N − i.
As represented in Fig. 1 with reference to a system with

N = 3 clients, the available actions establish two disjoint
functioning regimes for the system, namely, the regime of
action C and the regime of action Q. Specifically, Fig. 1a
represents the regime of action C. Here, the system evolves
according to the transition probabilities p(sj |si) in (6). Re-
markably, only the action Q enables the state of the system
to change into ∆. Hence, there exist no transition towards the
absorbing state through action C. Whereas, Fig. 1b represents
the region of action Q. As also expressed in (5), once the
super-node decides to perform action Q, the system will only
evolve towards the absorbing state ∆, where no further ebit
transmission is attempted.

The action to perform is chosen upon a criterion that ac-
counts for a reward function rn(s, a). In particular, considering
the system being in state s at a certain time-slot n, when
an action a is chosen and performed, the decision-maker is
rewarded with a quantity rn(s, a).

More precisely, when the system is in a given state s at a
given time-slot n < M , we define the reward function as:

rn(s, a) =


−fn(s) s ∈ S′, a = C

gn(s) s ∈ S′, a = Q

0 s = ∆

(7)

where:

• −fn(s) denotes the cost function. It represents the cost
of attempting the ebit distribution in (s, n);

• gn(s) denotes the gain function. It represents the gain
obtained when not attempting the ebit distribution in
(s, n).

When n = M , regardless of the state of the system, the
distribution process ends. We set the final reward, i.e., the

value of the reward function at the last available time-slot, as
follows:

rM (s,Q) =

{
h(s) s ∈ S′

0 s = ∆
(8)

Specifically, we refer to h(s) as the boundary reward function.

B. Design parameters

In the model introduced in Sec. III-A we can easily distin-
guish the fixed parameters from the design parameters. Specifi-
cally, T, S and p(·|s, a) explicitly depend on the characteristics
of the system, such as the underlying technology or architec-
ture. Indeed, the time horizon M in which the distribution
must take place may depend on the minimum coherence time
of the nodes in the network. Also, the state space S depends
on the number N of client nodes in the network. Moreover,
the transition probabilities p(·|s, a) also result as fixed, since
they depend on the particular communication channels in the
network.

In contrast, the reward function is not necessarily techno-
logically dependent, and can be chosen to reflect the decision
maker preferences and satisfy potential performance metrics.

As an example, in quantum networks, the reward function
rn(s, a) should account for the requirements of the particular
communication protocol to be performed, thus orienting the
decision process towards the most convenient states for our
communication purposes. Such preferences are often reflected
in the expression and the properties of the reward function
itself.

In the following we assume to enclose the effects of the
gain and cost functions of (7) in one and only function gn(s)
which satisfies the following properties:

Property 1 ( Monotonicity with s):

gn(si) ≤ gn(si+l) for 0 ≤ l ≤ N − i



{
un(si) = max{

∑N−i
l=0

(
N−i
l

)
qN−i−lplun+1(si+l) , gn(si)} ,∀si ∈ S′,∀n ∈ T \ {M}

uM (si) = h(si) ,∀si ∈ S′ (12)

gn(s) is a monotonic increasing function of s. Property (1) lets
the reward function orient the system toward larger distributed
cluster sizes. That is, given the time-slot n ∈ T , the decision
maker prefers larger distributed cluster sizes.

Property 2 (Monotonicity with n):

gn(s) ≥ gn+k(s) for 0 ≤ k ≤ M − n

gn(s) is a monotonic decreasing function of n. Property (2)
lets the reward function orient the system toward shorter distri-
bution times. This implies that the cost for longer distribution
times is implicitly accounted for within gn(s), and hence we
can set the cost function fn(s) = 0.

Assuming the system being in the state si at the time-slot
n, we can define the corresponding expected reward un(si))
as:

un(si) = max
a∈A(si,n)

{rn(si, a)+
∑
sj∈S

p(sj |si, a)un+1(sj)} (9)

Then, we set the boundary condition:

uM (si) = h(si) ,∀si ∈ S′ (10)

By recalling the expression of rn(s, a) in (7) and (8), we
can write the optimality system as in E(12). Specifically, the
maximum in (12) is chosen between the expected reward
corresponding to the action C and the current reward cor-
responding to the action Q. This is crucial to compute the
optimal decision a∗ in (si, n):

a∗ = arg max
a∈A(si,n)

{rn(si, a) +
∑
sj∈S

p(sj |si, a)un+1(sj)}

(11)
The solution of (11) for any (si, n) ∈ S × T is the optimal
action matrix A∗, i.e., the N×M matrix whose element (si, n)
is the action a∗ corresponding to the optimal decision.

IV. PERFORMANCE EVALUATION

In the following section, we analyze the impact of the
reward function on the system’s performance. Specifically, we
define two metrics:

• Average distribution time: the average amount of time-
slots before the distribution is arrested;

• Average distributed cluster size: the average number of
nodes to whom an ebit has been successfully distributed;

and, by performing numerical simulations, we study how they
vary in dependence of the reward function. The main objective
is to draft some guidelines for choosing a reward function that
lets the system meet some performance requirements.

To this aim, we consider three different expressions gn(s)
as our reward functions:

g(s, n) =
s

n
(13)

g(s, n) = λns (14)

g(s, n) =
s

N
− n

M
(15)

where in (14) λ ∈ (0, 1) is an additional parameter acting as
a discount factor.
As showed in Fig. 2, the above reward functions meet Prop-
erty (1) and Property (2). Moreover, every g(s, n) differently
relates s and n: sometimes “valuing” one parameter more
than the other (Fig. 2a, Fig. 2b), sometimes “valuing” them
equally (Fig. 2c).

A. Simulations and Numerical Results

In order to understand the impact of the reward function
on the system’s performance, we first computed the action
matrix A∗ for different values of p. The action matrices are
reported in a compact representation in Fig. 3. According to
the colormap in Fig. 3, associated with each value pk ∈ P =
{0, 0.1, . . . , 0.9, 1} is a color ck.

Each element2 a∗(s,n) of the action matrix A∗ is colored such
that:

if a∗(s,n) is colored in ck ⇒ ak
′

(s,n) =

{
Q ∀k′ : pk′ ≤ pk

C ∀k′ : pk′ > pk
(16)

with ak
′

(s,n) being the optimal action to take when the system
is in (s, n) and the succesful ebit propagation probability p is
equal to pk′ ∈ P .

For any given pk, Fig. 3 shows two functioning regimes3 in
the action matrix A∗. In the regime of action Q, the optimal
action is always Q for any state (s, n) within this regime.
Similarly, in the regime of action C, the optimal action is
always C for any state (s, n) within this regime.

It is worth noting that different reward functions may lead to
different action matrices. As an example, the reward function
gn(s) =

s
n seems to be accounting more for the distribution

time than the others.
As a result, the system may exhibit different performances

depending on the reward function. This is showed in Fig. 4,
where the average distribution time and the average cluster
size are computed for different values of p and for different
reward functions gn(s). Interestingly, the reward functions
significantly impact the performances for lower values of p.

2The elements a∗
(s,n)

of the action matrix A∗ are computed exploiting
backward induction. Therefore, they should be intended as the best action to
take in case the system is in state (s, n).

3With the term regimes, we mean two contiguous regions of the action
matrix.
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Fig. 4: Plot of entanglement distribution process performance metrics as a function of p.

Indeed, both in Fig. 4a and Fig. 4b, as p increases, the distance
between the curves in the graph tends to reduce. Thus, different
reward functions result in vastly different ebit distribution
performances under bad transmission conditions.

In real communication scenarios, the probability of success-
ful ebit distribution p may be fixed, since it is dependent on the
particular communication channel. Moreover, we may be inter-
ested in performing a communication protocol with particular
performance requirements in terms of average distribution time
or average distributed cluster size. In most of these cases, it is
possible to meet the performance requirements by choosing a
suitable reward function. As an example, we may adjust the
value of λ in g(s, n) = λns in order to meet some average
distribution time requirements4.

Thus, our formulation of the entanglement distribution
process as an optimal decision problem may result handy
for quantum network designers whenever some performance
requirements must be met.

V. CONCLUSION

In this work, we provided a formulation of the entanglement
distribution process as a Markov Decision Process. Our formal
model jointly accounts for the constraints arising from the
underlying technologies and the overlaying communication
protocol requirements. We exploited this formulation to dis-
cuss the trade-off between two performance metrics, i.e., the
average distribution time and the average distributed cluster
size, and to analyze the impact of the reward function on the
entanglement distribution performances. The numerical simu-
lations proved the role of the reward function as a powerful
design parameter and showed the flexibility of our model. In-
deed, by properly designing the reward function, in most cases,
we can let the system meet the aforementioned performance
requirements. This analysis paves the way towards the design

4Some λ values may cause degenerate decisions. For instance, when λ =
0.3 in Fig. 4, the average distribution time is approximately one, leading to
a linear trend in the average distributed cluster size.

of robust and efficient entanglement distribution systems for
quantum networks and, more broadly, the Quantum Internet.
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